数学物理方程:第一章 矢量分析与场论基础

数学物理方程:第一章 矢量分析与场论基础
数学物理方程:第一章 矢量分析与场论基础

第一章 矢量分析与场论基础

内容提要

1) 正交曲线坐标系:

设有三组互相正交的曲面族由下列方程定义:

),,(11z y x q q = ),,(22z y x q q = ),,(33z y x q q =

在正交曲线坐标中的线元、面元、体元分别为

i i i dq h dl =

i i i i dq h q

dl ?= k j k j i k j i dq dq h h q

dl dl ds ?=?= k j i k j i k j i dq dq dq h h h dl dl dl dv =??=

式中i 、j 、k 代表循环量1、2、3,k j i q q q

????=,1???=??k j i q q q ,2

2

2

???

?

????+???? ????+???? ????=

i

i

i i q z

q y q x

h 称拉梅系数。

三种坐标系中坐标单位矢量间的关系:

????

??????????????

??-=??????????z y x z e e e

e

e e ???10

0cos sin 0sin cos ????????ρ 柱坐标与直角坐标

????

??????????????

?

?=??????????z e

e e e e e

???01

0sin 0cos cos 0sin ????

ρ?

θγθθθθ 球坐标与柱坐标

????

??????????????

?

?--=??????????z y x e e e e e e

???0cos sin sin sin cos cos cos cos sin sin cos sin ????

θθ?θ?θθ?θ?θ?

θγ 球坐标与直角坐标

2) 矢量及其运算:

直角坐标中算符?的定义:

z y x e

z

e

y

e

x

?????+??+??=

? 一个标量函数u 的梯度为:

z y x e

z u e

y u e

x u u ?????+??+??=

? 梯度给出了一点上函数u 随距离变化的最大速率,它指向u 增大的方向。

一个矢量F

穿过一个曲面S 的通量ψ为

?

?=

s

ds F

ψ

对一个闭合曲面而言,ds 向外为正。

直角坐标系中F

的散度

z

F y F x F F z

y x ??+

??+??=?? 表示在这一点上每单位体积向外发散的F

的通量。

散度定理:

?

?

?=

??V

S

ds F dv F

散度的体积分=矢量的面积分

其中v 是由s 所包围的体积。

斯托克斯定理:

?

?

?=???L

s

dl F ds F

)( 旋度的面积分=矢量的线积分

其中s 是由l 所包围的面积。

直角坐标系中F

的旋度

z

y

x

z y x F F F z y x e e e

F ??????

=

?????

拉普拉辛是梯度的散度 在直角坐标系中:

2

2

2

2

2

2

2

z

u y

u x

u u u ??+

??+

??=

?=???

一个矢量的拉普拉辛定义为:

z z y y x x e F e F e F F ???222

2?+?+?=? 其它坐标也可写成:

F F F x

????-???=?)(2

柱坐标系中

z e z e

r ??+=ρρ

z e dz e ed e

d r d ???++=?ρ?ρ

dz d d dv ?ρρ=

z e

z

u e

u

e

u u ??1???+??+??=

??ρ?

ρρ

z

F F F F F z ??+

??+??+=???ρρρ?

ρρ1 z

z F F F z e e e

F ?

ρ

?ρρ?ρ

ρρ??????=

?????1

2

2

2

2

2

2

2

2

11z

u u

u u

u ??+

??+

??+

??=

??

ρ

ρ

ρ

ρ

球坐标系中

r e

r r ?=

?θ?θθe d r e rd e

dr dr r ?sin ??++= ?θθd drd r dv sin 2

=

?θ?

θθ

e

u

r e

u r e

r

u u r ?sin 1?1???+??+??=

? )(sin 1)(sin sin 1)(12

2?θθθθ?θ??+??+??=??F r F r F r r

r F r

?

θ

?θθ?θθθF r rF F r r e r e r e

F r

r sin ?sin ?sin ?2

??????=

??

2

2

2

2

2

2

2

2

sin 1

)(sin sin 1

)(1?

θθ

θ

θ

θ??+

????

