(整理)工程电磁场第二章静电场二

(整理)工程电磁场第二章静电场二
(整理)工程电磁场第二章静电场二

第2章 静电场(二)

2.1 静电场的唯一性定理及其应用

静电场中的待求量:电场强度E ,静电力F 。 静电场求解方法:

(1) 直接由电场强度公式计算;

(2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。

E ?-?

=?-=???

ε

ρ?E 2

唯一性定理的重要意义:确定静电场解的唯一性。

2.1.1 唯一性定理

静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。

2.1.2 导体边界时,边界条件的分类

(1) 自然边界条件:

有限值参考点=∞

→?r r lim

(相当于指定电位参考点的值)

(2) 边界衔接条件:σ?

ε?ε??=??-??=n

n 221121

(该条件主要用于求解区域内部)

(3) 导体表面边界条件

(a) 给定各导体表面的电位值。(第一类边界条件) (b) 导体表面为等位面,给定各导体表面的电荷量。

该条件相当于给定了第二类边界条件。在求解过程中,可通过积分运算确定任意常数。

S n ??-=?

εσ,(注:n 的正方向由介质导向导体内部)

q dS r S

=??-?)(1

1?ε (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。 相当于给定了第三类边界条件。

思考?

为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数? 答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。

2.1.3 静电场唯一性定理的意义

唯一性定理为静电场问题的多种解法(试探解、数值解、解析解等)提供了思路及理论根据

2.1.4 等位面法

1 等位面法:静电场中,若沿场的等位面的任一侧,填充导电媒质,则等位面另侧的电场保持不变。

2 等位面法成立的理论解释:

等位面内填充导电媒质后,边界条件沿发生变化:

(1)边界k 的等位性不变;

(2)边界k 内的总电荷量不变。(相当于给定了第二类边界条件)

3 等位面法在解释静电屏蔽现象中的应用

现象一、接地的封闭导体壳内的电荷不影响壳外的电场。 解释:边界上电位值不变(给定的第一类边界条件不变)。

现象二、封闭导体无论是否接地,则壳内电场不受壳外电场的影向。 解释:(注意边界正方向的取向)

边界S 2为等位面;

边界S 2上的总电荷量不变。

2.2 平行双电轴法

1 问题的提出:

以求无限长双圆柱平输电线周围的电场分布为例。

导体表面的面电荷密度未知,不可能由电场计算公式计算;电场分布不具有对称性,不能用高斯定理求解,用求解泊松方程法,不能给出解析解。本节从静电场的唯一性定理出发,采用其它求解方法(电轴法)。 2. 两根细导线产生的电场

设 电轴上单位长度的电荷量为τ,电位参考点为Q 。 电场分布为平面场,根据叠加原理,

1100

1ln 22C d Q P +-==?ρπετρρπετ? 2202ln 2C +--=ρπετ?

C P +=+=1

2021ln 2ρρ

πετ???

说明:式中Q 表示电位参考点。ρ表示由电荷到P 点的矢径。

以y 轴为参考点, C=0, 则

22220120)()(ln 2ln 2y

b x y b x P +-++==πετ

ρρπετ?

*确定等位线方程: 常数令:=P ? 2

2

22

2)()(K y

b x y b x =+-++ 等位线方程为圆: 222222)1

2()11(-=+-+-K bK

y b K K x

圆心的坐标: ??

????-+=0,)11

(22b K K h 圆的半径为:122-=K bK a

当K 取不同数值时,就得到一族偏心圆。 a 、h 、b 三者之间的关系满足:

22222

2222)1

1()12(h b K K b K bK b a =-+=+-=+

应该注意到: 线电荷所在的两个点,对每一个等位圆的圆心来说,互为反演。即 ))((222b h b h b h a -+=-=

-- a 为等位线的半径;2b 两电轴间的距离;h 为等位圆圆心到坐标原点的距离。 附: 〖反演〗

没C 为一定圆,O 为圆心,r 为半径,对于平面上任一点M ,有一点M ’与它对应,使得满足下列两个条件: (1)O 、M 、M ’共线; (2)OM ·OM ’=r 2;

