【免费下载】大学物理第二十章题解

【免费下载】大学物理第二十章题解
【免费下载】大学物理第二十章题解

第二十章 稳恒电流的磁场20-1.如图所示,将一条无限长载流直导线在某处折成直角,点在折线的延长线上,

P 到折线的距离为.(1)设导线所载电流为,求点的.(2)当,a I P B 20A I =,求.0.05m a =B 解 (1)根据毕-萨定律,段直导线电流在点产生的磁场;段是AB P 0B =BC “半无限长”直导线电流,它在点产生的磁场为,方向垂直纸面向P 001224I I B a a μμππ==里.根据叠加原理,点的磁感应强度P 001224I I B a a μμππ==方向垂直纸面向里. (2)当,时 20A I =0.05m a =75141020410(T)22005B .ππ--??=?=??20-2.如图所示,将一条无限长直导线在某处弯成半径为的半圆形,已知导线中的R 电流为,求圆心处的磁感应强度.I B 解 根据毕-萨定律,两直线段导线的电流在点产生的磁感应强度,半圆环形O 0B =导线的电流在点产生的磁感应强度.由叠加原理,圆心O 0122I B R

μ=处的磁感应强度O 04I B R

μ=方向垂直纸面向里.20-3.电流若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试I 求各点的磁感应强度.O B

解 (a )根据毕-萨定律和叠加原理,点的磁感应强度等于两条半无限长直线电流O 的磁感应强度和个圆环形导线的电流的磁感应强度的叠加14 ,方向垂直纸面向外.0000111(1)22224224

I I I I B R R R R μμμμππππ=++=+(b )根据毕-萨定律和叠加原理,点的磁感应强度等于下面一条半无限长直线电流O 的磁感应强度和个圆环形导线的电流的磁感应强度的叠加

34 ,方向垂直纸面向里.000133(1)224242

I I I B R R R μμμπππ=+=+(c )根据毕-萨定律和叠加原理,点的磁感应强度等于两条半无限长直线电流的磁O 感应强度和个圆环形导线的电流的磁感应强度的叠加1

2件中管壁薄、接口不严等问中资料试卷电气设备进行调因此,电力高中资料试卷保

,方向垂直纸面向里.000111222222I I I B R R R μμμππ=++()024I R

μππ=+20-4.如图所示,电流均匀地流过宽为的无限长平面导体薄板.点到薄板的*I a 2P 垂足点正好在板的中线上,设距离,求证点的磁感应强度的大小为

O x PO =P B x

a a I B arctan 20πμ=解 把薄板等分成无限多条宽为的细长条,

d y 每根细长条的电流,可视为线电流;无d d 2I I y a

=限长载流薄板可看成由无限多条无限长载流直导线构成.处的细长条在点产生的磁感应强度为,处的细长条在点产生的磁感应y P d B + y -P 强度为,二者叠加为沿方向的.所以点的磁感应强度沿方向,的大

d B - Oy d B P B Oy B 小

0a B θ=

?0=?0220d 2a Ix y a x y μπ=+?001arctan 2a Ix y a x x μπ=0arctan 2I a a x μπ=20-5.如图所示,半径为的木球上绕有密集的细导线,线圈平面彼此平行,且以*R 单层线圈盖住半个球面.设线圈的总匝数为,通过线圈的电流为,求球心处的.N I O B 解 在圆周的圆弧上,单位长度弧长的线圈匝数为14A ab 224N N R R ππ=在如图处,角对应弧长内通过的电流θd θd l 22d d d NI NI I l R θππ==此电流可视为半径为的圆环形电流圈,参见教材p80,此圆环形电流圈在处产生的r O 222200033d sin 2d d sin d 22r I R NI NI B R R R μμθμθθθππ===所以总磁感应强度 2002200d sin d 4NI NI B B R R

ππμμθθπ===??20-6.如图所示,载流长直导线的电流为,试求通过与直导线

I 共面的矩形面积的磁通量.

CDEF 解 用平行于长直导线的直线把矩形分成无限多个无限

CDEF 小的面元,距长直导线处的面元的面积为,设矩形

r d d S l r =的方向为垂直纸面向里,则

CDEF d S Φ=B S ??? 0d 2b a I l r r μπ=?b 0d 2a Il r r μπ=?0ln 2Il b a

μπ=20-7.无限长同轴电缆的横截面如图所示,内导线半径为,载正向电流,圆筒形a I 外导线的内外半径分别为和,载反向电流,两导线内电流都均匀分布,求磁感应强

b c

I 技术。线缆敷设原则:在分程中以及安装结验;通电检查所有设备高中行高中资料试卷技术指导。电力保护装置做到准确灵活

度的分布.

