自动控制原理复习资料.doc

自动控制原理复习资料.doc
自动控制原理复习资料.doc

∑??=i i i s s Q s H )()(1)(第一章:1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用 。2 典型闭环系统的功能框图。

自动控制 在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。 自动控制系统 由控制器和被控对象组成,能够实现自动控制任务的系统。 被控制量 在控制系统中.按规定的任务需要加以控制的物理量。

控制量 作为被控制量的控制指令而加给系统的输入星.也称控制输入。

扰动量 干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。

反馈 通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。反送到输入端的信号称为反馈信号。 负反馈 反馈信号与输人信号相减,其差为偏差信号。

负反馈控制原理 检测偏差用以消除偏差。将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。 开环控制系统 系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。开环控制又分为无扰动补偿和有扰动补偿两种。

闭环控制系统 凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。 自动控制原理课程中所讨论的主要是闭环负反馈控制系统。

复合控制系统 复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。

自动控制系统组成 闭环负反馈控制系统的典型结构如图1.2所示。组成一个自动控制系统通常包括以下基本元件

1.给定元件 给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。给定元件通常不在闭环回路中。2.测量元件 测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关

系的信号。被控制量成比例或与其导数成比例的信号。测量元件的精度直接影响控制系统的精度应使测量元件的精度高于系统的精度,还要有足够宽的频带。3.比较无件 用于比较控制量和反馈量并产生偏差信号。电桥、运算放大器可作为电信号的比较元件。有些比较元件与测量元件是结合在一起的,如测角位移的旋转变压器和自整角机等。4.放大元件 对信号进行幅值或功率的

放大,以及信号形式的变换.如交流变直流的相敏整流或直流变交流的相敏调制。5.执行元件 用于操纵被控对象,如机械位移系统中的电动机、液压伺服马达、温度控制系统中的加热装置。执行元件的选择应具有足够大的功率和足够宽的频带。6.校正元件 用于改善系统的动态和稳态性能。根据被控对象特点和性能指标的要求而设计。校正元件串联在由偏差信号到被控制信号间的前向通道中的称为串联校正;校正元件在反馈回路中的称为反馈校正。7.被控对象 控制系统所要控制的对象,例如水箱水位控制系统中的水箱、房间温度控制系统中的房间、火炮随动系统中的火炮、电动机转速控制系统中电机所带的负载等。设计控制系统时,认为被控对象是不可改变的,它的输出即为控制系统的被控制量。8.能源元件 为控制系统提供能源的元件,在方框图中通常不画出。

对控制系统的基本要求1.稳定性 稳定性是系统正常工作的必要条件。2.准确性 要求过渡过程结束后,系统的稳态精度比较高,稳态误差比较小.或者对某种典型输入信号的稳态误差为零。3.快速性 系统的响应速度快、过渡过程时间短、超调量小。系统的稳定性足够好、频带足够宽,才可能实现快速性的要求。

第二章:1、建立系统的微分方程,绘制动态框图并求传递函数。3、传递函数 在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比称为传递函数。传递函数的概念适用于线性定常单输入、单输出系统。求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。4、结构图的变换与化简 化简方框图是求传递函数的常用方法。对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时,变换前后该环节的输人量、输出量及其相互关系应保持不变。化简方框图的主要方法就是将串联环节、并联环节和基本反馈环节用一个等效环节代替。化简方框图的关键是解除交叉结构,

即移动分支点或相加点,使被简化的环节中不存在与外部直接相连的分支点和相加点。5、利用梅森(Mason)公式求传递函数。

)(s Q i 第i 条前向通路传递函数的乘积。?流图的特征式= 1 - 所有回路传递函数乘积之和+每两个互不接触回路传递函数乘

积之和-每三个 (1)

∑∑∑-+b

c

c

b

a

a

L

L L ..........条前向通路接触的回路中处除去与第从余子式i ,??i

第三章:1、一阶系统对典型输入信号的输出响应。(单位)阶跃函数(Step function )0,)(1≥t t ;(单位)斜坡函数(Ramp

10.90.50.1图3-2表示性能指标td,tr,tp,Mp 和ts 的单位阶跃响应曲线

h(t)