+

????=

?u

r u r r

u r

r

r

u

3) 亥姆霍兹定理:

矢量场F

可表示为一个无旋场分量和一个无散场分量之和

l e F F F +=

其中

l F F ??=?? )0(=??e F

e F F ??=?? )0(=??l F

因此一个矢量场要从散度和旋度两个方面去研究

4) δ函数

定义: ?

??∞=-0)'(r r

δ )'()'(r r r r =≠

?????=-?)

'(1)

'(0)'(内在外在v r v r dv r r v

δ 性质 a )偶函数:)()(x x -=δδ

b )取样性:?

-=-)()()(a f dx a x x f δ

有机会用到的表达式:

41)'(2

r r ?

-

=-

π

δ

1-1. 证明:

)4?3?2?()6?2?9?(z y x z y x e e e e e e

B A ++?-+=?

=18+6-24

=0

说明B A

与相互垂直

1-2. 空白

1-3. 证明:

0=++=?z z y y x x B A B A B A B A

说明B A

与相互垂直

1-4. 解:

当坐标变量沿坐标轴由i u 增至i i du u +时,相应的线元矢量i dl 为: )()(i i i i u du u dl γγ

-+=

=

i i

du u ??γ

=i i

i du u u

??γ ?

其中弧长

i i

i du u dl ??=

其中 ∑==++=3

1

?????3

3

2

2

1

1

j j j

y

x

x x x x x x

γ

j j i

j

i

x

u

x u ?3

1

∑=??=

??γ

2

31∑-???

? ????=

??j i

i

u x u j

γ

令2

3

1∑-???

? ????=

j i

j u x h i 则i du h dl i

i

=

1-5. 解:

(1) 据?算子的微分性质,并按乘积的微分法则,有

)()()(c c B A B A B A ??+?=???

其中c A 、c B

暂时视为常矢,再根据二重矢量积公式

c b a b c a c b a )()()(

?-?=??

将上式右端项的常矢轮换到?的前面,使变矢都留在?的后面 a A c

= B A B A B A c c c

)()()(?+???=???

a B c

= A B A B B A c c c )()()(?+???=???

A B A B B A B A B A c c c c

)()()()()(?+???+?+???=???? 除去下标c 即可

A B A B B A B A B A

)()()()()(??+???+??+???=??

(2) 利用(1)式的结果即可。

(3) 据?算子的微分性质,并按乘积的微分法则,有 )()()(c c H E H E H E

???+???=??? 再?算子的矢量性,并据公式

)()()(a c b b a c c b a

??=??=??

将常矢轮换到?的前面

)()(H E H E c c

??-=???? a E c

= b =? c H

= )()(E H H E c c

??=???? a H c

= b

=? c E

= 代入得:

)()()(H E E H H E c c

??-??=????? )()(H E E H

???-???=

1-6.

(1) 证:z

A y A x A A z

y x ??+

??+??=?? z

u du dA y

u du dA x

u du dA z y x ??+??+??=

du

A d u

??=

(2) 证: )(?)(?)(?)(y

A x A e x A z A e z A y A e u A x

y z z x y y z x ??-??+??-??+??-??=??

右边第一项的x

分量x y z x e

du

A d u z

u du dA y

u du dA e

?)()(?

?

?=??-

??= 同理 y z x y e

du A d u x u du dA z u du dA e

?)()(? ?

?=??-

?? z x y z e

du

A d u y

u du dA x

u du dA e ?)()(? ??=??-?? 则

du

A

d u u A

??=??)(

(3) 0)()()()(=??-????+??-????+??-????=????y

A x A z x A z A y z A y A x A x

y z x y z

1-7.

证:z y x e

z R e

y R e

x R R ?????+??+??=

? R

R e R

z z e

R y y e

R x x z y x

=--+-=

+

?)

'(?)'(?)'(

z y x e

z R e

y R e

x R R ?'

?'

?'

'??+??+??=

? R

R e R

z z e

R y y e

R

x x z y x

-=----+--=

+

?)

'(?)

'(?)

'(

所以 R

R R R

=

-?=?'

据公式u du

df u f ?=

?)(

3

2

11R R R R

R

-

=?-=?

32

'11'R

R R R

R

=?-

=?

所以 3

1'

1R

R R

R

-

=-?=?

013

=?

?-?=?

