p-级数域重排特征系统加权极大函数

p-级数域重排特征系统加权极大函数
p-级数域重排特征系统加权极大函数

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

函数项级数的一致收敛性共8页word资料

第三节 函数项级数的一致收敛性 本节将讨论函数项级数有关性质。 定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为 )(1x u +)(2x u +……+)(x u n +…… 为E 上的函数项级数,简记为∑∞ =1 )(n n x u 。其中)(x u n 称为第n 项. )(x u k +)(1x u k ++……+)(x u n +……也记为∑∞ =k n n x u )(. 记号中n 可以用其它字母 代之. 同研究常数项级数一样,我们类似可以定义其收敛性。 定义 2 设∑∞ =1)(n n x u 是集合E 上的函数项级数,记 ∑==n i i n x u x S 1 )()(=)(1x u +)(2x u +……+)(x u n , 它称为级数∑∞ =1 )(n n x u 的部分和函数(严格地说是前n 项部分和函数). {})(x S n 称为∑∞ =1 )(n n x u 的部分和函数列。 如果{})(x S n 在0x 点收敛,我们也说∑∞ =1 )(n n x u 在0x 点收敛或称0x 为该级数 的收敛点。 如果|)(|1 ∑∞ =n n x u 在0x 点收敛,我们称∑∞ =1 )(n n x u 在0x 点绝对收敛。非常容易证 明绝对收敛一定收敛。 {})(x S n 的收敛域也称为该级数的收敛域。如果{})(x S n 在0x 点不收敛,

我们说∑∞ =1 )(n n x u 在0x 点发散。 如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上点态收敛于 )(x S . )(x S 称为该级数的的和函数。)()()(x S x S x R n n -=称为该级数关于前 n 项部分和的余项. {})(x R n 称为该级数的余项函数列. 如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞ =1)(n n x u 在D 上一致收敛于 )(x S , 或∑∞ =1 )(n n x u 在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞ =1 )(n n x u 在D 上内闭一致收敛. 用N -ε的进行叙述将是: 设∑∞ =1)(n n x u 是D 上函数项级数,)(x S 是D 上函数。 若对任意ε>0,总存 在一个正数正数N (只能依赖于ε,绝对不依赖于x ),当N n >时,对一切的D x ∈,总有 ε<-∑=|)()(|1x S x u n i i , 则称该函数项级数在D 上一致收敛于)(x S . 同样一致收敛一定点态收敛. 例 1 定义在(—∞,+∞)上的函数项级数(几何级数) ΛΛΛΛ+++++=∑∞ =-n n n x x x x 21 1 1 的部分和函数是x x x S n n --=11)( .显然当|x |<1时

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

信号与系统常用公式

1 信号与系统常用公式 一、周期信号的傅里叶级数 1.三角函数形式的傅里叶级数:0111()[cos()sin()]n n n f t a a n t b n t ωω∞ ==++∑,其中 01 011()t T t a f t dt T += ?,010112()cos()t T n t a f t n t dt T ω+=?,010112()sin()t T n t b f t n t dt T ω+=?。 2.指数形式的傅里叶级数:11()()jn t n f t F n e ωω∞ =-∞ =∑ ,其中0110 111()()t T jn t t F n f t e dt T ωω+-= ?。 二、傅里叶变换 1.傅氏正变换:()[()]()j t F F f t f t e dt ωω∞ --∞ ==? 2.傅氏逆变换:11()[()]()2j t f t F F F e d ωωωωπ ∞ --∞ ==? 3 1.拉氏正变换:0 ()[()]()st F s L f t f t e dt ∞ -==? 2.拉氏逆变换:11()[()]()2j st j f t L F s F s e ds j σσπ+∞ --∞ ==?

2 3 四、z 变换 1.z 正变换:0 ()[()]()k k X z Z x k x k z ∞ -===∑ 2.z 逆变换:111 ()[()]()2k C x k Z X z X z z dz j π--==? 3.z 变换的基本性质: 1.连续时间信号的卷积:121221()()()()()()f t f t f f t d f f t d ττττττ∞ ∞ -∞ -∞ *=-=-?? 2.离散时间信号的卷积:()()()()()()n n x k h k x n h k n h n x k n ∞ ∞ =-∞ =-∞ *=-=-∑∑ 3.卷积定理: (1)1212[()()]()()F f t f t F F ωω*=? (2)12121[()()]()()2F f t f t F F ωωπ?=* (3)1212[()()]()()L f t f t F s F s *=? (4)12121[()()]()()2L f t f t F s F s j π?=* (5)[()()]()()Z x k h k X z H z *= (6)1 [()()]()()2C z dv Z x k h k X v H j v v π?=?

