正态分布

正态分布
正态分布

借助于标准正态分布表求值

例 设ξ服从)1,0(N ,求下列各式的值:

(1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP

分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地.

解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P

(2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP

(3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P

.8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ=

说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没

有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用.

求服从一般正态分布的概率

例 设η服从)2,5.1(2

N 试求:

(1));5.3(<ηP (2));4(-<ηP

(3));2(≥ηP (4)).3(<ηP

分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(??

? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=???

??-Φ=<ηP

(2);0030.0)75.2(1)75.2(25.14)4(=Φ-=-Φ=??

? ??--Φ=-<ηP (3);4013.0)25.0(125.121)2(1)2(=Φ-=???

??-Φ-=<-=≥ηηP P (4)??? ?

?--Φ-??? ??-Φ-=<=<25.1325.131)2()3(ηηP P )]25.2(1[7734.0)25.2()75.0(Φ--=-Φ-Φ=

.7612.0)9878.01(7734.0=--=

说明:这里,一般正态分布),(~2

σμξN ,总体小于x 的概率值)(x F 与)(x P <ξ和??? ??-Φσμx 是一样的表述,即:.)()(??

? ??-Φ==<σμξx x F x P 服从正态分布的材料强度的概率

例 已知:从某批材料中任取一件时,取得的这件材料强度ξ服从).18,200(2N

(1)计算取得的这件材料的强度不低于180的概率.

(2)如果所用的材料要求以99%的概率保证强度不低于150,问这批材料是否符合这

个要求.

分析:这是一个实问题,只要通过数学建模,就可以知道其本质就是一个“正态分布下

求随机变量在某一范围内取值的概率”的问题;本题的第二问是一个逆向式问法,只要把握

实质反向求值即可.

解:(1)-=??

? ??-Φ-=<-=≥1181201801)180(1)180(ξξP P ;8665.0)11.1()]11.1(1[1)11.1(=Φ=Φ--=-Φ

(2)可以先求出:这批材料中任取一件时强度都不低于150的概率为多少,拿这个结

果与99%进行比较大小,从而得出结论.

;9973.0)78.2()]78.2(1[1)78.2(1182001501)150(1)150(=Φ=Φ--=-Φ-=??

? ??-Φ-=<-=≥ξξP P 即从这批材料中任取一件时,强度保证不低于150的概率为99.73%>99%,所以这批

材料符合所提要求.

说明:“不低于”的含义即在表达式中为“大于或等于”.转化“小于”后,仍须再转化

为非负值的标准正态分布表达式,从而才可查表.

公共汽车门的高度

例 若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计

的,如果某地成年男子的身高)36,175(~N ξ(单位:㎝),则该地公共汽车门的高度应设

计为多高?

分析:实际应用问题,分析可知:求的是门的最低高度,可设其为)cm (x ,使其总体

在不低于x 的概率值小于1%,即:%101.0)(=<≥x P ξ,从中解出x 的范围.

解:设该地公共汽车门的高度应设计高为x cm ,则根据题意可知:%1)(<≥x P ξ,由

于)36,175(~N ξ, 所以,;01.061751)(1)(

? ??-Φ-=<-=≥x x P x P ξξ 也即:;99.06175>??

? ??-Φx 通过查表可知:;33.26

175>-x 解得:;98.188>x

即该地公共汽车门至少应设计为189cm 高.

说明:逆向思维和逆向查表,体现解决问题的灵活性.关键是理解题意和找出正确的数

学表达式.

学生成绩的正态分布

例 某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,

问从理论上讲在80分至90分之间有多少人?

分析:要求80分至90分之间的人数,只要算出分数落在这个范围内的概率,然后乘

以总人数即可,而计算这个概率,需要查标准正态分布表,所以应首先把这个正态总体化成

标准正态总体.

解:设x 表示这个班的数学成绩,则x 服从)10,80(2N 设10

80-=x Z 则z 服从标准正态分布)1,0(N . 查标准正态分布表,得:

5000.0)0(,8413.0)1(==ΦΦ

以,3413.05000.08413.0)0()1()10()10

80901080108080()9080(=-=?-?=<<=-<-<-=<

∴163824.163413.048≈=?.

说明:这类问题最容易犯的错误是没有转化成标准正态分布就直接求解,一般地,我

们在解决正态总体的有关问题时均要首先转化成标准正态总体.