则点M ’称为点M 关于定圆C 的反演点,C 称为反演圆,O 称为反演中心,r 称为反演半径。 M 和M ’的关系是对称的,M 也是M ’的反演点。M 与M ’的对应称为关于定圆C 的反演。

*确定电力线方程:

根据 ?-?=E 及E 线的微分方程为x

y

E E dx dy =

得E 线方程为 4

)2(2

12212K

b K y x +=-+

说明:电力线方程表明, E 线为圆,其圆心位于y 轴上。K 1的不同取值确定不同的电力线。

3 电轴法的基本思想

由三个思考题,引出电轴法的解题思想。

(1)若在任一等位面上放一无厚度的金属圆柱壳,是否会影响电场分布? (2)、感应电荷是否均匀分布?

(3)、若在金属圆柱管内填充金属,重答上问。

得出电轴法的思想:

电轴法:用置于电轴上的等效线电荷,来代替圆柱导体面上分布电荷,从而求得电场的方法,称为电轴法。

电轴法解题的过程:

(1)根据圆柱导体的半径a 和两导体间的距离2h 求出等效电轴的位置b ;(2)设电轴上电荷线密度等于圆柱导体上单位长度的电荷量;(3)由电场计算公式

22220120)()(ln 2ln 2y

b x y b x P +-++==πετ

ρρπετ?(0电位参考点位于y 轴)

4 例题

例1.

试求图示两带电长直平行圆柱导体传输线的电场及电位分布。

解:(1)建立体系,取0电位参考点

(2)确定电轴的位置,22a h b -= (3)计算电场和电位分布:

??????

?=-=1202

10ln π2)11(π2ρρετ?ρρετρρp

P 21e e E

例2 已知两根不同半径,相互平行,轴线距离为d 的带电长直圆柱导体。试决定电轴位置。

解:2

1212

2

222

21212,,h h b h h d a h b a h b 确定??

???+=-=-=

例3 试确定图示偏心电缆的电轴位置 解:

211

22

222222121,,h h b d h h b

a h

b a h ????????=-+=+=

例4 已知一对半径为a ,相距为d 的长直圆柱导体传输线之间电压为U 0 ,试求圆柱导体间电位的分布。 解:

1 确定电轴的位置 ???=-=h

d a h b 22

222 →22

)2(a d b -= 2 设电轴上电荷密度为±τ,任一点的电位为:

1

20ln 2ρρ

πετ?=

注意:式中的ρ2,ρ1分别为负电轴和正电轴到观察点P 的距离。

3 :0τ??解出由B A U -=

)()(ln 2)()(ln 2000a h b a h b a h b a h b U -+------+=

πετπετ → )

()

(ln 2200a h b a h b U ---+=πετ 4 场中任一点的电位为:

120ln )

()(ln

2ρρ

?a h b a h b U P ---+=

2.3 无限大导电平面的镜象

一、镜象法

1.平面导体的镜像

通过比较两种边值问题的比较引出无限大导体平面的镜象法: (1)点电荷位于无限大导体平面上方,边值问题:

02=?? 除 q 所在点外的区域 0=? 导板及无穷远处

?=?s

q d S D S 为包围 q 的闭合面

(2)点电荷及其镜象位于两无限大平面两侧,上半空间的边值问题

02=?? 除 q 所在点外的区域

04400=-=r

q r q πεπε? 对称面及无穷远处

?=?s

q d S D S 为包围q 的闭合面

二、无限大导电平面镜象法的特点用应用 无限大导体平面镜象法的特点:

1 镜象电荷位于被研究的场域之外,与场源电荷关于平面对称;

2 镜象电荷所带的电量与边界面原来所具有的总电荷量大小相等,符号相同,与场源电荷量大小相等,符号相反;

3 被研究场域的边界电位值为0。

三、无限大导电平面的应用

1 点电荷对夹角为直角的两相联导电平面的镜象;