(∞h (∞h (∞h )(∞h %

100)

()()(%?∞∞-=

h h t h p σ

t

2

2

2

2)(n n n

w s w s w s ++=ξφ0<ξ10<<ξ1=ξ1>ξ0=ξfunction )速度 0,≥t t ;(单位)加速度函数(Acceleration function )抛物线

0,2

12

≥t t ;(单位)

脉冲函数(Impulse function ) 0,)(=t t δ;正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。

2、动态性能指标: 1.延迟时间d t :(Delay Time )响应曲线第一次达到稳态值的一半所需的时间,叫延迟时间。 2.上升时间:r t (Rise Time )响应曲线从稳态值的10%上升到90%,

所需的时间。〔5%上升到95%,或从0上升到100%,对于欠阻尼二阶系统,通常采用0~100%的上升时间,对于过阻尼系统,通常采用10~90%的上升时间〕,上升时间越短,响应速度越快。 3.峰值时间p t (Peak Time ):响应曲线达到过调量的第一个峰值所需要的时间。

4.调节时间:s t (Settling Time ):在响应曲线的稳态线上,用稳

态值的百分数(通常取5%或2%)作一个允许误差范围,响应曲线达到并永远保持在这一允许误差范围内,所需的时间。 5.最大超调量:p M (Maximum Overshoot ):指响应的最大偏离量h(tp)于终值)(∞h 之差的百分比,即%σ

13- r t 或p t 评价系统的响应速度;s t 同时反映响应速度和阻尼程度的综合性指标。%σ评价系统的阻尼程度。

3、一阶系统的时域分析

单位阶跃响应 单位阶跃函数的拉氏变换为S s R 1)(=,则系统的输出由式为 1

11111)()()(+-=?+==TS S S TS s R s s C φ 对上式取拉氏反变换,得

T

t e t c -

-=1)( 0≥t (3-4)

注:R(s)的极点形成系统响应的稳态分量。

响应曲线在0≥t 时的斜率为T

1

,如果系统输出响应的速度恒

为T

1

,则只要t =T 时,输出c(t)就能达到其终值。如图3-4所

示。

由于c(t)的终值为1,因而系统阶跃输入时的稳态误差为零。 动态性能指标:

T t d 69.0=T t r 20.2=误差带)%5(3T t s =%不存在和σp t

4、二阶系统时间响应及其动态性能指标计算。 典型传递函数

二阶系统的单位阶跃响应

两个正实部的特征根 不稳定系统

闭环极点为共扼复根,位于右半S 平面,这时的系统叫做欠阻尼系统

为两个相等的根,临界阻尼系统 两个不相等的根,过阻尼系统

虚轴上,瞬态响应变为等幅振荡,无阻尼系统

欠阻尼情况 二阶系统一般取7.0,8.0~4.0=ξ 。其它的动态性能指标,有的可用n ωξ和精确表示,如p p r M t t ,,,有的

n d t ωξ

ξ2

2.06.01++=

1

0<<ξd

t 很难用n ωξ和准确表示,如s d t t ,,可采用近似算法。当01<<ξ时,特征根

s 1.2=2

1ξξ-±-n n jw w ,

22

1,1arctan

ξξ

ξθ-=-=n d w w

时,亦可用n

d t ωξ

7.01+=

⑴ ⑵r t (上升时间)

d

r t ωβ

π-=

ξ

一定,即β一定,↓↑→→r t n ω ,响应速度越快

⑶)(峰值时间p t

d

p t ωπ

=

↓→↑p t 距离越远)(闭环极点力负实轴的一定时,n ωξ

⑷ 的计算,超调量p M or %σ

超调量在峰值时间发生,故)(p t h 即为最大输出

%100%100)

()

()(%2

1?=?∞∞-=

--

ξπξσe h h t h p

⑸调节时间S t 的计算 选取误差带

n

S n

S t t ξωξω5

.35

.305

.0=

=?

n

S n

S t t ξωξω5

.45

.402

.0=

=?