解 考虑毕-萨定律,又因同轴电缆无限长,电流分布具有轴对称性,所以磁感应线在与电缆轴线垂直的平面内,为以轴线为圆心的同心圆;沿圆周切向,在到轴线距离相B r 同处的大小相等,.沿磁感应线建立安培环路(轴线为圆心、半径为的圆)B ()B B r =L r ,沿磁感应线方向积分.

在区域,由安培环路定理

r c >110d 2()0

L B l rB I I πμ?==-=? A 可得.在区域,由安培环路定理

10B =c r b >>222222002222d 2()L r b c r B l rB I I I c b c b πππμμππ--?==-=--? A 可得.在区域,由安培环路定理2202222I c r B r c b μπ-=-b r a >>330d 2L

B l rB I

πμ?==? A 可得.在区域,由安培环路定理032I B r

μπ=a r >22

440022

d 2L r r B l rB I I a a ππμμπ?===? A 可得.042

2Ir B a μπ=20-8.如图所示,厚度为的无限大导体平板,电流密度沿方向均匀流过导体板,2d J z 求空间磁感应强度的分布.

解 此无限大导体板可视为无限多个无限薄的无限大平板的叠加,参见习题20-4,可知,区域沿负方向,区域沿正方向.

0y >B Ox 0y

abcda ab cd Ox 长度为,与面距离为.在的板外区域,根据安培环路

l Oxz r r d >定理,有

0d 22L B l B l dlJ

μ?==? A 外外所以.与到板面的距离无关,说明板外为匀强磁场.

0B dJ μ=外B 外在的板内区域,根据安培环路定理,有r d <0d 22L B l B l rlJ μ?==? A 内内所以.可表示为().

0B rJ μ=内0B yJi μ=- 内d y d -<<20-9.矩形截面的螺绕环如图所示,螺绕环导线总匝数为,导线内电流强度

N 为.(1)求螺绕环截面内磁感应强度的分布;(2)证明通过螺绕环截面的磁通量为I .012

ln 2NIh D ΦD μπ=解 由于电流分布对过螺绕环中心的对称轴具有轴对称性,所以螺绕环截面内磁感应线在与对称轴垂直的平面内,为以对称轴为圆心的同

心圆;沿圆周切向,在到轴线距离相同处的大小相等,

B r B .在螺绕环截面内,沿磁感应线作安培环路(以为半径的圆,

()B B r =r ),由安培环路定理2122

D

D

r <

<

0d 2L B l rB NI πμ?==?

A 所以. 02NI

B r

μπ=通过螺绕环截面的磁通量为

1220012d d ln 22D D NI NIh D B S h r r D μμΦππ=?==?? 20-10.如图所示,半径为的无限长金属圆柱内部挖出一半径为的无限长5m 1.5m r =圆柱形空腔.两圆柱的轴线平行,轴间距离.今在此空心导体上通以的电流,

2.5m a =5A 电流沿截面均匀分布.求此导体空心部分轴线上任一点的.B 解 设空心导体上电流强度为,则电流密度.I 22()I J R r π=-电流分布可视为由电流密度为、半径为的实心长圆柱,和填充J R 满挖空区域的、通有反向电流、电流密度为、半径为的圆柱的叠J - r 加.可用安培环路定理求出半径为的实心长圆柱电流在处的磁感应强度为R O'2010222212()2()Ia I B a a R r R r μμππππ==--其方向与圆柱轴线以及垂直,与电流成右手螺旋关系.OO'I 由反向电流的轴对称分布可知,反向电流在其轴线上的磁感应强度为.20B = 由叠加原理可得在空心圆柱轴线上的磁感应强度为,121B B B B =+= 770122224105251110(T)2()2(515)Ia .B .R r .μπππ--???===?--20-11.把一个的正电子射入磁感应强度为的均匀磁场内,其速度与2.0keV 0.10T v 成角,正电子的运动轨迹将是一条螺旋线.求此螺旋线运动的周期、螺距和半B o 89T h 径.r 解 周期 311019223149111035710(s)1610010m ..T .qB ..π---???===???速率为

726510(m s )v .===?螺距为 7104cos 8926510cos 893571016510(m)

h v T ...--==????=? 半径为 317319sin899111026510sin8915110(m)161001

mv ..r .qB ..---????===???