2 点电荷对夹角为α

3 长直圆柱导体对于导电平面(或地平面)的镜象;

例2-3 架空地线避雷原理。带电的云与地面之间形成一均匀向下的电场E 0,由于大气电场的影响将

导致高度为l 处的高压输电线A 的电位升高。若在A 的上方架设有架空地线G ,半径为r 0,G 是经过支架接地的,则在架空地线G 上感应出负电荷,地面上感应出正电荷。将这些感应电荷的电场叠加到大气电

场以后可以降低A 处的电位。试求由于架空地线的屏蔽作用而导致A 处电位的变化。

定性解释:

定量计算:

设:架空地线上单位长度的感应电荷量为τ,架空地线的半径为r 0,其等效电轴与地线中心重合。 架空地线的电位为:

02ln 2000=+h

r h E πετ → 地线上单位长度的电荷量: h

r h

E 2ln 20

00πετ-=

高压输电线上的电位:

h

r l h l h h E l E l h l h l E 2ln ln

ln 200000+--

=+-+=πετ?

架设架空地线前后,架空线电位比:

h

r l

h l h l h 2ln ln

100+--

=??

当m r m l m h 004.0, 10 ,110===时, %1.610

=??

D

2.4 球形导体表的镜象

2.4.1 接地导体球对点电荷的镜象

设在点电荷附近有一接地导体球,求导体球外空间的电位及电场分布。 边值问题:

20

00

r ???→∞?===导球面 (除q 点外的导体球外空间) 设匀镜象电荷q ’位于球内,球面上位一点的电位为0,即:

0102

'

044p q q r r ?πεπε=-=

其中

222222122cos 2cos r d R Rd r b R Rb θθ=+-=+-

由上式或知,球面上的电位只是b 和θ的函数,位取两θ值,(0,180)则:

'0'0q q d R R b q q d R R b ?-=??--?

?-=?++? 得:

2'R b d

R q q d

===

由叠加原理,接地导体球外任一点P 的电位与电场分别为

0102'44p q q r r ?πεπε=-012

11

()4q R r d r πε=-?

12

22010244P r

r q qR

r dr πεπε=-E e e

注意:

1 镜像电荷等于负的感应电荷(符号与数量均相同),

但小于场源电荷量。

2 镜像电荷不能放在当前求解的场域内。

2.4.2 不接地导体球对点电荷的镜象

解: 边值问题

20

00

r s S

d ???→∞?===≠?=?

D S 球面常数

在接地球的基础上判断镜像电荷的个数、大小与位置

接地导体球外的

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

工程电磁场第二章静电场(二)解读

第2章 静电场(二) 2.1 静电场的唯一性定理及其应用 静电场中的待求量:电场强度E ,静电力F 。 静电场求解方法: (1) 直接由电场强度公式计算; (2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。 E ?-?=?- =?? ?ερ ?E 2 唯一性定理的重要意义:确定静电场解的唯一性。 2.1.1 唯一性定理 静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。 2.1.2 导体边界时,边界条件的分类 (1) 自然边界条件: 有限值参考点=∞ →?r r lim (相当于指定电位参考点的值) (2) 边界衔接条件:σ? ε?ε??=??-??=n n 221121 (该条件主要用于求解区域内部) (3) 导体表面边界条件 (a) 给定各导体表面的电位值。(第一类边界条件) (b) 导体表面为等位面,给定各导体表面的电荷量。 该条件相当于给定了第二类边界条件。在求解过程中,可通过积分运算确定任意常数。 S n ??-=? εσ,(注:n 的正方向由介质导向导体内部) q dS r S =??-?)(1 1?ε (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。 相当于给定了第三类边界条件。 思考? 为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数? 答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。