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

高中高一数学函数的定义域知识点

2019高中高一数学函数的定义域知识点 数学的学习贯穿了我们的整个学习阶段,是我们必须掌握的知识,为了帮助大家学好数学,小编准备了高一数学函数的定义域知识点,希望你喜欢。 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A 叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区 定义域、对应法则、值域是函数构造的三个基本元件。平时数学中,实行定义域优先的原则,无可置疑。然而事物均具有二重性,在强化

定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。范围与值域相同吗? 范围与值域是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。值域是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而范围则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:值域是一个范围,而范围却不一定是值域。 一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初

(完整word版)高中数学函数定义域练习题

高中数学函数定义域练习题 1、x x f -= 1)(的定义域为 . 2、23)(x x x f -=的定义域为 . 3、函数261 x x y --=的定义域为 . 4、函数x x y 43 +=的定义域为 . 5、函数123++= x x y 的定义域为 . 6、0)1(32-+-+=x x x y 的定义域为 . 7、213)(+++= x x x f 的定义域为 . 8、x y -??? ??=31的定义域为 . 9、()()132 lg 13++-=x x x x f 的定义域 . 10、()1 log 1 2-=x x f 的定义域为 . 11、()()x x x f 22ln -=的定义域为 . 12、()() 1lg 1-=+x x f x 的定义域为 . 13、()3121++-=x x x f 的定义域 .

14、232 2+-=x x y 的定义域为 . 15、函数()()214ln 1x x f x -+= +的定义域为 . 16、12)(+-= x x x f 的定义域为 . 17、() 12log 12)(---=x x x f 的定义域为 . 复合函数定义域的求法 ? 要点:对于一个复合函数[])(x g f 来说,它的定义域一定是x 的取值范围而非)(x g 的取值范围. ? 常见考法: (1)已知)(x f 的定义域,求复合函数[])(x g f 的定义域. (2)已知[])(x g f 的定义域,求函数)(x f 的定义域. (3)已知[])(x g f 的定义域,求函数[])(h x f 的定义域. 17、已知)(x f 的定义域为[]5,1-,求函数()53-x f 的定义域. 18、已知)(x f 的定义域为?? ????2,21,求函数()x f 2log 的定义域. 19、已知()222+-x x f 的定义域为[]3,0,求)(x f 的定义域. 20、已知()[]1lg +x f 的定义域为[]9,0,求)(x f y =的定义域. 21、()1+=x f y 的定义域为[]3,2-,求)12(-=x f y 的定义域.

高一数学专题练习:函数的定义域、值域(含答案)

高一函数同步练习2(定义域、值域) 一. 选择题 1.函数y=2122 --+-+x x x x 的定义域是( ) (A ){x -21-≤≤x } (B ){x -21≤≤x } (C ){x x>2} (D ){R x ∈x 1≠} 2.函数654 2-+--=x x x y 的定义域是 (A ){x|x>4} (B)}32|{<3} (D) }32|{≠≠∈x x R x 且 3.函数y=122 +-x x 的值域是( ) (A )[0,+∞ (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ] 4.下列函数中,值域是(0,+∞)的是 (A)132+-=x x y (B) y=2x+1(x>0) (C) y=x 2+x+1 (D)21x y = 5.)12(-x f 的定义域是[)1,0,则)31(x f -的定义域是 (A) ]4,2(- (B )??? ??- -21,2 (C )??? ??61,0 (D )?? ? ??32,0 6.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( ) (A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4) 7.函数y=13+-+x x 的值域是( ) (A)(0,2) (B)[-2,0] (C)[-2,2] (D)(-2,2) 二.填空题: 1.函数y=1122 -+-x x 的定义域是___________ 2.函数y=x x x --224的定义域为 3.函数y= -2x 2-8x-9, x ∈[0,3]的值域是_______. 4.设函数y=f(x) 的定义域是[0,2], 则f(x-1)的定义域是_______