当ξ较小 4.0≤ξ

)

02.0(4

)

05.0(3

=?=

=?=

n

S n

S t t ξωξω

系统的单位阶跃响应为 C(t)=1-

)sin(112

θξξ+--t w e d t w n

动态性能指标计算公式为

上升时间 2

θ

πθ

π--=

-=

n d

r w w t

峰值时间 d n d

p T w w t 2

112

=--=

=

ξθ

ππ

其中T d 是有阻尼振荡周期,且T d =

d d

d f w f ,21π=是有阻尼振荡频率。 超调量

%1002

1?=--

ξξπ

δe

p

调整时间 )02.0(4)05.0(3=?==?=

n

s n s w t w t ξξ或 振荡次数 N=p d s T t δπξξln 5.115.12-=-= (?=0.05) 或 N=p

d s T t δπξξln 2122-=-= (?=0.02) 5、系统稳定性分析

特征根必须全部分布在S 平面的左半部,即具有负实部。已知系统的特征方程时,可采用Routh 稳定判据或Hurwitz 稳定判据判定系统的稳定性。特征多项式各项系数均大于零(或同符号)是系统稳定的必要条件。

Routh 判据:由特征方程各项系数列出Routh 表,如果表中第一列各项严格为正,则系统稳定;第一列出现负数,则系统不稳定,且第一列各项数值符号改变的次数就是正实部特征根的数目。

Hurwitz 判据:由特征方程各项系数构成的各阶Hurwitz 行列式全部为正,则系统稳定。劳斯稳定判据是根据所列劳斯表第一列系数符号的变化,去判别特征方程式根在S 平面上的具体分布,过程如下:

① 如果劳斯表中第一列的系数均为正值,则其特征方程式的根都在S 的左半平面,相应的系统是稳定的。

② 如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征方程式的根在S 的右半平面上的个数,相应的系统为不稳定。

在应用劳斯判据时,有可能会碰到以下两种特殊情况。

·劳斯表某一行中的第一项等于零,而该行的其余各项不等于零或没有余项,这种情况的出现使劳斯表无法继续往下排列。解决的办法是以一个很小的正数ε来代替为零的这项,据此算出其余的各项,完成劳斯表的排列。 ·劳斯表中出现全零行

则表示相应方程中含有一些大小相等符号相反的实根或共轭虚根。这种情况,可利用系数全为零行的上一行系数构造一个辅助多项式,并以这个辅助多项式导数的系数来代替表中系数为全零的行。完成劳斯表的排列。

6、稳态误差的计算

令系统开环传递函数为m n s T s s K s H s G j n j i m

i ≥++=

∏∏-==,)1()1()()(1

ν

τ

)

(22100

:复合系统不会碰到。系统在控制工程中一般种类型的

很难使之稳定,所以这型以上的系统,实际上时,型系统型系统

型系统节数为系统中含有的积分环II >??

?

??II =I ==ννννν

)

663()

()(lim 0

-=→s R s H K s p

)

683(lim

)()(lim 1

00-==-→→νS K

s G s SH K s s v

)

703(lim )()(lim 2

020-==-→→v s s a S

K

s H s G S K

误差系数 类型 静态位置误差系数 p

K

速度 v

K

加速度 a

K

0型 K 0 0 Ⅰ型 ∞ K 0 Ⅱ型 ∞

K

ss e

输入 类型

)(R t r =

t

v t r 0)(=

2021)(t a t r =

0型

K R +10

Ⅰ型

K v 0

Ⅱ型 0

K a 0

第三章:知识点

1、根轨迹中,开环传递函数G (s )H(s)的标准形式是

2、根轨迹方程是

相角条件:绘制根轨迹的充要条

幅值条件:

3、根轨迹法的绘制规则。

4、能用根轨迹法分析系统的主要性能,掌握闭环主导极点与动态性能指标之间的关系。能定性分析闭环主导极点以外的零、极点对动态性能的影响。

第四章:知识点

1、频率特性基本概念和其几何表示法。 频率特性的定义如下:

稳定的线性定常系统,其对正弦函数输入的稳态响应,称为频率响应。输出与输入的振幅比,称为系统的幅频特性。它描述了系统对不同频率的正弦函数输入信号在稳态情况下的衰减(或放大)特性;输出与输入的相位差,称为系统的相频特性。相频特性描述了系统的稳态输出对不同频率的正弦输入信号在相应上产生的相角迟后(对应?(ω)〈 0〉或相角超前(对应

0)(>ω?)的特性;幅频特性及相频特性,或者说,在正弦输入下,线性定常系数或环节、其输出的稳态分量的复数比、称

为系统或环节的频率特性,记为)(ωj Φ,用式子表示

频率特性与传递函数间的关系

)(s j Φ=Φ)(ω ωj s =

图形表示法

工程上常用图形来表示频率特性,常用的有

1. 极坐标图 也称奈斯特(Nyquist)图、幅相频率特性图

2.伯德(Rode)图 伯德图又称为数频率特性图、它由两张图组成:—张是对数幅频图,另一张是对数相频图,两张图的横向坐标相同,表示频率ω

2、典型环节的频率特性和开环系统的典型环节分解及其频率特征曲线的绘制。

3、系统开环频率特性绘制 极坐标图

Re Im

=ωω

型系统

0型系统

1型系统

2∞0

ω

ω

ω

Re

=ω0

1

=-m n 2

=-n 3

=-m n

自动控制原理模拟题及答案

学习中心 姓 名 学 号 电子科技大学网络与继续教育学院 《自动控制原理》模拟试题一 一、简答题(共25分) 1、简述闭环系统的特点,并绘制闭环系统的结构框图。( 8分) 2、简要画出二阶系统特征根的位置与响应曲线之间的关系。( 10分) 3、串联校正的特点及其分类?( 7分) 二、已知某单位负反馈系统的开环传递函数为) 42()(2++= s s s K s G K ,试确定使系统产生持续振荡的K 值,并求振荡频率ω。( 15分) 三、设某系统的结构及其单位阶跃响应如图所示。试确定系统参数,1K 2K 和a 。( 15分) 四、某最小相角系统的开环对数幅频特性如图示。要求(20分) 1)写出系统开环传递函数; 2)利用相角裕度判断系统的稳定性; 3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。 五、设单位反馈系统的开环传递函数为 ) 1()(+=s s K s G

试设计一串联超前校正装置,使系统满足如下指标:(25分) (1)在单位斜坡输入下的稳态误差151 ss e ; (2)截止频率ωc ≥7.5(rad/s); (3)相角裕度γ≥45°。 模拟试题一参考答案: 一、简答题 1、简述闭环系统的特点,并绘制闭环系统的结构框图。 解: 闭环系统的结构框图如图: 闭环系统的特点: 闭环控制系统的最大特点是检测偏差、 纠正偏差。 1) 由于增加了反馈通道, 系统的控制精度得到了提高。 2) 由于存在系统的反馈, 可以较好地抑制系统各环节中可能存在的扰动和由于器件的老化而引起的结构和参数的不确定性。 3) 反馈环节的存在可以较好地改善系统的动态性能。 2、简要画出二阶系统特征根的位置与响应曲线之间的关系。 解:

自动控制原理试卷有参考答案

一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 给定值 和反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)和G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为G 1(s)+G 2(s)(用G 1(s)和G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω 1.414 , 阻尼比=ξ 0.707 , 该系统的特征方程为 2220s s ++= , 该系统的单位阶跃响应曲线为 衰减振荡 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为1050.20.5s s s s +++。 6、根轨迹起始于 开环极点 ,终止于 开环零点 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 (1)(1) K s s Ts τ++。 1、在水箱水温控制系统中,受控对象为水箱,被控量为 水温 。 2、自动控制系统有两种基本控制方式,当控制装置和受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统 ;当控制装置和受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统 ;含有测速发电机的电动机速度控制系统,属于 闭环控制系统 。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 稳定 。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用 奈奎斯特判据。 4、传递函数是指在 零 初始条件下、线性定常控制系统的 输出拉氏变换 和 输入拉氏变换 之比。 5、设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为2222211 T τωωω++; 相频特性为arctan 180arctan T τωω--o (或:2180arctan 1T T τωωτω---+o ) 。