20-12.速率选择器如图所示,在粒子穿过的区域有相互垂直的匀强电场和匀强磁场,V 两侧有等高的窄缝.现有一束具有不同速率的电子束从左侧缝穿入,以垂直于和S A E 的方向进入区域.若,,.试计算能从速率选择

B V 300V U =10cm d =4310T B -=?器右侧的缝穿出的粒子的速率.带电粒子的带电符号及质量大小是否影响选择器对它们速率的选择? 解 能从速率选择器右侧的缝穿出的电子必作直线运动,这些电子在电场中的受力E 为,方向竖直向上;在磁场中的受力为,方向竖直向下;且满足

eE - B ev B -?

eE evB =敷设技术,不仅可以解决吊接地线弯曲半径标高等,要压回路交叉时,应采用金属工艺高中资料试卷要求,对与装置高中资料试卷调试方中资料试卷技术问题,作为资料试卷配置技术是指机组动处理,尤其要避免错误高置高中资料试卷调试技术是

所以 E U v B dB ==430001310.-=??710(m s )=由于与带电粒子的带电符号及质量大小无关,所以电粒子的带电符号及质量大小不E v B

=影响选择器对它们速率的选择.

20-13.一块半导体样品的体积为如图所示,,, c b a ??0.10cm a =0.35cm b =.沿轴方向有电流,沿轴方向加匀强磁场,已测得,

1.0cm c =cm x I z B 1.0mA I =,样品两侧的电势差.(1)问这半导体是型还是型,即

1310T B -=? 6.55mV AA U '=p n 该半导体的载流子是带正电还是带负电?(2)求载流子浓度.n 解 (1)由电流方向、磁场方向和侧电势高于侧A A'电势可知,此半导体的载流子带负电,属于型.n (2)AA'IB n U qa =3319310100365510161010....----??=????20328610m .-=?20-14.如图所示,一条长直导线载有电流,矩形线圈载有电流,130A I =220A I =试计算作用在线圈上的合力.已知:,,.0.01m a =0.08m b =0.12m l =解 线圈左侧边导线受力 ,方向向左.0111222I F B I l I l a μπ==线圈右侧边导线受力 ,方向向右.()0122222I F B I l I l a b μπ==+线圈上下两边导线所受的磁力大小相等、方向相反.因此线圈所受磁力的合力为()0120121222I I I I F F F l l a a b μμππ=-=-+()0122I I lb a a b μπ=+741030200120082001(008001).....ππ-?????=??+312810(N).-=?方向向左,垂直指向长直导线.20-15.如图所示,无限长直导线通有电流,半径为的半圆形导线通有

1I R ABCDE 电流.长直导线过圆心且与半圆形导线共面(但不相交),.

求:2I O a DE AB ==(1)导线中,、、各段所受产生的磁场的作用力的大小和方向,ABCDE AB A BCD DE 1I (2)长直导线在圆心处元段上所受的磁场力的大小和方向.O d l 2I 解 (1)设直线电流产生的磁感应强度为.

1I 1B 求段受的作用力时,令,则

AB 1I y ξ=-01212d d 2R a AB R I F I l B I k μξπξ

+=?=??? 012ln 2I I R a k a

μπ+=

?

所有设备高中资料试卷相互电力保护

段受到的作用力为DE 1I 01012212d d ()ln 22R a DE R I I I R a F I l B I y k k y a μμππ++=?=?-=-??? 求段受的作用力时,取电流元如图,.由于方向的分力会

A BCD 1

I 2d I l d d l R θ=Oz 相互抵消(参见图),只需计算方向的分量,则

Oy A 1202cos d BCD F B I R j πθθ=-??? 201202cos d 2cos I R j R πμθθπθ=-?? 0122I I j μ=- (2)半圆形导线电流在圆心点处产生的磁场,所以2I O 0224I B i R μ= 0121212d d d d 4I I l F I l B I B l j j R μ=?=?= 20-16.有一匝数为匝,长为,宽为的矩形线圈,放在100.25m 0.10m 的匀强磁场中,通以的电流,求它所受的最大力矩.