?R

R R (梯度的旋度等于零)

3331

1

R R R R R

R ??+??=?

? R R

R R ?-?+=

431

)3(3

0335

3=-?+=R

R

R R )0(≠R 同理 3331

''1'R

R R R R R ??+??=??

R R

R R '1

)3(3

43?-?+-=

033353=?-?=?+-=R

R

R R R R )0(≠R

1-8. 解:[]

)sin()sin(E 00r k E r k

??=????

)()c o s (0r k r k E

???=? )c o s ()(0r k r k E

???=? )c o s (0r k

k E

?=? 000)c o s ()s i n ()]sin([E k r k E r k

r k E

??=???=???

1-9. 证: 用常矢量c

点乘式子两边得

ds f n c f ds c f dv c s

v

s

?????=

??=???)(

上式左边:

?

???=

???v v

f c dv f dv c )(

利用矢量恒等式:

)()()(f c c f c f

???=???=???

?

?

???=???v

v c f dv f c dv )()(

ds n c f ds c f s

s

??=

??=

??)()(

ds f n c s

???=)(

因为c

为任意常矢量,则

???

=

??s

v

f ds f dv

设c

为任意常矢量,令c F

?=,代入Stokes 定理

??

?=

???s

L

dl F ds F

上式左边

?

?????-=???=???s

s

s

ds c ds c ds c ???

)(

?????=

???-=s

s

ds c ds c ??

????=s

ds c ?

上面用到:)()(a c b c b a

??=??

右边

?

?

??=?=?L

L

L

dl c dl c dl F ??

则得:???=???L

s

dl c ds c ??

因为c

是任意的,所以

??

=

??s

L

dl ds ??

1-10. 证:

据矢量场的散度定理

???=??V

s

ds n F dv F

令ψφ?=F

,φ和ψ为空间区域中两个任意的标量函数

????=

???s

v

ds dv

ψ

φψφ)(

上式左边

dv dv v

v

][)(2

ψφψφψφ??+?=

?????

所以????=??+?s

v

ds dv ψφψφψφ][2

1-11. 函数F

在M 点的散度从它的定义推出

V

ds

F F s

V ??=???→?

lim

如图,考虑c u =2的两个端面 左端面位于2u ,右端面位于22du u + 取曲面外法向为正,两个端面对 向外的通量的净贡献是

]?[]?[313122231312du du h h u

F du u du du h h u F ?+?

)?(3213122du du du h h u

F u ???≈

3213122

)(du du du h h F u ??=

同理其余两对面分别是

3213211)(du du du h h F u ??

3212133

)(du du du h h F u ??

即3212133

31223211)]()()([du du du h h F u h h F u h h F u ds F s ??

+??+??=??

上式除以321du du du g dv V =

=?

并取极限0,0,0321→→→du du du 则矢量F

的散度是

)

(1K J I I

h h F u

g

F ijk

∑??

=

??

)1(?)1(?)1(?)(3

33222111u f

h u u f h u u f h u F ??+??+??=???

i i

i i u

u f h ?13

1

??=

= 其中 F f

??=

)(

12

i

i

k j i

i

u f h h h u

g

f f ????

=

???=?∑

)1(1

2

i

i

i

i

u f h g

u g

????=

《矢量分析与场论》

1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场

1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直, 另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的 ()23222)()3yz y yz xyz xz -+++-i j k 所产生的散度场通过点

电磁场与电磁波_ 矢量分析和场论_

1.2 梯 度
自强●弘毅●求是●拓新

1.2.1 场的概念
任何物理过程总是在一定空间上发生,对应的物理量在 空间区域按特定的规律分布。如
电荷在其周围空间激发电场的分布 电流在周围空间激发磁场的分布 地球上太阳及其他原因激发温度的分布
在空间区域上每一点有确定物理量与之对应,称在该区 域上定义了该物理量的场

1.2.1 场的概念
只有数值的大小而没有方向的场称为标量场 既有数值的大小又有方向的场称为矢量场 如果场与时间无关,称为静态场,反之为时变场
静态标量场用 u x, y,z
静态矢量场 F x, y,z
时变场标量场用 u x, y,z,t 时变矢量场 F x, y,z,t