最新电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

最新工程电磁场第二章静电场二

工程电磁场第二章静 电场二

第2章 静电场(二) 2.1 静电场的唯一性定理及其应用 静电场中的待求量:电场强度E ,静电力F 。 静电场求解方法: (1) 直接由电场强度公式计算; (2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。 E ?-? =?-=??? ε ρ?E 2 唯一性定理的重要意义:确定静电场解的唯一性。 2.1.1 唯一性定理 静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。 2.1.2 导体边界时,边界条件的分类 (1) 自然边界条件: 有限值参考点=∞ →?r r lim (相当于指定电位参考点的值) (2) 边界衔接条件:σ? ε?ε??=??-??=n n 221121 (该条件主要用于求解区域内部) (3) 导体表面边界条件 (a) 给定各导体表面的电位值。(第一类边界条件) (b) 导体表面为等位面,给定各导体表面的电荷量。 该条件相当于给定了第二类边界条件。在求解过程中,可通过积分运算确定任意常数。 S n ??-=? εσ,(注:n 的正方向由介质导向导体内部) q dS r S =??-?)(1 1?ε (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。 相当于给定了第三类边界条件。 思考? 为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数?

答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。 2.1.3静电场唯一性定理的意义 唯一性定理为静电场问题的多种解法(试探解、数值解、解析解等)提供了思路及理论根据2.1.4等位面法 1 等位面法:静电场中,若沿场的等位面的任一侧,填充导电媒质,则等位面另侧的电场保持不变。 2等位面法成立的理论解释: 等位面内填充导电媒质后,边界条件沿发生变化: (1)边界k的等位性不变; (2)边界k内的总电荷量不变。(相当于给定了第二类边界条件) 3 等位面法在解释静电屏蔽现象中的应用 现象一、接地的封闭导体壳内的电荷不影响壳外的电场。 解释:边界上电位值不变(给定的第一类边界条件不变)。 现象二、封闭导体无论是否接地,则壳内电场不受壳外电场的影向。 解释:(注意边界正方向的取向) 边界S2为等位面; 边界S2上的总电荷量不变。 2.2平行双电轴法 1 问题的提出: 以求无限长双圆柱平输电线周围的电场分布为例。 导体表面的面电荷密度未知,不可能由电场计算公式计算;电场分布不具有对称性,不能用高斯定理求解,用求解泊松方程法,不能给出解析解。本节从静电场的唯一性定理出发,采用其它求解方法(电轴法)。 2. 两根细导线产生的电场 设电轴上单位长度的电荷量为τ,电位参考点为Q。 电场分布为平面场,根据叠加原理,

电磁学第二章

第二章 静电场中导体与电介质 一、 选择题 1、 一带正电荷的物体M,靠近一不带电的金属导体N,N 的左端感应出负电荷,右端感应出正电荷。若将N 的左端接地,则: A 、 N 上的负电荷入地。 B 、N 上的正电荷入地。 C 、N 上的电荷不动。 D 、N 上所有电荷都入地 答案:B 2、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。若在它的下方放置一电量为q 的点电荷,则: A 、只有当q>0时,金属球才能下移 B 、只有当q<0就是,金属球才下移 C 、无论q 就是正就是负金属球都下移 D 、无论q 就是正就是负金属球都不动 答案:C 3、 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,已知A 上的电荷密度为σ+,则 在导体板B 的两个表面1与2上的感应电荷面密度为: A 、σσσσ+=-=21, B 、σσσσ2 1 ,2121 +=-= C 、σσσσ2 1 ,2121 -=-= D 、0,21 =-=σσσ 答案:B 4、 半径分别为R 与r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面 的电荷面密度之比r R σσ为: A 、r R B 、2 2 r R C 、2 2 R r D 、R r 答案:D 5、 一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板距离均为h 的两点a,b 之间的电势差为() A 、零 B 、 2εσ C 、 0εσh D 、0 2εσh 答案:A 6、 一电荷面密度为σ 的带电大导体平板,置于电场强度为0E (0E 指向右边)的均匀外电场中,并使板面垂直于0E 的方向,设外电 场不因带电平板的引入而受干扰,则板的附近左右两侧的全场强为() A 、0000 2,2εσ εσ+- E E B 、0000 2,2εσ εσ++ E E C 、0 000 2,2εσεσ-+ E E D 、0 000 2,2εσεσ-- E E 答案:A 7、 A,B 为两导体大平板,面积均为S,平行放置,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大 小E 为() A 、 S Q 01 2ε B 、 S Q Q 0212ε- C 、 S Q 01ε D 、 S Q Q 0212ε+ 答案:C 8、带电时为q 1的导体A 移近中性导体B,在B 的近端出现感应电荷q 2,远端出现感应电荷q 3,这时B 表面附近P 点的场强为n E ?0 εσ= ,问E 就是谁的贡献?()