31.010T B -=?15A 解 线圈在匀强磁场中所受的最大力偶矩为m T NIBS =31015101002501...-=?????337510(N m)

.-=??(第二十章题解结束)

关于大学物理答案第章

17-3 有一单缝,缝宽为,在缝后放一焦距为50cm 的汇聚透镜,用波长为的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 代入数据得 17-4 用波长为的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 依题意有 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 依题意有 0115.234.0sin 5 2sin 20sin 50===→=--θθ 中央波束的角宽为00475.2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 依题意有 2 )122(2)132(21λλ+?=+? 代入数据得 nm 6.428760057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径)中的柱状感光细胞每平方毫米约×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 (2)视网膜上星体的像的直径为 (3)细胞数目应为3.2105.14)104.4(52 3=????=-πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为,入射光波长为550nm.。 解: 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 17-10 一光栅每厘米刻有4000 位)已知?和?谱线的波长分别为656nm 和解: S 1S 2

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理答案第1~2章

大学物理答案第1~2 章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点的运动 1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。 解:22 cos ,sin x y x y dx dy v Rw wt v Rw wt dt dt v v v Rw ==-==-∴=+= 2 222 2 sin ,cos y x x y x y dv dv a Rw wt a Rw wt dt dt a a a Rw ====∴=+= sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为 质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点 作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω2 1-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2 解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则 012132 012221201112()0,2()/2 ()11 222 12 v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=- =-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx . 解:取汽艇行驶的方向为正方向,则 020 0,,ln v x v kx dv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v v kx v v v e -==-= ∴=-=-∴=-=-∴=?? 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。 解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,

华东理工大学物理 下 期末试卷答案

华东理工大学物理B(下)期末考试A卷 选择题30’(5’×6) 1、边长为L的正方形,在其四个顶点上各放有等量的点电荷,若正方形中心O处场强值、电势值均为零,则四个顶点带电情况为? A.顶点a、b、c、d处都是负电荷 B.顶点a、b处是正电荷,顶点c、d处是负电荷 C.顶点a、c处是正电荷,顶点b、d处是负电荷D顶点a、b、c、d都是负电荷 A、D的U O≠0,B的E O≠0,由矢量叠加证明E O=0,由两等量异号电荷的中垂面为零势面证明U O=0 2、已知一高斯面所包围的体积内电荷代数和Σq=0,则能肯定? A.高斯面上各点场强均为零 B.穿过高斯面上每一面元的电场强度通量为零 C.穿过整个高斯面的电场强度通量为零 D.以上均错 3、半径R1的导体球带电q,外罩一带电Q的半径为R2的同心导体球壳,q点距球心O的距离为r,r

5、牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,其间充满折射率为n 的透明介质,一真空中波长为λ的平行单色光垂直入射到该装置上,则反射光形成的干涉条纹中,暗环的半径r k 表达式为?A.n /k r k R λ= B.R n /k r k λ= C.R λkn r k = D.R λk r k =6、一动量为P 的电子,沿图示方向入射并能穿过一宽为D ,磁感应强度为B(方向垂直纸面向外)的均匀磁场区,则该电子出射、入射方向间的夹角为多少? A.α=cos -1P eBD B.α=sin -1P eBD C.α=sin -1eP BD D.α=cos -1 eP BD

大学物理第二十章题解

第二十章 稳恒电流的磁场 20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B . 解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224I I B a a μμππ= =, 方向垂直纸面向里.根据叠加原理,P 点的磁感应强度 001224I I B a a μμππ= = 方向垂直纸面向里. (2)当20A I =,0.05m a =时 75141020410(T)22005 B .ππ--??=?=?? 20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B . 解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122I B R μ= .由叠加原理,圆心O 处的磁感应强度 04I B R μ= 方向垂直纸面向里. 20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求 各O 点的磁感应强度B . 解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流

的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加 0000111(1)22224224 I I I I B R R R R μμμμπ πππ= ++=+ ,方向垂直纸面向外. (b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加 000133 (1)224242 I I I B R R R μμμπππ= +=+ ,方向垂直纸面向里. (c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加 000111222222I I I B R R R μμμππ= ++()024I R μππ=+ ,方向垂直纸面向里. *20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的 垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B 的大小为 x a a I B arctan 20πμ= 解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2I I y a = ,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成. y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强 度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B 的大小 02 2 2 cos 2a B x y θπ= +? 022 2 2 022a a x y x y π=? ?++? 0220d 2a Ix y a x y μπ=+?001arctan 2a Ix y a x x μπ=0arctan 2I a a x μπ = *20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单 层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B . 解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为 224N N R R ππ=