1.2.1 场的概念
14 16
18
20
?35.50
22
12 50 MLAT 10 60
70 80
2 0 MLT
40
8 30
20
10 6
0
?10
?20
4
?30
?40
33.42
Potential (kV)
Z [R]
15 10
5 0 -5 -10 -15
10
t = 21:15 UT
0
-10
X [R]
p [nPa]
2
1.7725
1.545
1.3175
1.09
0.8625
-20
0.635
0.4075
0.18

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

矢量分析与场论推导

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第1章 矢量分析 在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。如非等速及非直线运动物体的速度就是变矢量的典型例子。变矢量是矢量分析研究的重要对象。本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。 §1.1 矢函数 与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。 1、矢函数的概念 定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作 A =A )(t (1.1.1) 并称D 为矢函数A 的定义域。 在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成 A {})(),(),()(t A t A t A t z y x = (1.1.2) 其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个 有序的数性函数构成一一对应关系。即在空间直角坐标系下,一个矢 函数相当于三个数性函数。 本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。愿点O 也称为矢端曲线的极。 由于终点为),,(z y x M 的矢量对于原点O 的矢径为 zk yj xi r ++== 当把A )(t 的起点取在坐标原点时,A )(t 实际上就成为其终点),,(z y x M 的矢径,因此)(t A 的三个坐标)(),(),(t A t A t A z y x 就对应地等于其终点M 的三个坐标z y x ,,,即 )(),(),(t A z t A y t A x z y x === (1.1.3) 此式就是曲线l 的参数方程。 只是模变化而方向不变的矢量,它的矢端曲线是通过记得射线。只改变方向而模不变的矢量,它的矢锻曲线是位于以极为中心模为半径的球面上的某一曲线。 2、矢函数的极限和连续性 定义1.1.2 设矢函数A )(t 在点o t 的某个领域内有定义(但在o t 处可以无定义),A 0为一常矢。若对于任意给定的正数ε,都存在一个正数δ,

矢量分析与场论

矢量分析与场论 第一章 矢理分析 1.1 矢性函数 1. 矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A 与其 对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t = 2. 矢性函数的极限和连续性 (1) 矢性函数极限的定义:()A t 在0t 某领域内有定义,对于0ε?>,0δ?>,常矢 量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极 限,记作:0 0lim ()t t A t A →= ; 极限的性质:(有界性)若0 0lim ()t t A t A →= ,则0δ?>,M>0,0(;)t U t δ?∈ 都有 ()A t M < 。 证明: 0lim ()1,0,..(;) t t A t A s t t U t εδδ→=∴=?>?∈ 都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-< , 0()1A t A ∴<+ ,取M=01A + 极限的则运算:0 lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=? 000l i m (()())l i m ()l i m () t t t t t t A t B t A t B t →→→±=± lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? 其中()u t ,()A t ,()B t 当0t t →时极限均存在。 证明:设0 0lim ()t t A t A →= ,0 0lim ()t t u t u →=,0 0lim ()t t B t B →= ; 000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+- ,

矢量分析与场论课后答案..

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 32 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d 2d 2 = = =- 7.求曲线t t z t y t x 62,34,12 2 -=-=+= 在对应于2=t 的点M 处的切线方程和法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

(完整版)矢量分析与场论第四版谢树艺习题答案

4 习题 1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1 x acost, y bsint 2 x 3sin t, y 4sin t,z 3cost 解: 1 r a costi bsin tj ,其图形是 xOy 平面上之椭圆。 2 r 3sin ti 4sin tj 3cos tk , 其 图 形 是 平 面 4x 3y 0 与 圆 柱 面 222 x 2 z 2 32 之交线,为一椭圆。 2.设有定圆 O 与动圆 c ,半径均为 a ,动圆在定圆外相切而滚 动, 所描曲线的矢量方程。 uuuur 解:设 M 点的矢径为 OM r xi yj , AOC 与 x 轴的夹角为 uuuur uuur ;因 OM OC uuuur CM 有 r xi yj 2acos i 2asin j acos 2 asin 2 则 x 2acos acos2 ,y 2asin asin2 . 故 r (2acos acos2 )i (2asin asin2 )j 4.求曲线 x t,y 2 ,z 2 t 3 的一个切向单位矢 量 解:曲线的矢量方程为 ti t dr 则其切向矢量为 dt 2t j 模为| d d r t | 1 4t 2 4t 4 dr 于是切向单位矢量为 dt / | d d r t 6.求曲线 x asin 2 t,y 23 t 3 k 2t 2 k 2t 2tj 2t 2 k 2 1 2t 2 asin 2t,z acost,在 t 处的一个切向矢量。 解:曲线矢量方程为 r asin 2 ti asin2tj acostk 求动圆上一定点 M