企业管理使企业的运作效率大大增强;让企业有明确的发展方向;使每个员工都充分发挥他们的潜能;向顾客提供满意的产品和服务;树立企业形象。管理就是效益。企业管理能增强企业竞争力。

企业管理的意义:

1,企业管理可以增强企业的运作效率;

2,可以让企业有明确的发展方向;

3,可以使每个员工都充分发挥他们的潜能;

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

(完整版)t分布的概念及表和查表方法.doc

t分布介绍 在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t 分布曲线形态与 n(确切地说与自由度 df )大小有关。与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。 中文名t 分布应用在对呈正态分布的总体 外文名t -distribution 别称学生 t 分布 学科概率论和统计学相关术语t 检验 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t 测定的基础。 t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生 t-分布可简称为t 分布。其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

标准正态分布查询表

附表1. 标准正态分布表 x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.90.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.955 4 0.964 1 0.971 3 0.977 2 0.982 1 0.986 1 0.989 3 0.991 8 0.993 8 0.995 3 0.996 5 0.997 4 0.998 1 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.956 4 0.964 8 0.971 9 0.977 8 0.982 6 0.986 4 0.989 6 0.992 0 0.994 0 0.995 5 0.996 6 0.997 5 0.998 2 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.957 3 0.965 6 0.972 6 0.978 3 0.983 0 0.986 8 0.989 8 0.992 2 0.994 1 0.995 6 0.996 7 0.997 6 0.998 2 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.958 2 0.966 4 0.973 2 0.978 8 0.983 4 0.987 1 0.990 1 0.992 5 0.994 3 0.995 7 0.996 8 0.997 7 0.998 3 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.959 1 0.967 2 0.973 8 0.979 3 0.983 8 0.987 4 0.990 4 0.992 7 0.994 5 0.995 9 0.996 9 0.997 7 0.998 4 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.959 9 0.967 8 0.974 4 0.979 8 0.984 2 0.987 8 0.990 6 0.992 9 0.994 6 0.996 0 0.997 0 0.997 8 0.998 4 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.960 8 0.968 6 0.975 0 0.980 3 0.984 6 0.988 1 0.990 9 0.993 1 0.994 8 0.996 1 0.997 1 0.997 9 0.998 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.961 6 0.969 3 0.975 6 0.980 8 0.985 0 0.988 4 0.991 1 0.993 2 0.994 9 0.996 2 0.997 2 0.997 9 0.998 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.962 5 0.970 0 0.976 2 0.981 2 0.985 4 0.988 7 0.991 3 0.993 4 0.995 1 0.996 3 0.997 3 0.998 0 0.998 6 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5 0.963 3 0.970 6 0.976 7 0.981 7 0.985 7 0.989 0 0.991 6 0.993 6 0.995 2 0.996 4 0.997 4 0.998 1 0.998 6 x0.00.10.20.30.40.50.60.70.80.9 30.998 70.999 00.999 30.999 50.999 70.999 80.999 80.999 90.999 9 1.000 0

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

正态分布

正态分布 1.关于正态分布N (μ,σ2),下列说法正确的是( ) A .随机变量落在区间长度为3σ的区间之外是一个小概率事件 B .随机变量落在区间长度为6σ的区间之外是一个小概率事件 C .随机变量落在(-3σ,3σ)之外是一个小概率事件 D .随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件 2.已知随机变量ξ服从正态分布N (4,σ2),则P (ξ>4)=( ) A.15 B .14 C.13 D .12 3.若随机变量X 的密度函数为f (x )=12π·e -x 22,X 在区间(-2,-1)和(1,2)内取值的概率分别为p 1,p 2,则p 1,p 2的关系为( ) A .p 1>p 2 B .p 1

c )=p ,则p 的值为( ) A .0 B .0.5 C .1 D .不确定 9.已知随机变量X ~N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.977 10.某地区高二女生的体重X (单位:kg)服从正态分布N (50,25),若该地区共有高二女生2 000人,则体重在50 kg ~65 kg 间的女生共有( ) A .683人 B .954人 C .997人 D .994人 11.图是三个正态分布X ~N (0,0.25),Y ~N (0,1),Z ~N (0,4)的密度曲线,则三个随机变量X ,Y ,Z 对应曲线分别是图中的________、________、________. 12.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总 体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