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理18。19。20章计算答案

18 光的干涉 三、计算题 1、使一束水平的氦氖激光器发出的激光(nm 8.632=λ)垂直照射一双缝。在缝后 2.0m 处的墙上观察到中央明纹和第1级明纹的间隔为 14cm 。(1)求两缝的间距;(2)在中央条纹以上还能看到几条明纹? 解:(1)m 10 0.914 .010 8.6230.2x D d 6 9 --?=??= ?= λ 6分 (2)由于2 π θ≤ ,则3.1414 .00.2x D sin d k == ?== λ θ 应该取14即能看到14条明纹。 6分 2、在双缝干涉实验装置中,用一块透明簿膜(2.1=n )覆盖其中的一条狭缝,这时屏幕上的第四级明条纹移到原来的原零级明纹的位置。如果入射光的波长为500nm ,试求透明簿膜的厚度。 解:加上透明簿膜后的光程差为: 0)1(21>-=-+-=l n r nl l r δ 4分 因为第四级明条纹是原零级明纹的位置: λδ4= , 21r r = 4分 得到: λ4)1(=-l n ? m n l 5 10 1 4-=-= λ 4分 3、澳大利亚天文学家通过观察太阳发出的无线电波,第一次把干涉现象用于天文观测。这无线电波一部分直接射向他们的天线,另一部分经海面反射到他们的天线,如图所示。设无线电波的频率为 6.0×107 Hz ,而无线电接收器高出海面 25m 。求观察到相消干涉时太阳光线的掠射角θ的最小值。 解:如图所示,考虑到反射光线的半波损失,则反射光线和直射光线到达天线的相差为 π λ θ π ?+=?sin h 22 3分 干涉相消要求π?)1k 2(+=?, 3分 代入上式可得 h 2kc h 2k sin υλθ== 3分 题3解图 题3图

(完整版)大学物理下册期末考试A卷.doc

**大学学年第一学期期末考试卷 课程名称大学物理(下)考试日期 任课教师 ______________试卷编号_______ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40 10 10 10 10 10 10 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 部分常数:玻尔兹曼常数 k 1.38 10 23 J / K , 气体普适常数 R = 8.31 J/K.mol, 普朗克常量h = 6.63 10×34 J·s,电子电量e 1.60 10 19 C; 一、填空题(每空 2 分,共 40 分) 1. 一理想卡诺机在温度为 27℃和 127℃两个热源之间运转。若得分评卷人 使该机正循环运转,如从高温热源吸收1200J 的热量,则将向低 温热源放出热量 ______J; 2.1mol 理想气体经绝热自由膨胀至体积增大一倍为止,即 V22V1则在该过程中熵增S_____________J/k。 3.某理想气体的压强 P=105 Pa,方均根速率为 400m/s,则该气 体的密度 _____________kg/m3。 4.AB 直导体长为 L 以图示的速度运动,则导体中非静电性场强大小 ___________,方向为 __________,感应电动势的大小为 ____________。

5 5.平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 dU/dt=1.50 × 10V/s ,则电容器两平行板间的位移电流为___________A。 6. 长度为 l ,横截面积为 S 的密绕长直螺线管通过的电流为I ,管上单位长度绕有n 匝线圈,则管内的磁能密度w 为 =____________ ,自感系数 L=___________。 7.边长为 a 的正方形的三个顶点上固定的三个点电荷如图所示。以无穷远为零电 势点,则 C 点电势 U C =___________;今将一电量为 +q 的点电荷 从 C点移到无穷远,则电场力对该电荷做功 A=___________。 8.长为 l 的圆柱形电容器,内半径为R1,外半径为R2,现使内极 板带电 Q ,外极板接地。有一带电粒子所带的电荷为q ,处在离 轴线为 r 处( R1r R2),则该粒子所受的电场力大小F_________________;若带电粒子从内极板由静止飞出,则粒子飞到外极板时,它所获得的动能E K________________。 9.闭合半圆型线圈通电流为 I ,半径为 R,置于磁感应强度为B 的均匀外磁场中,B0的方向垂直于AB,如图所示。则圆弧ACB 所受的磁力大小为 ______________,线圈所受磁力矩大小为__________________。 10.光电效应中,阴极金属的逸出功为2.0eV,入射光的波长为400nm ,则光电流的 遏止电压为 ____________V。金属材料的红限频率υ0 =__________________H Z。11.一个动能为40eV,质量为 9.11 × 10-31 kg的电子,其德布 罗意波长为nm。 12.截面半径为R 的长直载流螺线管中有均匀磁场,已知 dB 。如图所示,一导线 AB长为 R,则 AB导线中感生 C (C 0) dt 电动势大小为 _____________,A 点的感应电场大小为E。

