理论力学 周衍柏 第三版 第二章习题答案

理论力学 周衍柏 第三版 第二章习题答案
理论力学 周衍柏 第三版 第二章习题答案

第二章习题解答

2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。

题2.1.1图

有质心公式

??=

dm

xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS ,

dr

rd dS dm θρρ==

又因为

θcos r x =

所以

θ

θ

θρθρsin 3

2a

dr

rd dr rd x dm

xdm x c =

=

=

??????

对于半圆片的质心,即2

πθ=代入,有

πππ

θ

θ

a a a

x c 342

2sin 32sin 3

2=?

=

=

2.2 解 建立如图2.2.1图所示的球坐标系

题2.2.1图

把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则

)(2

2

2

z a dz y dv dm -===ρπρπρ

由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即

)

2()

(432

b a b a dm

zdm

z c ++-

==

??

2.3 解 建立如题2.

3.1图所示的直角坐标,原来人W 与共同作一个斜抛运动。

y

O

题2.3.1图

当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1

s

t a v s ?=cos 01 ① gt v =αsin 0 ② α

αcos sin 2

01g

v s =

第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有

)(cos )(0u v w Wv v w W x x -+=+α

可知道

u w

W w a v v x ++

=cos 0

水平距离

α

ααsin )(cos sin 02

02uv g

W w w g

v t v s x ++

=

=

跳的距离增加了

12s s s -=?=

α

sin )(0uv g

w W w +

2.42.4 解 建立如图2.4.1图所示的水平坐标。

2.4.1图

θ题2.4.2图

以1m ,2

m 为系统研究,水平方向上系统不受外力,动量守恒,有

02211=+x m x

m ① 对1

m 分析;因为

相对

绝a a a += ②

1m 在劈2m 上下滑,以2m 为参照物,则1m 受到一个惯性力21x m F -=惯(方向与2m 加速度方向相反)。如图2.4.2图所示。所以1m 相对2

m 下滑。由牛顿第二定律有

θθcos sin 21111x

m g m a m +='

所以1

m 水平方向的绝对加速度由②可知

..

2

1

'1cos //x a a -=θ绝 ③

..

2

..2..

1cos cos sin x x g x -??

?

??==θθθ④

联立①④,得

g

m x θ

sin m m 2

12+=

θθcos sin 2..

1 ⑤

把⑤代入①,得

g

m m s m x θ

θθ2

121..

2sin cos sin =-

= ⑥

负号表示方向与x 轴正方向相反。求劈对质点反作用力1R 。用隔离法。单独考察质点1

m 的受力情况。因为质点垂直斜劈运动的加速度为0,所以

sin cos ..

2111=??

?

??-+-θθx m g m R ⑦

把⑥代入⑦得,

g

m m m m R θ

θ2

12211sin cos +=

水平面对劈的反作用力2

R 。仍用隔离法。因为劈在垂直水皮方向上无加速度,

所以

0cos 122=--θR g m R ⑨

于是

g

m m m m m R θ

2

122122sin )(++=

2.52.5解 因为质点组队某一固定点的动量矩

∑=?=

n

1

i i

i m v r

J i

所以对于连续物体对某一定点或定轴,我们就应该把上式中的取和变为积分。如

图2.5.1图所示薄圆盘,任取一微质量元,

题2.5.1图

dr

rd dm θρ?=

2

a

M

πρ=

所以圆盘绕此轴的动量矩J

??

??

??=

?=

r

rdrd r )ωθρv r dm J (=ω22

1Ma

2.6 解炮弹达到最高点时爆炸,由题目已知条件爆炸后,两者仍沿原方向飞行知,分成的两个部分1M ,2M ,速度分别变为沿水平方向的1v ,2v ,并一此速

度分别作平抛运动。由前面的知识可知,同一高处平抛运动的物体落地时的水平距离之差主要由初速度之差决定。进而转化为求1v ,2v 。炮弹在最高点炮炸

时水平方向上无外力,所以水平方向上的动量守恒:

()221121V M V M U

M M +=+ ①

以()2

1M M +质点组作为研究对象,爆炸过程中能量守恒:

()E

V M V M U M

M -+

=

+

2

222

112

2

12

12

12

1 ②

联立①②解之,得

()2

211

12M M M EM

U v ++

=

()2

2

1122M M

M EM

U v +

-

=

所以落地时水平距离之差s ?

s ?=????

??+=

-=-21

2121112M M E g

V t v t v s s

2.7 解 建立如题2.7.1图所示的直角坐标系。

O

题2.7.1图

当m 沿半圆球M 下滑时,M 将以V 向所示正方向的反向运动。以M 、m 组成系统为研究对象,系统水平方向不受外力,动量守恒,即

x mv MV =

m 相对于地固连的坐标系xy O 的绝对速度

相绝对V V +=V

V 为m 相对M 的运动速度

θ a u = ②

故水平方向

V

u v x -=θcos ③

竖直方向

θ

usia v y = ④

在m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)

2

2

MV

2

12

1cos cos +

+

=绝mv mga mga θα ⑤

2

v =2

2y x v v +⑥

把③④代入⑥

2

v =θcos 222uV V u -+⑦

把①③代入⑤

θ

θθ2

cos 1cos cos 2M

m m a a g +-

-?