矢量分析与场论讲义

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

矢量分析与场论(2)

第02讲 本节内容 1,方向导数 2,梯度 3,散度 4,旋度 1 / 38

2 / 38 5, 正交坐标系 第一章 矢量分析与场论(2) 1,数量场的方向导数 1.1方向导数 由上节可知,数量场)(M u u 的分布情况,可以借助于等值面或等值线来了解,但这只能大致地了解数量场中物理量u 的整体分布情况。而要详细地研究数量场,还必须对它作局部性的了解,即要考察物理量u 在场中各点处的邻域内沿每一方向的变化情况。为此,引入方向导数的概念。

3 / 38 设0M 是数量场 )(M u u =中的一点,从 0M 出发沿某一方向引一 条射线l ,在l 上0M 的邻 近取一动点M ,ρ=M M 0, 若当 M M →时(即 0→ρ): 的极限存在,则称此极限为函数)(M u 在点0M 处沿l 方向的方向导数。记为 M l u ??,即: 可见,方向导数0 M l u ??是函数)(M u 在点0M 处沿l 方向对距离的变化率。 M 0 l

4 / 38 当0>??l u 时,表示在0M 处 u 沿l 方向是增加的,反之就是减小的。 在直角坐标系中,方向导数有以下定理所述的计算公式: [定理] 若函数),,(z y x u u =在点),,(0000z y x M 处可微,αcos ,βcos ,γ cos 为l 方向的方向余弦。则u 在0M 处沿l 方向的方向导数必存在,且: 证:M 坐标为),,(000z z y y x x ?+?+?+ ∵u 在点0M 可微,故: ω是比ρ高阶的无穷小。两边除以ρ得 两边取0→ρ时的极限得 例 求数量场z y x u 2 2+=在点)2,1,1(M 处沿z y x l ?2?2?++= 方向的方向导数。

山东科技大学《矢量分析与场论》试卷

一、判断题 1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场 三、填空题 1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直,

另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是 ______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的方向导数M u n ??。 4、求矢量场()2322(32)()3x yz y yz xyz xz =-+++-A i j k 所产生的散度场通过点 (2,1,1)M -的等值面方程及其在点M 处沿x 轴正向的变化率。 五、证明题 1、设n 为闭合曲面S 的向外单位法矢,证明 (1)dV u u dS u S )(A A n A ??+??=??????Ω 2、在球面坐标系中,证明2 1r r = A e 为有势场,并求其势函数v 。

矢量分析与场论讲义

矢量分析与场论 第一章矢量分析 一内容概要 1矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2本章所讨论的,仅限于一个自变量的矢性函数 A t ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数A x,y或者A x, y,z,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3本章的重点是矢性函数及其微分法,特别要注意导矢A't的几何意义,即 A' t是位于A t的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长S,即矢性函数成为A = A s,则 A' s =d A不仅是一个恒指向S增大一方的切向矢量,而且是一个单位ds 切向矢量。这一点在几何和力学上都很重要。 4矢量A t保持定长的充分必要条件是 A t与其导矢A' t互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数 e t = cost i si nt j为单 位矢量,故有e t _e't,此外又由于e' t = ei t,故e t — & t。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为: A B'dt 二AB— B A'dt