标准正态分布表

标准正态分布表 0.000.010.020.030.040.050.060.070.080.09 0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.5359 0.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.5753 0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.6141 0.30.61790.62170.62550.62930.63310.63680.64060.64430.64800.6517 0.40.65540.65910.66280.66640.67000.67360.67720.68080.68440.6879 0.50.69150.69500.69850.70190.70540.70880.71230.71570.71900.7224 0.60.72570.72910.73240.73570.73890.74220.74540.74860.75170.7549 0.70.75800.76110.76420.76730.77040.77340.77640.77940.78230.7852 0.80.78810.79100.79390.79670.79950.80230.80510.80780.81060.8133 0.90.81590.81860.82120.82380.82640.82890.83150.83400.83650.8389 1.00.84130.84380.84610.84850.85080.85310.85540.85770.85990.8621 1.10.86430.86650.86860.87080.87290.87490.87700.87900.88100.8830 1.20.88490.88690.88880.89070.89250.89440.89620.89800.89970.9015 1.30.90320.90490.90660.90820.90990.91150.91310.91470.91620.9177 1.40.91920.92070.92220.92360.92510.92650.92790.92920.93060.9319 1.50.93320.93450.93570.93700.93820.93940.94060.94180.94290.9441 1.60.94520.94630.94740.94840.94950.95050.95150.95250.95350.9545 1.70.95540.95640.95730.95820.95910.95990.96080.96160.96250.9633 1.80.96410.96490.96560.96640.96710.96780.96860.96930.96990.9706 1.90.97130.97190.97260.97320.97380.97440.97500.97560.97610.9767 2.00.97720.97780.97830.97880.97930.97980.98030.98080.98120.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.9857 2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.9890 2.30.98930.98960.98980.99010.99040.99060.99090.99110.99130.9916 2.40.99180.99200.99220.99250.99270.99290.99310.99320.99340.9936 2.50.99380.99400.99410.99430.99450.99460.99480.99490.99510.9952 2.60.99530.99550.99560.99570.99590.99600.99610.99620.99630.9964 2.70.99650.99660.99670.99680.99690.99700.99710.99720.99730.9974 2.80.99740.99750.99760.99770.99770.99780.99790.99790.99800.9981 2.90.99810.99820.99820.99830.99840.99840.99850.99850.99860.9986 3.00.99870.99870.99870.99880.99880.99890.99890.99890.99900.9990

标准正态分布表

标准正态分布表 就力二「冷=亡P(X

正态分布概率表 0( u ) t F(t)t F(0t F( t)t F(t) 0+00O.COOO0,230.181 90,460.354 50.690.509 8 0.010.008 00.24o, m70.470,361 60J00.516 1 0+020.016 00,250,197 40,480.368 80+710,522 3 0+030023 90 260.205 10,490.375 91720.528 5 0.04 C.031 90.270.212 80.500.382 90.730.534 6 0.050+039 90.280.220 50.510.389 90.740.540 7 0.060.047 80 290. 22S 20.520.396 90.750.546 7 0,070,055 S0. 300.235 80.530.403 90.760.552 7 0.0S0.063 8(1. 310.243 40.540.410 80.770.558 7 0 + 090.071 7C,320.251 00&0.417 70+780.564 6 (k 1U0079 7(J. 330.258 60.560.424 50+790.570 5 0.11O.fi87 6 C. 340.266 10.570.431 3o.so0, 57 6 3 4 120.09 5 50 350.273 70,5S0,43S 1 0.S10.582 1 A130.103 1 C. 360.281 20.590.444 80,820.587 8 0.140,111 30. 370.288 60.600.451 50.S30.593 5 0+150.119 20.380,29 6 10.610.458 1 (U40*599 1 0.160,12 7 ] 0.390, 303 50.620.464 70.350,604 7 0.170 135 0G.400310 80.630.471 30, R60.6102 0.180J42 S0.410.31 8 20.640.477 S0+870,15 7 0.190.150 70 420325 50.650.484 30+880.621 1 0.200.158 50.430. 332 80.660.490 70.890 . 62 6 5 0,210J66 3C,440.340 10.670.497 1 0.900.631 9 A 220.174 ] 0.45(L 347 30.680.503 50.910.637 2