=

2.82.8 证 以AB 连线为x 轴建立如题2.8.1图所示的坐标。

v 题2.8.1图

题2.8.1图

设A 初始速度为与x 轴正向夹角0θ碰撞后,设A 、B 运动如题2.8.2图所示。A 、B 速度分别为1v 、2v ,与x 轴正向夹角分别为1θ、2θ。以A 、B 为研究对象,

系统不受外力,动量守恒。x 方向:

2

2110cos cos θθmv mv mv +=①

垂直x 轴方向有:

2

211sin sin 0θθmv mv -=②

可知

()21212

22

12

0cos 2θθ+++=v v v v v ③

整个碰撞过程只有系统内力做功,系统机械能守恒:

2

2

2

12

02

12

121mv mv mv +

=

由③④得

()0cos 22121=+θθv v

()???=+

=+,2,1,02

21k

k π

πθθ

即两球碰撞后速度相互垂直,结论得证。

2.9 解 类似的碰撞问题,我们一般要抓住动量守恒定理和机械能守恒定理得运

用,依次来分析条件求出未知量。设相同小球为AB ,初始时A 小球速度0v ,碰撞后球A 的速度为1v ,球B 的速度2v 以碰撞后B 球速度所在的方向为x 轴正向建

立如题2.9.1图所示的坐标(这样做的好处是可以减少未知量的分解,简化表达式)。以A 、B 为系统研究,碰撞过程中无外力做功,系统动量守恒。

题2.9.1图

x 方向上有:

()210cos cos mv mv mv ++=βαα ①

y

方向上有:

()βαα+=sin sin 10mv mv ②

又因为恢复系数

碰前相对速度

碰后相对速度=

e ()α

β

αcos cos 012v v v +-=

e αcos 0v =()βα+-cos 12v v ③

用①-③

()()

βαα+-=

cos 2cos 101v e v ④ 用④代入②得

()()

()βαβααα++-=

sin cos 2cos 1sin 00v e v

()α

α

β2

tan 21tan 1tan +-+=

e e

()?

?

????+-+=ααβ2tan 21tan 1arctan e e

求在各种α值下β角的最大值,即为求极致的问题。

我们有

βd d

()()

0tan

21)

tan 1(sec 12

22=+---+α

ααe a e e

α

2

tan 1a e --=0

所以

2

1tan e -=

α

()

e e -+=181arctan

m ax β

()

e e -+=

181tan max β

由因为

m ax

2

m ax 2

cot 1csc ββ+==()

()

2

1181e e +-+

()

()2

m ax

m ax 11811csc 1sin e e +-+

=

=

ββ=e

e -+31

所以

??

? ??-+=-e e 31sin

1

m ax β

2.10 以21,m m 为研究对象。当21,m m 发生正碰撞后,速度分别变为1v ',v ',随即2m 在不可伸长的绳AB 约束下作圆周运动。以AB 的连线为x 轴建立如题

2.10.1图所示。

题2.10.1图

碰撞过程中无外力做功,动量守恒:

2

11v v v '+'=211m m m ① 随即2m 在AB 的约束下方向变为沿y 轴的正向,速度变为2v '

故 y 方向上有

221

111sin sin v m v m v m '+'=θθ② 故恢复系数定义有:

碰前相对速度

碰后相对速度=

e =

1

12

sin v v v '-'θ

112

1sin sin v v v ev '-'-'=θθ③ 联立①②③得

12

1222

11

sin sin v m m em m v θθ+-='

()12

1212

sin sin 1v m m e m v θ

θ++='

2.11 解

如图所示,

x

题2.11.1图

题2.12.2图

有两质点A ,B 中间有一绳竖直相连,坐标分别为:??

? ?

?2,0a A ??

?

?

?-2,0a B ,

质量为m ,开始时静止。现在有一冲量I 作用与A ,则I 作用后,A 得到速度m

I v A =,B

仍静止不动:0=B

v 。它们的质心C 位于原点,质心速度我为

2

2A B

A C m

m m v v v v =+=

现在把坐标系建在质心C 上,因为系统不再受外力作用,所以质心将以速率2

A v 沿

x 轴正向匀速正向、反向运动。由于质心系是惯性系,且无外力,所以A ,B 分

别以速率2

A v 绕质心作匀速圆周运动,因而他们作的事圆滚线运动。经过时间t 后

,如图所示:

am

It

a

v t a

v A A

=

==2

2θ 于是在xy O 系中A 的速度

???

???

?

-=+=θθsin 2)cos 1(2A Ay A Ax u v u v

B

的速度:

???

???

?=-=θθsin 2)cos 1(2A By A Bx u v u v 因此

1:2cot sin 1cos 1sin 2)cos 1(2sin 2)cos 1(2:22

22

2

??

? ??

=-+=

??

?

???-+??????-???

?

???+??????+?=

am It v v v v E E A A A A B A θθ

θθθθ

2.12 解 对于质心系的问题,我们一般要求求出相对固定参考点的物理量,在找

出质心的位置和质心运动情况,由此去计算物体相对或绝对物理量及其间的关系。由题可知,碰前1m 速度为1v ,2m 速度02=v 。碰后速度1m ,2m 分别设为21,v v ''。碰撞过程中无外力做功,动量守恒。

221

111v m v m v m '+'=① 有恢复系数e

1

12

v v v e '-'=

联立①②得

12

1211

v m m em m v +-='

12

112

)1(v m m e m v ++='

再由质点组质心的定义:

2

12211m m r m r m r c ++=

c

r 为质心对固定点位矢,1r ,2r 分别为 1m ,2

m 对同一固定点的位矢

所以

12

112

12

2112

12211c r

v m m m m m v m v m m m r m r m v c +=

++=

++==

(质点组不受外力,所以质心速度不变。)

设两球碰撞后相对质心的速度1V ',2V '。

121212

1112

1211

1v m m em v m m m v m m em m v v V c +-

=+-

+-=-'='(负号表示与1

v

相反)

12

1212

1112

112

2)1(v m m em v m m m v m m e m v v V c +=

+-++=-'='

同理,碰撞前两球相对质心的速度

12

1212

11111v m m m v m m m v v v V c +=

+-

=-=

12

1222v m m m v v V c +-

=-=(负号表示方向与1

v

相反)

所以开始时两球相对质心的动能:

22

22

112

12

1V m V m T +

=

=2

212

2221212121

???

? ??+-+???? ??+v m m m m v m m m m =2

1

2

12

121

v m m m m ?+?

2.132.13 用机械能守恒方法;在链条下滑过程中,只有保守力重力做功,所以

链条的机械能守恒。以桌面所平面为重力零势能面。

2

2124

2mv l mg l g m +?-=???? ??-

2

3gl v =

2.14 此类题为变质量问题,我们一般研究运动过程中质量的变化与力的关系

()()mv dt

d F t =

以竖直向上我x 轴正向建立如题2.14.1图所示坐标。

题2.14.1图

绳索离地面还剩x 长时受重力

()xy

F t σ-=

()xv dt

d xy σσ=

-

()dt

dx dx xv d xy ?=

-

dx

dv v

g =-

?