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

《自动控制原理》模拟试卷四及答案

《自动控制原理》模拟试卷四 一、填空题(每空1分,共20分) 1、 对自动控制系统的基本要求可以概括为三个方面, 即: _____ 、快速性和 _____________ 2、 控制系统的 _______________________________________ 称为传递函数。一阶系统传函标 准形式是 __________________ ,二阶系统传函标准形式是 ____________________ 。 3、 在经典控制理论中,可采用 _____________ 、根轨迹法或 _____________ 等方法判断线性 控制系统稳定性。 4、 控制系统的数学模型,取决于系统 _________ 和 , 与外作用及初始条件无关。 5、 线性系统的对数幅频特性,纵坐标取值为 _______________ ,横坐标为 __________ 。 6、 奈奎斯特稳定判据中, Z = P - R ,其中P 是指 ________________________________ ,Z 是 指 __________________________ , R 指 _________________________________ 。 7、 在二阶系统的单位阶跃响应图中, t s 定义为 _________________ 。匚%是 _________________ 8、 PI 控制规律的时域表达式是 _________________________ 。P I D 控制规律的传递函数表达 式是 ________________________________ 。 ,则其开环幅频特性为 s (T 1s 1)(T 2S 1) 性为 ________________________ 二、判断选择题(每题2分,共16分) 1、关于线性系统稳态误差,正确的说法是: () A 、 一型系统在跟踪斜坡输入信号时无误差 C 增大系统开环增益 K 可以减小稳态误差; D 增加积分环节可以消除稳态误差,而且不会影响系统稳定性。 2、适合应用传递函数描述的系统是 ( )。 A 、 单输入,单输出的线性定常系统; B 、 单输入,单输出的线性时变系统; C 、 单输入,单输出的定常系统; D 、 非线性系统。 9、设系统的开环传递函数为 __________ ,相频特 稳态误差计算的通用公式是 e ss .. S 2R (S ) lim —— s 刃 1 G(s)H(s) 3、若某负反馈控制系统的开环传递函数为 ,则该系统的闭环特征方程为 s (s 1) )。 A 、s(s 1) =0 B 、 s(s 1) 5 = 0 C 、s(s 1) 1 =0 D 、与是否为单位反馈系统有关

广工自动控制原理试卷答案

答案 一、填空题(每空1分,共15分) 1、稳定性 快速性 准确性 稳定性 2、()G s ; 3、微分方程 传递函数 (或结构图 信号流图)(任意两个均可) 4、劳思判据 根轨迹 奈奎斯特判据 5 01112()90()()tg T tg T ?ωωω--=--- 6、0()()()()t p p p i K de t m t K e t e t dt K T dt τ=++? 1()(1)C p i G s K s T s τ=++ 7、S 右半平面不存在系统的开环极点及开环零点 二、判断选择题(每题2分,共 20分) 1、A 2、B 3、D 4、C 5、C 6、B 7、A 8、C 9、C 10、D 三、(8分)建立电路的动态微分方程,并求传递函数。 解:1、建立电路的动态微分方程 根据KCL 有 2 00i 10i )t (u )]t (u )t (d[u )t (u )t (u R dt C R =-+- (2分) 即 )t (u )t (du )t (u )()t (du i 2i 21021021R dt C R R R R dt C R R +=++ (2分) 2、求传递函数 对微分方程进行拉氏变换得 )(U )(U )(U )()(U i 2i 21021021s R s Cs R R s R R s Cs R R +=++ (2分) 得传递函数 2 121221i 0)(U )(U )(R R Cs R R R Cs R R s s s G +++== (2分) 四、(共20分) 解:1、(4分) 22222221)()()(n n n s s K s K s K s K s K s K s R s C s ωξωωβ++=++=++==Φ