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:错误!未找到引用源。矢量A 的单位矢量A a ; 错误!未找到引用源。矢量A 和B 的夹角AB θ; 错误!未找到引用源。A ·B 和A ?B 错误!未找到引用源。A ·(B ?C )和(A ?B )·C ; 错误!未找到引用源。A ?(B ?C )和(A ?B )?C 解:错误!未找到引用源。A a =A A = 149A ++ =(x a +2y a -3z a )/14 错误!未找到引用源。cos AB θ =A ·B /A B AB θ=135.5o 错误!未找到引用源。A ·B =-11, A ?B =-10x a -y a -4z a 错误!未找到引用源。A ·(B ?C )=-42 (A ?B )·C =-42 错误!未找到引用源。A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2 x +2 y =c 1.6求数量场ψ=ln (2 x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2 x +2y +2 z =14 1.9求标量场ψ(x,y,z )=62 x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3 y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) 错误!未找到引用源。验证散度定理。 解:错误!未找到引用源。??s d A = A d S ?? 曲 + A dS ?? xoz + A d S ?? yoz +A d S ?? 上 +A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz = (3)y z dxdz +?xoz =-6 A d S ?? yoz =- 23x dydz ? yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 错误!未找到引用源。dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2 y 沿圆周2x +2 y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y

电磁学第二章习题答案

习题五(第二章 静电场中的导体与电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内 表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件就是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个就是空心,一个就是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 与r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a,外半径为b 的金属球壳,带有电量Q, 在球壳空腔内距离球心为r 处有一点电荷q,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

第二章 静电场

第二章 静电场 习题2.1 真空中有一密度为2πnC/m 的无限长电荷沿y 轴放置,另有密度分别为0.1nC/m 2和-0.1nC/m 2 的无限大带电平面分别位于z =3m 和z =-4m 处。求点 P (1,7,2)的电场强度E 。 z=-4 x y z z=3 τ O 图2.1 题意分析: 题目中给出了3 个不同类型电荷的位置与大小,计算空间中一点的电场强度E 。可 以先分别计算每个电荷在场点产生的电场强度,然后采用叠加原理得出总的场强。考虑平面电荷与直线电荷的电场共同产生电场,选用用直角坐标系进行计算比较合适,如图2.1所示,对圆柱坐标系中计算出的直线电荷电场,需要转换成直角坐标下的形式,再进行矢量叠加求总电场。 解: (1)计算无限大平板在P 点产生的电场强度 在计算无限大平板在P 点产生的电场强度时,建立图2.1所示的直角坐标系,则位 于z =3m 处的无穷大带电平板在P 点产生的电场强度1σE 为: Z e E 0 21.01εσ-= (1) 位于z =-4m 的无穷大带电平板在P 点产生的电场强度为: Z e E 0 21.02εσ-= (2)

因此,2个无穷大带电板在P 点产生的合成场强1E 为: Z e E 11.0ε-= (3) (2)计算无穷长直电荷产生的电场强度 对于圆柱坐标系中位于z 轴上的长直电荷产生的电场强度至于场点的ρ坐标有关,其电场强度的表达式为: ρ ρ πετ e E 02- = z=-4 x y z z=3 τ O z' ρ O' 图2.2 因此图2.2中所示在沿y 轴放置的无穷长线电荷产生的电场2E 为: ρ ρ πετ e E 022- = 式中 2 2 x z ρ= + z x e z x z e z x x e 2 2 2 2 ++ += ρ ∴ () z x z x e z e x z x e z x z e z x x z x E ++=???? ??++ ++= 2 2 02 22 2 220 21 1 122επεπ 所以,P 点(1,7,2)的电场强度E 为:

电磁场与电磁波第二章课后答案

第二章静电场 重点与难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式得静电场方程导出微分形式得静电场方程,即散度方程与旋度方程,并强调微分形式得场方程描述得就是静电场得微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间得关系。通过书中列举得4个例子,总结归纳出根据电荷分布计算电场强度得三种方法。 至于媒质得介电特性,应着重说明均匀与非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式得静电场方程,由于边界上场量不连续,因而微分形式得场方程不成立。 关于静电场得能量与力,应总结出计算能量得三种方法,指出电场能量不符合迭加原理。介绍利用虚位移得概念计算电场力,常电荷系统与常电位系统,以及广义力与广义坐标等概念。至于电容与部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: 微分形式: 已知电荷分布求解电场强度: 1,; 2, 3, 高斯定律 介质中静电场方程: 积分形式: 微分形式: 线性均匀各向同性介质中静电场方程: 积分形式: 微分形式: 静电场边界条件: 1,。对于两种各向同性得线性介质,则

2,。在两种介质形成得边界上,则 对于两种各向同性得线性介质,则 3,介质与导体得边界条件: ; 若导体周围就是各向同性得线性介质,则 ; 静电场得能量: 孤立带电体得能量: 离散带电体得能量: 分布电荷得能量: 静电场得能量密度: 对于各向同性得线性介质,则 电场力: 库仑定律: 常电荷系统: 常电位系统: 题解 2-1若真空中相距为d得两个电荷q1及q2得电量分别为q及4q,当点电荷位于q1及q2得连线上时,系统处于平衡状态,试求得大小及位置。解要使系统处于平衡状态,点电荷受到点电荷q1及q2得力应该大小相等,方向相反,即。那么,由,同时考虑到,求得 可见点电荷可以任意,但应位于点电荷q 1与q 2 得连线上,且与点电荷相 距。 2-2已知真空中有三个点电荷,其电量及位置分别为: 试求位于点得电场强度。

工程电磁场基本知识点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u ?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。

12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间 的关系为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别 为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别 为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????

第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E= 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E=

2017粤教版高中物理选修第二章第四节《麦克斯韦电磁场理论》练习题

【金版学案】2015-2016学年高中物理第二章第四节麦克斯韦电 磁场理论练习粤教版选修1-1 ?达标训练 1。根据麦克斯韦电磁场理论,以下说法正确的是( ) A.磁场周围一定产生电场,电场周围一定产生磁场 B.均匀变化的电场产生均匀变化的磁场,均匀变化的磁场产生均匀变化的电场 C.周期性变化的磁场产生同频率周期性变化的电场,周期性变化的电场产生同频率周期性变化的磁场 D。磁场和电场共同存在的空间一定是电磁场 答案:C 2.关于电磁场和电磁波的正确说法是( ) A。电场和磁场总是相互联系的,它们统称为电磁波 B。电磁场由发生的区域向远处传播形成电磁波 C。在电场周围一定产生磁场,磁场周围一定产生电场 D.电磁波是一种波,声波也是一种波,理论上它们是同种性质的波 解析:电磁场由发生的区域向远处的传播形成电磁波。 答案:B 3.电磁场理论预言了电磁波的存在。建立电磁场理论的科学家是( ) A。法拉第 B。麦克斯韦 C。奥斯特 D.安培 解析:最先建立完整的电磁场理论并预言电磁波存在的科学家是麦克斯韦. 答案:B 4。1888年,用实验证实电磁波的存在,使人们认识物质存在的另一种形式,这位物理学家是() A.赫兹 B.奥斯特 C.麦克斯韦 D.法拉第 答案:A 5.关于电磁场和电磁波,下列说法中正确的是( ) A.电磁场由发生区域向远处的传播就是电磁波 B。在电场的周围总能产生磁场,在磁场的周围总能产生电场 C.电磁波是一种物质,只能在真空中传播 D.电磁波传播的速度总是3、0×108 m/s 解析:根据麦克斯韦电磁场理论,变化的电场(或磁场)产生磁场(或电场),变化的电磁场由发生区域向远处传播就形成电磁波,电磁波在真空中传播速度最大,选A、答案:A 6。关于电磁波,下列说法正确的是() A.所有电磁波的频率相同 B.电磁波只能在真空中传播 C。电磁波在任何介质中的传播速度相同 D。电磁波在真空中的传播速度是3×108 m/s 解析:电磁波有各种各样的频率,可以在不同的介质中传播,但在真空中传播速度最大,c=3×108 m/s、