?

+-=x

l

h v

gdx vdv 0

所以

)(22

x l h g v -+=

求地板的压力,有牛顿第三定律知,只需求出地板对绳索的支持力N 即可,它们是一对作用力与反作用力。这是我们以快要落地的一小微元作为研究对象。它的速度由v 变为0。用动量守恒,有

dt

mv d g x l N )()(=

--σ=dt

xv d )(σ=dt

dx v σ2v σ=

又因为

)(22

x l h g v -+=

)(2)(x l h g g x l N -+?+-=σσ=[])(32x l h g -+σ

2.15 解 这是一道变质量的问题,对于此类问题,我们由书上p.137的(2.7.2)式

F

u dt dm mv dt d =-

)(①

来分析。

以机枪后退方向作为x 轴争先,建立如题2.15.1图的坐标。

f

u

题2.15图

竖直方向上支持力与重力是一对平衡力。水平方向上所受合外力F 即为摩擦力

g mt M M n f F )(-'+-=-==μμ②

单位时间质量的变化

m

dt

M d ='③

由①②式

[])()(mt M M g u dt

M d v mt M M dt

d -'+-='-

-'+μ

[]?

?

?'

-'+-='-

-'+m

M u

o

v

dt mt M M g u M d v mt M M

d 0

)()(μ ??

? ??'+''+-='-'-'+m M g

m

M M M g u M v m

M m M M 21)()(μμ

所以

g Mm

M

M M u m M v μ2)(2

2

-'+-

'=

2.16解 这是一个质量增加的问题。雨滴是本题m 。导致雨滴m 变化的微元m ?的速度0=u 。

所以我们用书上p.138的(2.7.4)式分析

F

mv dt

d =)(①

雨滴的质量变化是一类比较特殊的变质量问题。我们知道处理这类问题常常理想化模型的几何形状。对于雨滴我们常看成球形,设其半径为r ,则雨滴质量m 是与半径r 的三次方成正比(密度看成一致不变的)。

3

1r

k m =②

有题目可知质量增加率与表面积成正比。即

2

22

4r

k r k dt

dm =?=π③

21,k k 为常数。我们对②式两边求导

dt

dr r

k dt

dm 2

13?=④

由于③=④,所以

λ

==1

23k k dt dr ⑤

对⑤式两边积分

??

=t

r

a

dt dr 0

λ

a t r +=λ⑥

3

1)

(a t k m +=λ⑦

以雨滴下降方向为正方向,对①式分析

[]g

a t k v a t k dt

d 3

1

3

1

)

()(+=+λλ⑧

[

]??+=

+t v

gdt a t k v a t k d 0

3

10

3

1)

()(λλ

34

13

1)(4

11)(k a t g

k v a t k ++=

+λλ

λ (3k 为常数)

当0=t 时,0=v ,所以

λ

44

13ga k k -

=

()?

?

????+-+=34

4a t a

a t g v λλλ

2.17 证 这是变质量问题中的减质量问题,我们仍用书上p.137(2.7.2)式

F

u dt dm mv dt d =-

)(①

来分析。设空火箭质量0m ,燃料质量m '。以向上为正方向,则火箭任一时刻的质量

t

m m m m m 60

00'+-

'+=②

喷气速度2074s

m 是指相对火箭的速度,即s

v m

2074=相。有①式

F u dt dm dt

dv m

v dt

dm =-

+

dt

dv m

u v dt

dm F +-=

)(dt

dv m

v dt

dm +-

=相

dt

dv t m m m m t m m g t m m m m ?

??? ??

'+-'++'+=??? ??'+-'+-60606000000相

化简

t

m m m m dt v m m gdt dv 60

60000'+-

'+?'

++

-=相

对两边积分

相v gt v --=㏑??? ?

?

-601t ③

此既火箭速度与时间的关系。当火箭燃料全部燃尽所用时间t ,由题意知

m m m m m m t '+'=

'+'=

006060

代入③可得火箭最终的速度m ax v ,(即速度的最大值).

)1ln(6000m ax m m m v m m m g v '

+'-

-'

+'?

-=相

考虑到

2

m ax )

x 1(60g

)x 1(+-+=

相v dx

dv

其中0

m m x '=

,易知当0x ≥时,dx

dv m ax 恒成立,即m ax v 为

m m '的增函数。又当

300

m m 0

='时,

????

?

??????

?

'+

'-

-'+'

?-=00

00m ax

m m 1m m 1ln m m 1m m 60

相v g v =11.25s km /

而要用此火箭发射人造太阳行星需要的速度至少应为第二宇宙速度

s km v /2.112=。

故所携带燃料重量至少是空火箭重量的300倍。

2.18证 要使火箭上升,必须有发动机推力>火箭的重量,即

g

M dt

dm v 0>相

M v dt

dm v α>相

即g

v

>α火箭才能上升,结论得证。由于喷射速度v v =相是常数,单位时间放出

的质量

M

dt

dm α=

质量变化是线性规律

M

M t f 01=

-=α①

火箭飞行速度

gt

t v v --=)1ln(α火②

又因为燃料燃烧时间

0M M

M t α-=

代入②得火箭最大速度m ax v

00m ax ln

M M

M g

M

M v v α--==)1(ln

0M M g

M

M v -

-

α

又因为②式又可以写成

gt

t v v dt

ds --==)1ln(α火

积分可得

[]2

2

1)1ln()1(gt

t t t v

s -

+--=

αααα

从开始到燃烧尽这一段时间内火箭上升高度1S 。把③代入④得

???

?

??-+-+????

??--=0000

2

01ln 21M M

M M M M M v M M

M g S αα 之后火箭作初速度为m ax v 的竖直上抛运动。可达高度2S

2

020

02

02

2max

212ln 1ln 22???

? ??-+???? ??--???? ??=

=

M M a g

M M M M v M M g g v g

v

S α

故火箭能达到的最大高度

21m ax

S S S +==???