A B'dt 二 A B B A'dt 前者与高等数学种数性函数的分部积分法公式一致,后者有两两项变为了求和,这是因为矢量积服从于“负交换律”之故。 6在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成 对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。 7矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分 的基本运算公式(p16)典型例题: 教材p6 例2、p10 例4、p12 例6、p13 例7。习题一(p19~20) 此外还有上课所讲的例题。补充: 1 2 TT 1)设r 二a0]亠b k,求S 二-i ir r' d^ 2)一质点以常角加速度沿圆周r = ae「运动,试证明其加速度 2 八-£r,其中v为速度v的模。 a 3)已知矢量 A =t i -2t j l nt k , B = e t i si nt j - 3t k ,计算积分.A B' dt。 4)已知矢量 A = t i 2t j , B = cost i sint j ? e,k,计算积分A B'dt。 第二章场论一内容概要1本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。 2空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量uM或矢量A M在场中的宏观分布情况而引入的概念。 比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值

矢量分析与场论_谢树艺习题答案清晰版

习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为 2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2++= 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。

矢量分析与场论第四版_谢树艺习题答案

矢量分析与场论习题解答 习题1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2 2 2 3x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在π r d 2

第一章矢量分析

1矢量分析 1.在球面坐标系中,当?与φ无关时,拉普拉斯方程的通解为:()。 2.我们讨论的电磁场是具有确定物理意义的(),这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。 3. 矢量场在闭合面的通量定义为,它是一个标量;矢量场的()也是一个标量,定义为。 4. 矢量场在闭合路径的环流定义为,它是一个标量;矢量场的旋度是一个(),它定义为。 5.标量场u(r)中,()的定义为,其中n为变化最快的方向上的单位矢量。 6. 矢量分析中重要的恒等式有任一标量的梯度的旋度恒为()。 任一矢量的旋度的散度恒为()。 7. 算符▽是一个矢量算符,在直角坐标内,,所以 是个(),而是个(),是个()。

8. 亥姆霍兹定理总结了矢量场的基本性质,分析矢量场总要从它的散度和旋度开始着手,()方程和()方程组成了矢量场的基本微分方程。 9. ()坐标、()坐标和球坐标是电磁理论中常用的坐标 10. 标量:()。如电压U、电荷量Q、电流I、面积S 等。 11. 矢量:()。如电场强度矢量、磁场强度矢量、作用力矢量、速度矢量等。 12. 标量场:在指定的时刻,空间每一点可以用一个标量()地描述,则该标量函数定出标量场。例如物理系统中的温度、压力、密度等可以用标量场来表示。 13. 矢量场:在指定的时刻,空间每一点可以用一个矢量()地描述,则该矢量函数定出矢量场。例如流体空间中的流速分布等可以用矢量场来表示。 14. 旋度为零的矢量场叫做() 15. 标量函数的梯度是(),如静电场 16.无旋场的()不能处处为零 17. 散度为零的矢量场叫做() 18. 矢量的旋度是(),如恒定磁场 19.无散场的()不能处处为零 20.一般场:既有(),又有() 21.任一标量的梯度的旋度恒为()

第一章 矢量分析典型例题

第一章 矢量分析 1.1.试证明下列三个矢量: x y z 11e 9e 18e A =++ ,x y z 17e 9e 27e B =++ ,x y z 4e 6e 5e C =-+ 在同一平面上。 1.2.给定三个矢量A ,B 和C 如下: x y z e 2e 3e A =+- ,y z 4e e B =-+ ,x y 5e 2e C =- 求:1)A e (A e 表示矢量A 方向上的单位矢量)。 2)B A ? 3)A C ? 1.3.证明:如果C A B A ?=?且A B A C ?=? ,则B C = 。 1.4.如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确 定该未知矢量。设A 为一已知矢量,P A X = 而P A X =? ,P 和P 已知,试求X 。 1.5.设标量2 3 u xy yz =+,矢量x y z 2e 2e e A =+- ,试求标量函数u 在(2,1,1) -处沿矢量A 的方向上的方向导数。 1.6.设232(,,)3u x y z x y y z =-,求u 在点(1,2,1)M -处的梯度。 1.7.设23 x y z e e (3)e A x y z x =++- ,求A 在点(1,0,1)M -处的散度。 1.8.设324x y z e 2e 2e A xz x yz yz =-+ ,求A 在点(1,1,1)M --处的旋度。 1.9.求1 ()r ?。 1.10.设r =(,,)M x y z 的矢径r 的模,试证明:0r r r r ?= = 。 1.11.计算:1)矢量r 对一个球心在原点,半径为a 的球表面的积分。 2)??对球体积的积分。 1.12.求矢量22 x y z e e e A x x y z =+- 沿,x y 平面上的一个边长为2的正方形回 路的线积分,此正方形的两个边分别与x 轴和y 轴相重合。再求A ?? 对此回路

矢量分析与场论课后答案.