电磁场与电磁波第二章课后答案

第二章静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。 通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可 以从简。 重要公式 真空中静电场方程: q E d SE d l 0积分形式: Sl EE 0微分形式: 已知电荷分布求解电场强度: 1(r ) 1,E (r )(r );(r )d V 4|rr| V 0 2, E (r ) V 4 (r 0 )( | r r r r ) 3 | d V q E d S 3, 高斯定律 S

1

介质中静电场方程: E d l0 积分形式:D d S q S l 微分形式:DE0 线性均匀各向同性介质中静电场方程: q E d SE d l0积分形式: S l 微分形式:EE0 静电场边界条件: 1,E1t E2t。对于两种各向同性的线性介质,则 D 1tD t 2 12 2,D2n D1ns。在两种介质形成的边界上,则 D 1 2n nD 对于两种各向同性的线性介质,则 E 2n 1 12 nE 3,介质与导体的边界条件: e n E0;e n DS 若导体周围是各向同性的线性介质,则 S S E; n n 静电场的能量:

电磁学第二章

第二章 导体周围的静电场 重点 1、电场与物质相互作用: 2、本章: 金属导体, 静电场 3、根据: 高斯定理、环路定理 §1 静电场中的导体 1. 导体的电性质 (经典观点) 导体静电平衡:无宏观电流, 电荷分布不再改变——静电场 宏观电荷分布—带电 2. 导体静电平衡条件 E 内=E 外+E ’=0 3. 导体静电平衡时的性质 导体内部无电荷,电荷在表面层(面密度σ) 导体为等位体, 表面为等位面 导体表面外附近电场 ⊥ 表面 导体表面场强为: E 表=σε0 n 4. 静电场问题的唯一性定理 1 唯一性定理 唯一性问题: (1)电荷自动调整,电场唯一吗? (2)边界条件确定, 域内电荷分布不变, 域内电场唯一吗? 唯一性定理: 适当的物理条件确定之后,在给定区域V 内电场的稳定分布(静电平衡下的分布)是唯一的. 适当的物理条件: U ?S or E n ?S 确定; V 内除导体外电荷分布确定;导体总电荷or 电位确定 2 唯一性定理意义 (1)若有一个解就是 唯一的解. (2)指出决定解的因素. (3)V 外电荷分布改变(上述条件不变)则解不变 3 唯一性定理简略证明(介绍) U ?S 给定的边界条件