信号与系统课程标准

《信号与系统》教学大纲 第一部分:课程性质、课程目标与教学要求课程性质:《信号与系统》是电子信息工程专业本科生的专业基础主干课程,是该专业的必修课程。在专业培养方案中安排在第二学年第二学期实施。该课程与本科生的许多专业课(例如通信原理、数字信号处理、通信电路、图象处理、微波技术等)有很强的联系,是研究各类电子系统共性的一门技术基础课程。它具有科学方法论的鲜明特点,研究的问题带有普遍性,对工程实践具有重要的指导意义。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。 课程目标:设置本课程的目的在于使学生通过本课程的学习,初步建立起有关“信号与系统”的基本概念,掌握“信号与系统”的基本理论和基本分析方法,为进一步学习后续课程及从事通信、信息处理等方面有关研究工作打下基础。通过本课程的学习,学生应该掌握信号与系统的基本概念、基本理论和基本分析方法,通过一定数量的习题练习加深对各种分析方法的理解与掌握。 教学要求:信号与系统是一门理论结合实践的课程,本课程旨在使学生掌握信号与线性系统的基本理论,基本分析法,为后续课的学习及从事实际的科研工作奠定必要的基础。因此,要求学生在学习中,关注基本知识与方法的应用,积极参与信号与系统实践课程,课后要做一些相关练习和讨论。 第二部分:关于教材与学习参考书的建议本课程使用的教材是由高等教育出版社出版2006年吴大正等编著的《信号与线性系统分析》(第4版)。该教材入选“十五”国家级重点教材,发行数万册,是高等教育出版社比较全面系统的高校信号与系统教材。很多高校以该教材建设精品课程。 为了更好地理解和学习课程内容,建议同学可以进一步阅读以下几本重要的参考书: 1、郑君里:《信号与系统》,高等教育出版社2006年1月 2、管致中:《信号与线性系统》,高等教育出版社,2004年1月 3、刘泉主编:《信号与系统题解》,华中科技大学出版社,2003年12月 4、梁虹主编:《信号与系统分析及MATLAB实现》,电子工业出版社,2002 5、张小虹编著:《信号与系统》,西安电子科技大学出版社,2004 第三部分:课程教学内容纲要 第一章信号与系统 1.基本内容: 连续时间信号与离散时间信号的概念;连续时间系统和离散时间系统的概念;信号的基本运算;卷积的计算。 2.基本要求:

高中数学-函数定义域练习题

高中数学-函数定义域练习题 1. 函数2 ()lg(31)f x x =++的定义域是( ) A .1(,)3 -∞- B .11(,)33- C .1(,1)3- D .1(,)3-+∞ 2. 已知1()1 f x x =+,则函数(())f f x 的定义域是( ). A .{|1}x x ≠- B .{|2}x x ≠- C .{|12}x x x ≠-≠-且 D .{|12}x x x ≠-≠-或 3. 函数=y =的定义域为R ,则k 的取值范围是( ) A.09k k ≥≤-或 B.1k ≥ C.91k -≤≤ D. 01k <≤ 4 .函数()f x = ) A .2[0,]3 B .[0,3] C .[3,0]- D .(0,3) 5.若函数()f x 的定义域为[,]a b ,且0b a >->,则函数()()()g x f x f x =--的定义域是( ) A .[,]a b B .[,]b a -- C .[,]b b - D .[,]a a - 6.已知函数()f x 的定义域为[0,4],求函数2(3)()y f x f x =++的定义域为( ) A .[2,1]-- B .[1,2] C .[2,1]- D .[1,2]- 7.若函数()f x 的定义域为[2,2]- ,则函数f 的定义域是( ) .[4,4]A - .[2,2]B - .[0,2]C .[0,4]D 8.已知函数1()lg 1x f x x +=-的定义域为A ,函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A 、B 的关系中,不正确的为( )

(完整)高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?? ???≠+≠-≥-.03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数2 65)(:12-+-=x x x x f 020652≠-≥+-x x x

高中数学必修一专题:求函数的定义域与值域的常用方法

函数的定义域与值域的常用方法 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等; 4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域; 5、分段函数的定义域是各个区间的并集; 6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明; 7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域; (三)求函数的值域 1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示; 2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C =B,那么该函数作为映射我们称为“满射”; 3、分段函数的值域是各个区间上值域的并集; 4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述; 5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;