?

??--+???? ??002

02

ln 1ln 2M M M M v M M g g v α

2.19证 假设该行星做椭圆运动,质量为m ,周期为τ。某一时刻位置为r ,速

度为v ,则

()??

?

????-?=

?=

?=

=

?

??

?

?

τ

ττ

τ

τ

ττ

τ

τ

2

212

112

11

2

11

2

11

v r r v r v v v d d m d m dt m dt mv T =

-()?τ

2v r d r

m

又因为

r

r r

GM dt dv a 2

-

==

于是

??

?

? ??--=τ

τ022dt r r r GM r M

T =?

-

τ0

2dt r

GM m ?

=

τ

τ

121dt r

GMm r

GMm 2

1-

=

理论力学习题

第一章静力学公理与受力分析(1) 一.就是非题 1、加减平衡力系公理不但适用于刚体,还适用于变形体。( ) 2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。( ) 3、刚体就是真实物体的一种抽象化的力学模型,在自然界中并不存在。( ) 4、凡就是受两个力作用的刚体都就是二力构件。( ) 5、力就是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。 ( ) 二.选择题 1、在下述公理、法则、原理中,只适于刚体的有( ) ①二力平衡公理②力的平行四边形法则 ③加减平衡力系公理④力的可传性原理⑤作用与反作用公理 三.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。整体受力图可在原图上画。 )a(球A )b(杆AB d(杆AB、CD、整体 )c(杆AB、CD、整体) )e(杆AC、CB、整体)f(杆AC、CD、整体

四.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接触。多杆件的整体受力图可在原图上画。 )a(球A、球B、整体)b(杆BC、杆AC、整体

第一章静力学公理与受力分析(2) 一.画出下列图中指定物体受力图。未画重力的物体不计自重,所有接触处均为光滑接 触。整体受力图可在原图上画。 W A D B C E Original Figure A D B C E W W F Ax F Ay F B FBD of the entire frame )a(杆AB、BC、整体)b(杆AB 、BC、轮E、整体 )c(杆AB、CD、整体) d(杆BC带铰、杆AC、整体 )e(杆CE、AH、整体)f(杆AD、杆DB、整体

理论力学第二章

第2章 力系的等效与简化 2-1试求图示中力F 对O 点的矩。 解:(a )l F F M F M F M M y O y O x O O ?==+=αsin )()()()(F (b )l F M O ?=αsin )(F (c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2 22 1sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF 2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。 解:)(2 )()(j i k i F r F M +-? +=?=F a A O m kN )(36.35) (2 ?+--=+--= k j i k j i Fa m kN 36.35)(?-=F x M 2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm , α = 30°。试求力F 对x 、y 、z 轴之矩。 解: )cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--?-=?=F D A k j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-= 力F 对x 、y 、z 轴之矩为: m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(?-=+-=+-=ααF x M m N 10sin 40)(2?-=-=αF y M m N 5.7sin 30)(2?-=-=αF z M 2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。 习题2-1图 A r A 习题2-2图 (a ) 习题2-3图

理论力学第三章习题解析

第三章习题 ( 3.1;3.6;3.7;3.9;3.10;3.12;3.13;3.20;3.21,3.22) 3.1 半径为r 的光滑半球形碗,固定在水平面上。一均质棒斜靠在碗缘,一端 在碗内,一端则在碗外,在碗内的长度为c ,试证棒的全长为 () c r c 2224- 3.1解 如题3.1.1图。 图 题1.3.1 均质棒受到碗的弹力分别为1N ,,2N 棒自身重力为G 。棒与水平方向的夹角为 θ。设棒的长度为l 。 由于棒处于平衡状态,所以棒沿x 轴和y 轴的和外力为零。沿过A 点且与 z 轴平行的合力矩为0。即: 0sin 2cos 2 1 =-=∑θθN N F x ① 0cos 2sin 2 1 =-+=∑G N N F y θθ② 0cos 22=-=∑θl G c N M i ③ 由①②③式得:

()θ θ2 2 cos 1cos 22-=c l ④ 又由于 ,cos 2c r =θ 即 r c 2cos = θ⑤ 将⑤代入④得: ()c r c l 2224-= 3.6 把分子看作相互间距离不变的质点组,试决定以下两种 情况下分子的中心主转动惯量: ()a 二原子分子。它们的质量是1m ,2m ,距离是l 。 ()b 形状为等腰三角形的三原子分子,三角形的高是h ,底 边的长度为a 。底边上两个原子的质量为1m ,顶点上的为2m 。

? C x y h a 1 m 2 m 1 m 第3.6(b)题图 3.6解 (a )取二原子的连线为x 轴,而y 轴与z 轴通过质心。O 为质心,则Ox , Oy ,Oz 轴即为中心惯量主轴。 设1m 、2m 的坐标为()()0,0,,0,0,21l l ,因为O 为质心(如题3.6.2图) 故 02211=+l m l m ① 且 l l l =-12 ② 由①②得 2 1122121,m m l m l m m l m l += +-= 所以中心惯量主轴:

理论力学课后习题第二章思考题答案

理论力学课后习题第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以 n3 预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。 若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。 2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。 2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。 2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,