大学物理第二章习题及答案知识讲解

第二章 牛顿运动定律 一、选择题 1.下列说法中哪一个是正确的?( ) (A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变 2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gR μ (B )不得大于gR μ (C )必须等于 gR μ2 (D )必须大于 gR μ3 4.一个沿x 轴正方向运动的质点,速率为51 s m -?,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( ) (A )551s m -? (B )1751 s m -? (C )251s m -? (D )751 s m -? 5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( ) (A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ 6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ

2015大学物理(下)期末复习题答案

大学物理(下)期末复习题 一、选择题 [ C ] 2.关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3).(B) (1)、(2)、(4). (C) (2)、(4).(D) (1) 、(4) [ D ] 3. 理想气体卡诺循环过程的两个绝热下的面积大小(图中阴影部分) 分别为S1和S2,则两者的大小关系是 (A)S1>S2 ;(B)S1=S2 ;(C)S1

5. 一定量的的理想气体,其状态改变在P-T图上沿着直线一条沿着 一条直线从平衡态a改变到平衡态b(如图) (A)这是一个绝热压缩过程. (B)这是一个等体吸热过程. (C)这是一个吸热压缩过程. (D)这是一个吸热膨胀热过程. [D] 6.麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等, 则该图表示 (A)v0为最概然速率;(B)v0为平均速率; (C)v0为方均根速率; (D)速率大于和小于v0的分子数各占一半. [D] 7. 容器中储有定量理想气体,温度为T ,分子质量为m ,则分子速 度在x 方向的分量的平均值为:(根据理想气体分子模型和统计假设讨论) [ A ] 8. 设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振 60时,透射光强减为一半,试求部分偏振光中自然光和线偏振片由对应最大透射光强位置转过 光两光强之比为 (A) 2:1 .(B) 4:3.(C) 1:1.(D) 1:2.[ C ] 9.如图,一束动量为p的电子,垂直通过缝宽为a的狭缝,问距缝为D处的荧光屏上显示出的衍射图样的中央亮纹的宽度为 (A) 2ha/(Dp).(B) 2Dh/(ap).(C) 2a2/D.(D) 2ha/p.[ B ]10.一氢原子的动能等于氢原子处于温度为T的热平衡时的平均动能,氢原子的质量为m,则此氢原子的德布罗意波长为.

大学物理期末考试试卷(C卷)答案

第三军医大学2011-2012学年二学期 课程考试试卷答案(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 答案部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.C 2.C 3.C 4.D 5.B 6.C 7.D 8.C 9.A 10.B 二、填空题(每题2分,共20分,共10小题) 1.m k d 2 2.20kx ;2021 kx -;2021kx 3.一个均匀带电的球壳产生的电场 4.θ cos mg . 5.θcot g . 6.2s rad 8.0-?=β 1s rad 8.0-?=ω 2s m 51.0-?='a 7.GMR m 8.v v v v ≠=? ?, 9.1P 和2P 两点的位置.10.j i ??22+- 三、计算题(每题10分,共60分,共6小题) 1. (a) m /s;kg 56.111.0?+-j i ρρ (b) N 31222j i ρρ+- . 2. (a) Yes, there is no torque; (b) 202202/])([mu mbu C C ++ 3.(a)m/s 14 (b) 1470 N 4.解 设该圆柱面的横截面的半径为R ,借助于无限长均匀带电直线在距离r 处的场强公式,即r E 0π2ελ=,可推出带电圆柱面上宽度为θd d R l =的无限长均匀带电直线在圆柱