设在同一条件下有两解,证明两解相同 对导体第一种情况的证明 5. 例 "猜出"可能的解, 就是唯一的真的解 1. 已知孤立导体总电荷q ,求: 电荷分布σ (1)半径为R 的球体总电荷q “猜”:q 均匀分布在球的外表面上 σ=q/4πR 2 则:E 内=0 是解,且唯一 (2)无限大带电导体平板 “猜”:q E 总=σ/ε0=q/(2ε0S) E 总=0 所猜即为解 (3)一般形状 ——由实验测量 2. 外电场中的中性导体 匀强电场中的球形导体 当σ(θ)=σ0cos θ 时, 导体内电场匀强为 E ’内= -σ0 z /3ε0 若σ0=3ε0 E 0 E 内=E 0+E ’=0 此即唯一解 3. 外电场中的带电导体 导体大平板A 、B, 面积S, 带电为Q A 、Q B . 设: 电荷在表面均匀分布 (σ1-σ2-σ3-σ4)/2ε0=0 (σ1+σ2+σ3-σ4)/2ε0=0 S(σ1+σ2)=Q A S (σ3+σ4)=Q B σ1=σ4=(Q A +Q B ) /2 σ2= -σ3=(Q A -Q B )/2 6. 电象法简介 个别点电荷情况下,计算导体上感应电荷的一种简单方法——电象法 例1: 半径为R 的接地导体球,点电荷q 距导体球中心d. 保持导体表面为零等位面, 球面外部的场不变, q’代替感应电荷对外部场的作用 (1) 确定q’ U(r=R)=q/(4πε0b)+q’/(4πε0b ’)=0 R 1234

第二章静电场题解

第二章 静电场 (注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑) 2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中 心处放置电荷量为Q 的点电荷。问Q 为何值时四个顶点上的电荷受力均为零。 解 如图建立坐标系,可得 x x x x a Q a a q E e e e 2/12242122142 22 ? ? +??? ? ? ??+= πεπε y y y y a Q a a q E e e e 2 /12 2421 221420 22 0? ? +??? ? ? ??+= πεπε 据题设条件,令 022421=?? ? ??+???? ? ?+Q q , 解得 ()2214 +-=q Q 2-2 有一长为2l ,电荷线密度为τ的直线电荷。 1)求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2)求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。 解 1)如图(a )建立坐标系,题设线电荷位于x 轴上l ~l 3之间,则x 处的电荷微元在坐标原点产生的电场强度和电位分别为 ()x x x e E -= 2 04d d πετ,x x 04d d πετ? = 由此可得线电荷在坐标原点产生的电场强度和电位分别为 ()()()x l l x l l l x x e e E E -= -= = ??032 0364d d 0πετ πετ ()3ln 44d d 00 303l πε τ πετ??= = = ? ? l l l x x 2)如图(b )建立坐标系,题设线电荷位于y 轴 上l -~l 之间,则y 处的电荷微元在点()l 2,0处产生的电场强度和电位分别为 ()r r y e E -= 2 04d d πετ,r y 04d d πετ? = 式中,θ θ2 cos d 2d l y =,θ cos 2l r = ,5 14sin 2 2 = += l l l α,分别代入上两式,并 考虑对称性,可知电场强度仅为x 方向,因此可得所求的电场强度和电位分别为 ()l l l r y l x x x x 000 00 2 00 54sin 4d cos 4cos 4d 2d 20,2πεταπετθθπετθπετα α αe e e e E E = = = ==? ? ?

电磁场与电磁波第二章课后答案

第二章 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导岀微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导岀真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳岀根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结岀计算能量的三种方法,指岀电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: q 积分形式::i E d S E d I = 0 S - - I % 微分形式:'' E= —V E =O 已知电荷分布求解电场强度: 1,E (r )--''?(r); φ( r) -[ . (IdV 4 叭J I r —r | 2, r P(r )( r E (r) LV 4πε0 | r ^r)d" 3 -r I 3,r q E d S = S;0 高斯定律 介质中静电场方程: 静电场

积分形式:■. D d S =q =S E ■ l d I= 0 微分形式:? D=-V X E= 0线性均匀各向同性介质中静电场方程: 积分形式: q E d S =- ■2 S ε I E d I= 0 微分形式:V E =V X E= 0静电场边界条件: 1,E1t =E2t。对于两种各向同性的线性介质,贝U D 1t D 2t ∑1 2,D2n-D1n = I。在两种介质形成的边界上,则 Dm = D2n 对于两种各向同性的线性介质,则 ;疋仆_ ;2E2n 3,介质与导体的边界条件: e n E =O ;e n D = \ 若导体周围是各向同性的线性介质,则 ;:n 静电场的能量:

相关文档
最新文档