理论力学题库第3章

理论力学题库——第三章 一、填空题 1.刚体作定轴转动时有个独立变量,作平面平行运动时有个独立 变量。 2.作用在刚体上的力可沿其作用线移动而(“改变”或“不改变”) 作用效果,故在刚体力学中,力被称为矢量。 3.作用在刚体上的两个力,若大小相等、方向相反,不作用在同一条直线 上,则称为。 4.刚体以一定角速度作平面平行运动时,在任一时刻刚体上恒有一点速度 为零,这点称为。 5.刚体作定点转动时,用于确定转动轴在空间的取向及刚体绕该轴线所转 过的角度的三个独立变化的角度称为,其中?称为角,ψ称为角,θ称为角。 6.描述刚体的转动惯量与回转半径关系的表达式是。 7.刚体作平面平行运动时,任一瞬间速度为零的点称为,它 在刚体上的轨迹称为,在固定平面上的轨迹称 为。 8.平面任意力系向作用面内任意一点简化的结果可以归结为两个 基本物理量,主矢和主矩。 9.用钢楔劈物,接触面间的摩擦角为?f。劈入后欲使楔不滑出,则钢楔两 侧面的夹角θ需满足的条件为θ≦2?f。 10.刚体绕O Z 轴转动,在垂直于转动轴的某平面上有A,B两点, 已知O Z A=2O Z B,某瞬时a A =10m/s2,方向如图所示。则此时B点 加速度的大小为5m/s2;与O z B成60度角。 11.如图,杆AB绕A轴以?=5t(?以rad计,t以s计)的规律转 动,上一小环M将杆AB和半径为R(以m计)的固定大圆环连 在一起,若以O1为原点,逆时针为正向,则用自然法表示的点M 的运动方程为s=πR/2+10Rt 。 12. 两全同的三棱柱,倾角为θ,静止地置于光滑的水平地面上, 将质量相等的圆盘与滑块分别置于两三棱柱斜面上的A处,皆从 静止释放,且圆盘为纯滚动,都由三棱柱的A处运动到B处, 则此两种情况下两个三棱柱的水平位移_相等_(填写相等或不相 等),因为两个系统在水平方向质心位置守恒。 13.二力构件是指其所受两个力大小相等、方向相反,并且作用在一条直线上是最简单的平衡力系。 14. 若刚体在三个力作用下平衡,其中两个力的作用线汇交于一点,则第三个力

理论力学答案第二章

《理论力学》第二章作业 习题2-5 解:(1)以D点为研究对象,其上所受力如上图(a)所示:即除了有一铅直向下的拉力F外,沿DB有一拉力7和沿DE有一拉力T E。列平衡方程 F Y 0 T E sin F 0 解之得 T Fctg 800/0.1 8000( N) (2)以B点为研究对象,其上所受力如上图(b)所示:除了有一沿DB拉力T夕卜,沿BA有一铅直向下的拉力T A,沿BC有一拉力T C,且拉力T与D点所受的拉力T大小相等方向相反,即T TT。列平衡方程 F X 0 T T C sin 0 F Y 0 T C COS T A 0 解之得 T A Tctg 8000/0.1 80000( N) 答:绳AB作用于桩上的力约为80000N 习题2-6 解:(1)取构件BC为研究对象,其受力情况如下图(a)所示:由于其主动力仅有一个力偶M,那末B、C处所受的约束力F B、F C必定形成一个阻力偶与之 F X 0 T T E COS 0 3) ,T A

平衡。列平衡方程 r M B (F) 0 M F C l 0 与BC 构件所受的约束力F C 互为作用力与反作用力关系,在D 处有一约束力F D 的 方向向上,在A 处有一约束力F A ,其方向可根据三力汇交定理确定,即与水平 方向成45度角。列平衡方程 F X 0 F A sin 45o F C 所以 F A 迈F C >/2F C V 2 -M - 答:支座A 的约束力为.2-,其方向如上图(b ) 所示 习题2-7 解: (1)取曲柄0A 为研究对象,其受力情况如下图(a )所示:由于其主动力 仅有一个力偶M ,那末O A 处所受的约束力F O 、F BA 必定形成一个阻力偶与之 平衡。列平衡方程 ⑵ 取构件ACD ^研究对象,其受力情况如上图(b )所示:C 处有一约束力F C F

《理论力学》第二章作业答案

x y P T F 220 36 O 15 2-?图[习题2-3]动学家估计,食肉动物上颚的作用力P 可达800N ,如图2-15示。试问此时肌肉作用于下巴的力T 、F 是多少? 解: 解: 0=∑x F 036cos 22cos 00=-F T 22cos 36cos F T = 0=∑y F 036sin 22sin 00=-+P F T 80036sin 22sin 22 cos 36cos 000 =+F F )(651.87436 sin 22tan 36cos 800 00N F =+= )(179.76322 cos 36cos 651.87422cos 36cos 0 00N F T ===

18 2-?图 B [习题2-6] 三铰拱受铅垂力P F 作用,如图2-18所示。如拱的重量不计,求A 、B 处支座反力。 解:0=∑x F 0cos 45cos 0=-θB A R R B A R l l l R 22)23()2(22 2 += B A R R 1012 1= B A R R 5 1= 0=∑y F 0sin 45sin 0=-+P B A F R R θ P B A F R l l l R =++ 22)23()2(232 1 P B A F R R =+ 10 32 1

的受力图 轮A P B B F R R =+ ? 10 35 121 P B F R =10 4 P P B F F R 791.04 10 ≈= 31623.010 1)2 3()2(2cos 22≈= += l l l θ 0565.71≈θ P P P A F P F R 354.04 2 41051≈=? = 方向如图所示。 [习题2-10] 如图2-22所示,一履带式起重机,起吊重量kN F P 100=,在图示位置平衡。如不计吊臂AB 自重及滑轮半径和摩擦,求吊臂AB 及揽绳AC 所受的力。 解:轮A 的受力图如图所示。 0=∑x F 030cos 20cos 45cos 000=--P AC AB F T R