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为 2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d d = = =- 7.求曲线t t z t y t x 62,34,12 2-=-=+= 在对应于2=t 的点M 处的切线方程和 法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量分析与场论

数学准备:矢量分析与场论第1章 ?The language of transport phenomena is mathematics Ordinary(partial) differential equations Elementary vector analysis.

本章的目的 ?作为传递过程原理的数学准备,通过本章的学习,需要熟悉以下内容: 矢量运算(标量积、矢量积) 三种正交曲线坐标系 直角坐标系下梯度、散度、旋度的定义 标量和矢量的拉普拉斯运算 偏导数、全导数和随体导数的定义

例:用矢量运算形式表示的传递方程 请将下面三个方向上的Navier-Stokes 方程写成统一的矢量运算和随体导数的形式: 2 2 2 22213y x x x x x z u Du u u u u u p X Dt x x y z x x y z ρρμμ????????????=-++++++ ? ?????????????222 222 13y y y y y x z Du u u u u u u p Y Dt y x y z y x y z ρρμμ???????? ????=-++++++ ? ? ???????????? ? 222 22213y x z z z z z u u Du u u u u p Z Dt z x y z z x y z ρρμμ????????????=-++++++ ? ?????????????21()g Du F p u u ρρμμ=-?+?+???

第1章教学目录 1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系 1.2 矢量微分运算

第一章矢量分析(修改)

第一章矢量分析(修改) 第一章矢量分析 (说明:本章为07电本英语讲义的中译本) 电磁场是矢量场,矢量分析是学习电磁场性质的基本数学工具之一。本章中,我们主要介绍矢量场理论基本知识:矢量运算,标量场的梯度,矢量场的散度和旋度,以及对于矢量场运算有重要作用的称为戴尔(或那布拉)算符?的运算规则。稍后,将介绍狄拉克δ函数及一些重要的矢量场定理,它对我们今后学习电磁场理论有重要作用。 1-1 矢量运算 我们在电磁场中遇到的大多数量可分为两类:标量和矢量。 仅有大小的量称为标量。具有大小和方向的量称为矢量。一矢量A可写成 A?AeA 其中A是矢量A的大小,eA是与A同方向上的单位矢量。矢量的大小称为矢量的模,单位矢量的模为1。矢量A方向上的单位矢量可以这样表示: eA?A A矢量将用黑斜体字母表示,单位矢量用e来表示。 作图时,我们用一有长度和方向的箭头表示矢量,如图1-1-1所示。如果两矢量A和B具有同样的大小和方向,它们是相等的。如果两矢量A和B具有同样的物理的或几何的意义,则它们

具有同样的量纲,我们可以对矢量进行比较。如果一个矢量的大小为零,我们称为零矢量或空矢量。这是唯一一个不能用箭头表示的矢量。 我们也可以定义面积矢量。如果有一面积为s的平面,则面积矢量s的大小为s,它的方向按右手螺旋规则确定,如图1-1-2所示。 s A s 图1-1-2 面积矢量s 图1-1-1 矢量A 1-1-1 矢量加和减 两矢量A和B可彼此相加,其结果给出另一矢量C,C = A + B。矢量三角形或矢量四边形给出了两矢量A和B相加的规则,如图1-1-3所示。由此我们可得出:矢量加法服从加法交换律和加法结合律。 交换律: A + B = B + A (1-1-1) 结合律:(A + B) + C = A + (B + C) (1-1-2) 1 C A B B A C B 由C = A + B,其也意味着一个矢量C可以由两个矢量A和B 来表示,即矢量C可分解为两个分矢量A和B(分量)。也可说,一个矢量可以分解为几个分矢量。 如果B是一矢量,则-B也是一个矢量。它是与矢量B大小相等,方向相反的一个矢量。因此,我们可以定义两矢量A和B的减法A-B为:

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

最全矢量分析报告与场论讲义(必考)

矢量分析与场论 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:

相关文档
最新文档