2 轴线上任意点产生的场强为 =E ρd r 0π2ε λ-0R ρ=000π2d cos R R R ρεθθσ- =θθθεθσ)d sin (cos π2cos 0 0j i ρρ+-. 式中用到宽度为dl 的无限长均匀带电直线的电荷线密度θθσσλd cos d 0R l ==,0R ρ为从 原点O 点到无限长带电直线垂直距离方向上的单位矢量,i ρ,j ρ为X ,Y 方向的单位矢量。 因此,圆柱轴线Z 上的总场强为柱面上所有带电直线产生E ρd 的矢量和,即 ??+-==Q j i E E πθθθεθσ2000)d sin (cos π2cos d ρρρρ=i 002εσ- 方向沿X 轴负方向 5.解 设邮件在隧道P 点,如图所示,其在距离地心为r 处所受到的万有引力为 23π34r m r G f ??-=ρ r m G )π34 (ρ-= 式中的负号表示f ρ与r ρ的方向相反,m 为邮件的质量。根据牛顿运动定律,得 22d )π34(dt r m r m G =-ρ

大学物理1章习题解答03

1-3.一粒子按规律32395x =t -t -t +沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动;减速运动的时间间隔。 [解] 由运动方程59323+--=t t t x 可得质点的速度 ()()133963d d 2x +-=--== t t t t t x v (1) 粒子的加速度 ()16d d -==t t v a (2) 由式(1)可看出 当t >3s 时,v >0,粒子沿x 轴正向运动; 当t <3s 时,v <0,粒子沿x 轴负向运动。 由式(2)可看出 当t >1s 时,a >0,粒子的加速度沿x 轴正方向; 当t <1s 时,a <0,粒子的加速度沿x 轴负方向。 因为粒子的加速度与速度同方向时,粒子加速运动,反向时,减速运动,所以,当t >3s 或0

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理上海交通大学20章课后习题答案

习题20 20-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。 解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==o , ∴仰角9037i θ=-=o o 。 光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。 20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使: (1)透射光强为入射光强的3/1; (2)透射光强为最大透射光强的3/1。(均不计吸收) 解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。 则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α 20cos 21 I I =, (1)由已知条件,透射光强为入射光强的13,得:200 11 cos 2 3I I α=,有: (2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos () 232I I α=,有: arccos 54.733α==o 。 20-3.设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过ο 60时,透射光强减为一半,试求部分偏振光中自 然光和线偏振光两光强各占的比例。 解:由题意知: max 012max 011211cos 6022I I I I I I =?????+=+??o ?max 01max 0112111224I I I I I I ????=+=+????01I I =, ∴即得0111I I =::。 20-4.由钠灯射出的波长为589.0nm 的平行光束以ο 50角入射到方解石制成的晶片上,晶 片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求: (1)在晶片内o 光与e 光的波长; (2)o 光与e 光两光束间的夹角。 解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λ λ= ∴589.0356.971.65c o o nm n λλ===,589.0396.371.486 c e e nm n λλ===; (2)又∵sin sin i n γ= ,有:sin 50arcsin 27.66o o n γ==o o ,sin 50arcsin 31.03e e n γ==o o , ∴o 光与e 光两光束间的夹角为: 3.37e o γγγ?=-=o 。 20-5.在偏振化方向正交的两偏振片1 P , 2 P 之间,插入一晶片,其光轴平行于表面且与起 偏器的偏振化方向成ο 35,求:

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理第二章习题及答案

大学物理第二章习题及 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 牛顿运动定律 一、选择题 1.下列说法中哪一个是正确的( ) (A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变 2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gR μ (B )不得大于gR μ (C )必须等于 gR μ2 (D )必须大于 gR μ3 4.一个沿x 轴正方向运动的质点,速率为51 s m -?,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( ) (A )551s m -? (B )1751 s m -? (C )251s m -? (D )751 s m -? 5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( ) (A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ

6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ (C )μθ=tg (D )μθ=ctg 二、简答题 1.什么是惯性系什么是非惯性系 2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式。 三、计算题 2.1质量为10kg 的物体,放在水平桌面上,原为静止。先以力F 推该物体,该力的大小为20N ,方向与水平成?37角,如图所示,已知物体与桌面之前的滑动摩擦因数为 0.1,求物体的加速度。 2.2质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数 2.0=μ,斜面仰角?=30α,如图所示,今以大小为19.6N 的水平力F 作用于m , 求物体的加速度。 题2.2

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C 地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 r = 位移的方向沿东北方向,与方向一致。 1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么 解与在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 2t 3 ,r和t的单位分别是m 和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m s1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = 18 m s1; 用同样的方法可以求得第四秒末的速度,为 v4 = 48 m s1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = 24 m s2; 用同样的方法可以求得第四秒末的加速度,为 v4 = 36 m s2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s s0 )成立。

相关文档
最新文档