理论力学题库第二章

理论力学题库一一第二章 填空题 对于一个有n 个质点构成的质点系,质量分别为 m 1, m>, m 3,...m i ,...m n ,位置矢量分别 卄彳 4 T 为r ∣,r 2, r 3,...r i ,...r n ,则质心 C 的位矢为 _________ 。 质点系动量守恒的条件是 _______________________________________ 。 质点系机械能守恒的条件是 __________________________________ 。 质点系动量矩守恒的条件是 _____________________________________________ 。 质点组 ______ 对 ________ 的微商等于作用在质点组上外力的矢量和,此即质点组的 定理。 质心运动定理的表达式是 ____________________________________ 。 平面汇交力系平衡的充分必要条件是合力为零。 各质点对质心角动量对时间的微商等于 外力对质心的力矩 之和。 质点组的角动量等于 质心角动量 与各质点对质心角动量之和。 n n n 质点组动能的微分的数学表达式为: dT =d C'? m i v 2)i" F i Wdr i X Ffdr i 2 iA i = I i =I 表述为质点组动能的微分等于 内力和夕卜力所作的元功之和。 质点组动能等于质心动能与各质点对 质心动能之和。 1 n T= mr c 2亠二m i r i 2 ,表述为质点组动能等于 质心 2 y 动能与各质点对 质心动能之和。 2-6.质点组质心动能的微分等于 内、夕卜 力在 质心系 系中的元功之和。 包含运动电荷的系统,作用力与反作用力 不一定 在同一条直线上。 太阳、行星绕质心作圆锥曲线的运动可看成质量为 折合质量 的行星受太阳(不动) 的引力的运动。 两粒子完全弹性碰撞,当 质量相等 时,一个粒子就有可能把所有能量转移给另一个 粒子。 设木块的质量为m,被悬挂在细绳的下端,构成一种测定子弹速率的冲击摆装置。如 果有一质量为 m 的子弹以速率 V 1沿水平方向射入木块,子弹与木块将一起摆至高度为 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 柯尼希定理的数学表达式为: 18. h 处,则此子弹射入木块前的速率为: 位力定理(亦称维里定理)可表述为: m ■旦(2gh)1/2 m 1 系统平均动能等于均位力积的负值 。(或

理论力学(机械工业出版社)第三章空间力系习题解答.

习 题 3-1 在边长为a 的正六面体上作用有三个力,如图3-26所示,已知:F 1=6kN ,F 2=2kN ,F 3=4kN 。试求各力在三个坐标轴上的投影。 图3-26 kN 60 1111====F F F F z y x 0kN 245cos kN 245cos 2222== ?=-=?-=z y x F F F F F kN 3 3 433kN 3 3 433kN 3 34333 33 33 3==-=-===F F F F F F z y x 3-2 如图3-27所示,已知六面体尺寸为400 mm ×300 mm ×300mm ,正面有力F 1=100N ,中间有力F 2=200N ,顶面有力偶M =20N ·m 作用。试求各力及力偶对z 轴之矩的和。 图3-27 203.034 44.045cos 2 1-?+??-=∑F F M z m N 125.72034 240220?-=-+ -= 3-3如图3-28所示,水平轮上A 点作用一力F =1kN ,方向与轮面成a=60°的角,且在过A 点与轮缘相切的铅垂面内,而点A 与轮心O '的连线与通过O '点平行于y 轴的直线成b=45°角, h =r=1m 。试求力F 在三个坐标轴上的投影和对三个坐标轴之矩。 图3-28 N 354N 225045sin 60cos 1000sin cos ==????==βαF F x N 354N 225045sin 60cos 1000cos cos -=-=????-=-=βαF F y

N 866350060sin 1000sin -=-=??-=-=αF F z m N 25845cos 18661354cos ||||)(?-=???-?=?-?=βr F h F M z y x F m N 96645sin 18661354sin ||||)(?=???+?=?+?=βr F h F M z x y F m N 500160cos 1000cos )(?-=???-=?-=r F M z αF 3-4 曲拐手柄如图3-29所示,已知作用于手柄上的力 F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,a=30°。试求力F 对 x 、y 、z 轴之矩。 图3-29 N 2530sin 100sin sin 2=??==ααF F x N 3.43N 32530cos 30sin 100cos sin -=-=????-=-=ααF F y N 6.8635030cos 10030cos -=-=??-=?-=F F z 3 .03504.0325)(||||)(?-?-=+?-?-=CD AB F BC F M z y x F m N 3.43325?-=-= m N 104.025||)(?-=?-=?-=BC F M x y F m N 5.73.025)(||)(?-=?-=+?-=CD AB F M x z F 3-5 长方体的顶角A 和B 分别作用力F 1和F 2,如图3-30所示,已知:F 1=500N ,F 2=700N 。试求该力系向O 点简化的主矢和主矩。 图3-30 N 4.82114100520014 25 221R -=--=? -?-='F F F x N 2.561141501432R -=-=?-='F F y N 7.4101450510014 15 1 21R =+=? +?='F F F z N 3.10767.410)2.561()4.821(222R =+-+-='F

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化 2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。 答:F/2;62F/5。 2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩 M x(F)= 。 答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ) 图2-40 图2-41 2-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力 在x轴上的投影为,对x轴的矩为。 答:-60N; 2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE的一个力F,图中α=30°,则此力对各坐标轴之矩为: M x(F)= ;M Y(F)= ;M z(F)= 。 答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/4 2-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。 答:M x(F)=160 N·cm;M z(F)=100 N·cm

图2-42 图2-43 2-6.试求图示中力F 对O 点的矩。 解:a: M O (F)=F l sin α b: M O (F)=F l sin α c: M O (F)=F(l 1+l 3)sin α+ F l 2cos α d: ()22 21l l F F M o +=αsin 2-7.图示力F=1000N ,求对于z 轴的力矩M z 。 题2-7图 题2-8图 2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。试求其合力,并画在图上(图中长度单位为米)。 解:将力系向O 点简化 R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N 主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m 合力的方向:cos (R ,)=,cos (R ,)=-

理论力学第二章思考题及习题答案

第二章思考题 2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心? 2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故? 2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动? 2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何? 2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。 2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒? 2.7选用质心坐标系,在动量定理中是否需要计入惯性力? 2.8轮船以速度V 行驶。一人在船上将一质量为m 的铁球以速度v 向船首抛去。有人认为:这时人作的功为 ()mvV mv mV v V m +=-+222 2 12121 你觉得这种看法对吗?如不正确,错在什么地方? 2.9秋千何以能越荡越高?这时能量的增长是从哪里来的? 2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么? 2.11多级火箭和单级火箭比起来,有哪些优越的地方? 第二章思考题解答 2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。 2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。 2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n 3个相互关联的三个二阶微分方程组,

周衍柏理论力学教学总结

周衍柏理论力学教学总结 篇一:理论力学总结 理论力学总结 姓名:黄亚敏班级0911物理学学号:20XX110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。 初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么 ?didt??did?d?dt ????j , ? djdt ? ?djd?d?dt ?????i?,即曲线上的某点p的沿位矢方向的坐标i对 时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后