正态分布

正态分布 (normal distribution ) 一、 定义 如果连续型随机变量取值分布呈现单峰、对称、两侧均匀变动的钟 形分布,且能用下列函数描述其位置和形状特征的,则称之为正态分布。 概率密度函数 , -∞μ2>μ1 1 2 3 (2) 形态参数 σ 表达正态曲线的偏尖峰形状和偏平阔形状:σ3>σ2>σ1 V(x)= σ2 固定参数 (1)偏度系数 理论三阶矩 SK=∑(x-μ)3/nσ3=0 (2) 峰度系数 理论四阶矩 KU=∑(x-μ)4/nσ4=3 * 样本偏度系数g 1与样本峰度系数g 2公式复杂,可参阅其他教材。 三、图形及曲线与横轴向面积(概率)分布规律 P{μ-σ

四、 应用 1、描述资料分布 2、依据面积分布规律求医学参考值范围 3、质量控制方法中随机误差分布符合正态,可用一定范围作为质量警戒线和 控线 4、标准正态分布的U 值,可视为重要统计量,是大样本参数估计和假设检验 的基础。而且用于求资料某一定范围内分布的理论频数(n 、x 、s )已计算出 例:已知x =50,S=10,N=200,求45

正态分布的前世今生(完整版)

正态分布的前世今生
一、正态分布,熟悉的陌生人
学过基础统计学的同学大都对正态分布非常熟悉。这个钟型的分布曲线不但形状优雅, 其密度函数写成数学表达式
12π??√σexp(?(x?μ)22σ2)
也非常具有数学的美感。其标准化后的概率密度函数
12π??√exp(?x22) 更加的简洁漂亮,两个最重要的数学常量 π,e 都出现在了公式之中。在我个人的审美之中,
它也属于 top-N 的最美丽的数学公式之一, 如果有人问我数理统计领域哪个公式最能让人感觉 到上帝的存在,那我一定投正态分布的票。因为这个分布戴着神秘的面纱,在自然界中无处不 在,让你在纷繁芜杂的数据背后看到隐隐的秩序。
【正态分布曲线】
正态分布又通常被称为高斯分布,在科学领域,冠名权那是一个很高的荣誉。早年去 过德国的兄弟们还会发现,德国的钢镚和 10 马克的纸币上都留有高斯的头像和正态密度 曲线。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不 过高斯对于正态分布的历史地位的确立是起到了决定性的作用。
1

【德国马克上的高斯头像和正态分布曲线】 正态曲线虽然看上去很美,却不是一拍脑袋就能想到的。我们在本科学习数理统计的 时候,课本一上来介绍正态分布就给出密度分布函数,却从来不说明这个分布函数是通过 什么原理推导出来的。所以我一直搞不明白数学家当年是怎么找到这个概率分布曲线的, 又是怎么发现随机误差服从这个奇妙的分布的。我们在实践中大量的使用正态分布,却对 这个分布的来龙去脉知之甚少,正态分布真是让人感觉既熟悉又陌生。直到我读研究生的 时候,我的导师给我介绍了陈希儒院士的《数理统计学简史》这本书,看了之后才了解了 正态分布曲线从发现到被人们重视进而广泛应用,也是经过了几百年的历史。 正态分布的这段历史是很精彩的,我们通过讲一系列的故事来揭开她的神秘面纱。
二、邂逅,正态曲线的首次发现
第一个故事和概率论的发展密切相关,主角是棣莫弗(De Moivre)和拉普拉斯 (Laplace)。拉普拉斯是个大科学家,被称为法国的牛顿;棣莫弗名气可能不算很大,不 过大家应该都熟悉这个名字,因为我们在高中数学学复数的时候我们都学过棣莫弗定理
(cosθ+isinθ)n=cos(nθ)+isin(nθ). 古典概率论发源于赌博,惠更斯、帕斯卡、费马、贝努利都是古典概率的奠基人,他们那
会研究的概率问题大都来自赌桌上,最早的概率论问题是赌徒梅累在 1654 年向帕斯卡提出的 如何分赌金的问题。 统计学中的总体均值之所以被称为期望(Expectation), 就是源自惠更斯、 帕斯卡这些人研究平均情况下一个赌徒在赌桌上可以期望自己赢得多少钱。
棣莫弗(De Moivre)
拉普拉斯 (Laplace)
2

相关文档
最新文档