来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算 ?? 因为我开始的错误理解是:i与时间没有关系,因为在直角坐标系中,并没有对i求??? 导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,?? 单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这????? ?里的单位矢量i,j是一个变量。求得的速度加速度表达式为v??ri??rj,??? 2??????)ja?(??r?r?)i?(r??2r ,还可以用自然坐标算出加速度,表达式简单一些,但前 ??ds? v?vi?i dt 提是要清楚曲线的曲率半径?,才会简化加速度表达式,为 ?? 2?2?dvdsdsdidv?v? a??i??i?j2 dtdtdtdtdt? ,

理论力学课后答案第二章.docx

解ftff?H?:晦矍*曲<∕jY?il ??Λ!P??∕i的钓痕力耳欝珊iL*G 0??l IlH b陌示.KZVk ??Oy4血平胡那论鬥 式⑴* Cr赚立?解紂 佔2 EF D?Π P = 5 ωo N .棗与撑祎自虫不计7 求BC'内力 的反力D 解该系统曼力如图(訂, 三力匸交于艰D.n?t?ι的力三 角膠如图冷人祥得 FX二5 OOm J‰ 二疔OoOW '?-?β-?ΛR?--?≠^≠?-?Vn? 2-2 在铰链A、B处有力Fi, F2作用,如图所示。该机Fi 与F2的关系。 2-3铰链4杆机构CABD的CD边固定, 构在图示位置平衡,不计杆自重。求力 30 T > ◎ 60o 检 (b) B [T j

已 ?] M?fr? P A ?? ?处于?,杆電 不比 求i )若片= F Ft =巴 角e -? 2)若 P Λ - 300 B = (ΛF? = ? 八5两轮受力分别 如图示■对A fc? SX = 0? F 刚 CEJB60, F F ?≤ I XKg = 0 ΣY 二 O J Fs X ?in60τ - F 屈 s?ι? - P A = I! 对 B 轮育 ΣX ^ 0, Fi l oos? - FX & 8= C ΣY = O l Frl A Sinff T F W SinJ?Γ -Pn = U (1) 四牛封程嬴立求AL 爾 Θ-2CT (2) 把拧-0?F A - 3t)0 N 入方社,联立解筹 P fl =IOON 2-5如图2-10所示,刚架上作用力F 。试分别计算力 F 解 M A (F) = -Fbcosθ M 3 IF) = -Fb cos0 + FosinB = F(OSiιι0-bcos0) 2-6已知梁AB 上作用1力偶,力偶矩为M ,梁长为 I ,梁重不计。求在图a , b , C 三种情 况下支座A 和 B 的约束力。 2-4 解⑴柠点掐坐KAS 力如囲Ib 所示"IQ 平fti j l l ?ffl 品F ∑Λ =0, F (Jf co?15° + F 1cosS0e =0. = *9 2co ? 节点瓦 腿标歴覺力如03 所小* Lil f *j≡?H ∑Λ =0, -F AS cos 30&-ACOS60o ≡0 Λ=-√3F 45=-?- = 1.5<3F 1 F 、: F l - 0.644 对点A 和B 的力矩。

理论力学第二章答案

第二章习题解答 2.1 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θθθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 2.2 解 建立如图2.2.1图所示的球坐标 系 题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 2.3 解 建立如题2. 3.1图所示的直角坐 标,原来人W 与共同作一个斜抛运动。

y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以 αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w W v v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 02 02uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.42.4 解 建立如图2.4.1图所示的水平坐标。 2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 02211=+x m x m ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑, 以2m 为参照物,则1m 受到一个惯性力21x m F -=惯(方向与2m 加速

周衍柏《理论力学》教案分析力学

第五章分析力学 本章要求(1)掌握分析力学中的一些基本概念;(2)掌握虚功原理;(3)掌握拉格朗日方程;(4)掌握哈密顿正则方程. 第一节约束和广义坐标 一、约束的概念和分类 加于力学体系的限制条件叫约束. 按不同的标准有不同的分类: 按约束是否与时间有关分类:稳定约束、不稳定约束; 按质点能否脱离约束分类:可解约束、不可解约束; 按约束限制范围分类:几何约束(完整约束)、运动约束(不完整约束). 本章只讨论几何约束(完整约束),这种约束下的体系叫完整体系. 二、广义坐标 1、自由度 描述一个力学体系所需要的独立坐标的个数叫体系的自由度. 设体系有n个粒子,一个粒子需要3个坐标(如x、y、z)描述,而体系受有K个约束条件,则体系的自由度为(3n-K) 2、广义坐标 描述力学体系的独立坐标叫广义坐标.例如:作圆周运动的质点只

须角度用θ描述,广义坐标为θ,自由度为1,球面上运动的质点, 由极角θ和描述,自由度为2. 第二节虚功原理 本节重点要求:①掌握虚位移、虚功、理想约束等概念;②掌握虚功原理. 一、实位移与虚位移 质点由于运动实际上所发生的位移叫实位 移;在某一时刻,在约束允许的情况下,质点可 能发生的位移叫虚位移. 如果约束为固定约束,则实位移是虚位移中 一的个;若约束不固定,实位移与虚位移无共同之处.例如图 5.2.1 中的质点在曲面上运动,而曲面也在移动,显然实位移与虚位移 不一致. 二、理想约束 设质点系受主动力和约束力的作用,它们在任意虚位移中作的功叫虚功. 若约束反力在任意虚位移中对质点系所作虚功之和为零,则这种约束叫理想约束.光滑面、光滑线、刚性杆、不可伸长的绳等都是理想约束. 三、虚功原理 1、文字叙述和数学表示: 受理想约束的力学体系,平衡的充要条件是:作用于力学体系的

理论力学习题答案

第一章静力学公理和物体的受力分析 一、是非判断题 1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。 ( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。( × ) 1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。 ( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。 ( ∨ ) 1.1.5 两点受力的构件都是二力杆。 ( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。 ( × ) 1.1.7力的平行四边形法则只适用于刚体。 ( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。 ( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。 ( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。 ( × ) 1.1.11 合力总是比分力大。 ( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。 ( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。 ( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。 ( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。 ( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。 ( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。 ( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。 ( × )

理论力学周衍柏第三版第二章习题答案

第二章习题解答 解 均匀扇形薄片,取对称轴为x 轴,由对称性可知质心一定在x 轴上。 题2.1.1图 有质心公式 ??= dm xdm x c 设均匀扇形薄片密度为ρ,任意取一小面元dS , dr rd dS dm θρρ== 又因为 θcos r x = 所以 θ θθρθρsin 32a dr rd dr rd x dm xdm x c ===?????? 对于半圆片的质心,即2 πθ=代入,有 πππ θθa a a x c 342 2sin 32sin 32=? == 解 建立如图图所示的球坐标系

题2.2.1图 把球帽看成垂直于z 轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为ρ。 则 )(222z a dz y dv dm -===ρπρπρ 由对称性可知,此球帽的质心一定在z 轴上。 代入质心计算公式,即 ) 2()(432 b a b a dm zdm z c ++- ==?? 解 建立如题图所示的直角坐标,原来人W 与共同作一个斜抛运动。 y O 题2.3.1图 当达到最高点人把物体水皮抛出后,人的速度改变,设为x v ,此人即以 x v 的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以αcos v 0=水平v 作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1s

t a v s ?=cos 01 ① gt v =αsin 0 ② ααcos sin 20 1g v s = ③ 第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有 )(cos )(0u v w Wv v w W x x -+=+α 可知道 u w W w a v v x ++ =cos 0 水平距离 αααsin )(cos sin 0202uv g W w w g v t v s x ++== 跳的距离增加了 12s s s -=?= αsin )(0uv g w W w + 2.4 解 建立如图图所示的水平坐标。 题2.4.1图 θ题2.4.2图 以1m ,2m 为系统研究,水平方向上系统不受外力,动量守恒,有 2211=+x m x m && ① 对1m 分析;因为 相对绝a a a += ② 1m 在劈2m 上下滑,以2m 为参照物,则1m 受到一个惯性力21x m F &&-=惯(方向与2m 加速度方向相反)。如图图所示。所以1m 相对2m 下滑。由牛顿第二定律有 θ θcos sin 21111x m g m a m &&+=' ②

理论力学第二章力系的简化习题解

1 F 2 F 3 F 0 1350 90O 第二章 力系的简化习题解 [习题2-1] 一钢结构节点,在沿OA,OB,OC 的方向上受到三个力的作用,已知kN F 11=, kN F 41.12=,kN F 23=,试求这三个力的合力. 解: 01=x F kN F y 11-= )(145cos 41.102kN F x -=-= )(145sin 41.102kN F y == kN F x 23= 03=y F )(12103 0kN F F i xi Rx =+-==∑= 00113 =++-==∑=i yi Ry F F 12 2=+=Ry Rx R R F F 作用点在O 点,方向水平向右. [习题2-2] 计算图中已知1F ,2F ,3F 三个力分别在z y x ,,轴上的投影并求合力. 已知 kN F 21=,kN F 12=,kN F 33=. 解: kN F x 21= 01=y F 01=z F )(424.053 7071.01cos 45sin 022kN F F x =??==θ)(567.05 4 7071.01sin 45sin 022kN F F y =??==θ )(707.0707.0145sin 022kN F F z =?== 03=x F 03=y F kN F z 33= )(424.20424.023 0kN F F i xi Rx =++==∑= )(567.00567.003 0kN F F i yi Ry =++==∑= )(707.33707.003 kN F F i zi Rz =++==∑= 合力的大小: )(465.4707.3567.0424.22222 22kN F F F F Rz Ry Rx R =++=++= 方向余弦: 4429.0465.4424 .2cos === R Rx F F α 1270.0465 .4567 .0cos ===R Ry F F β

理论力学第三版(周衍柏)习题答案

理论力学第三版(周衍柏)习题答案

第一章 质点力学 第一章习题解答 1.1 由题可知示意图如题1.1.1图: { { S S t t 题1.1.1图 设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有: ()()??? ??? ? +-+=-=2 21210211021221t t a t t v s at t v s 由以上两式得 1102 1 at t s v += 再由此式得 ()() 2121122t t t t t t s a +-= 证明完毕. 1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1. 2.1图. 题1.2.1图 设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过??? ? ?+2110t 小时经过灯塔任意时刻A 船的坐标

()t t x A 15150--=,0=A y B 船坐标0=B x , ?? ????-??? ??+-=t t y B 15211150 则AB 船间距离的平方 ()()2 22B A B A y y x x d -+-= 即 () 2 02 1515t t d -=2 01521115?? ????-??? ??++t t ()2 02 002211225225675900450??? ? ?++++-=t t t t t 2d 对时间t 求导 () ()67590090002 +-=t t dt d d AB 船相距最近,即() 02=dt d d ,所以 h t t 4 30= - 即午后45分钟时两船相距最近最近距离 2 2 min 231543154315??? ???-?+??? ? ? ?=s km 1.3 解 ()1如题1.3.2图 x y C a B A ψ ? r O a 第1.3题图

理论力学(周衍柏第三版)思考题习题答案

第一章思考题解答 1.1答:平均速度是运动质点在某一时间间隔t t t ?+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ?对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在0→?t 的极限情况,二者一致,在匀速直线运动中二者也一致的。 1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度r V 的方向改变也引起θV 的大小改变,另一个θ r 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθ r r a +=。这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况 1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若 b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同, 质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。 1.4答:质点在直线运动中只有n a a 而无τ,质点的匀速曲线运动中只有τa a n 而无;质点作变速运动时即有n t a a 又有。 1.5答:dt d r 即反应位矢r 大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量, 而 dt dr 只表示r 大小的改变。如在极坐标系中,j i r θ r r dt d +=而r dt dr =。在直线运动中,规定了直线的正方向后, dt d dt dr r = 。且dt dr 的正负可表示dt d r 的指向,二者都可表示质点的运

相关文档
最新文档