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

自动控制原理试题及答案解析

自动控制原理 一、简答题:(合计20分, 共4个小题,每题5分) 1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面 说明该系统会有什么样的表现?并解释原因。 2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲 线在穿越频率处的斜率为多少?为什么? 3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。 4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一 个开环极点对系统根轨迹走向的影响。 二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。求m 、k 和μ的值。(合计20分) F ) t 图(a) 图(b) 三、已知一控制系统的结构图如下,(合计20分, 共2个小题,每题10分) 1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调 节时间s t 和峰值时间p t ; 2) 当()21(),()4sin3r t t n t t =?=时,求系统的稳态误差。

四、已知最小相位系统的开环对数幅频特性渐近线如图所示,c ω位于两个交接频率的几何中心。 1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。 2) 计算超调量%σ和调节时间s t 。(合计20分, 共2个小题,每题10分) [ 1 %0.160.4( 1)sin σγ =+-, s t = 五、某火炮指挥系统结构如下图所示,()(0.21)(0.51) K G s s s s = ++系统最 大输出速度为2 r/min ,输出位置的容许误差小于2,求: 1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕量; 2) 前向通路中串联超前校正网络0.41 ()0.081 c s G s s +=+,试计算相位裕量。 (合计20分, 共2个小题,每题10分) (rad/s)

《自动控制原理》试卷及答案A26套

自动控制原理试卷A(1) 1.(9分)设单位负反馈系统开环零极点分布如图所示,试绘制其一般根轨迹图。 (其中-P 为开环极点,-Z ,试求系统的传递函数及单位脉冲响应。 3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所示。K 表示开环增益。P 表示开环系统极点在右半平面上的数目。v 表示系统含有的积分环节的个数。试确定闭环系统稳定的K 值的范围。 4.(12分)已知系统结构图如下,试求系统的传递函数 ) () (, )()(s R s E s R s C 5.(15分)已知系统结构图如下,试绘制K 由0→+∞变化的根轨迹,并确定系统阶跃响应分别为衰减振荡、单调衰减时K 的取值范围。 Re Im ∞→ω00→ωK 2-0,3==p v (a ) Re Im ∞ →ω00 →ωK 2-0,0==p v (b ) Re Im ∞→ω00→ωK 2-2 ,0==p v (c ) 题4图 题2图 1G 2G 3 G 5 G C R +E -- 4G +6 G

6.(15分)某最小相位系统用串联校正,校正前后对数幅频特性渐近线分别如图中曲线(1)、(2)所示,试求校正前后和校正装置的传递函数)(),(),(21s G s G s G c ,并指出Gc (S )是什么类型的校正。 7.(15分)离散系统如下图所示,试求当采样周期分别为T=0.1秒和T=0.5秒输入 )(1)23()(t t t r ?+=时的稳态误差。 8.(12分)非线性系统线性部分的开环频率特性曲线与非线性元件负倒数描述曲线如下图 所示,试判断系统稳定性,并指出) (1 x N - 和G (j ω)的交点是否为自振点。

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

期末考试试题集-自动控制原理(含完整答案)

期末考试-复习重点 自动控制原理1 一、单项选择题(每小题1分,共20分) 1. 系统和输入已知,求输出并对动态特性进行研究,称为( ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( ) A.圆 B.半圆 C.椭圆 D.双曲线 5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6. 若系统的开环传 递函数为 2) (5 10 +s s ,则它的开环增益为( ) A.1 B.2 C.5 D.10 7. 二阶系统的传递函数5 2 5 )(2++= s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T 1 = ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( ) A.振荡次数越多 B.稳定裕量越大 C.相位变化越小 D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。 12.某单位反馈系统的开环传递函数为:()) 5)(1(++= s s s k s G ,当k =( )时,闭环系统临界稳定。 A.10 B.20 C.30 D.40 13.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( ) A.0 B.1 C.2 D.3 14.单位反馈系统开环传递函数为()s s s s G ++= 65 2 ,当输入为单位阶跃时,则其位置误差为( ) A.2 B.0.2 C.0.5 D.0.05 15.若已知某串联校正装置的传递函数为1 101 )(++= s s s G c ,则它是一种( )

完整word版,2017自动控制原理期末考试试卷(含答案)

2017年自动控制原理期末考试卷与答案 一、填空题(每空 1 分,共20分) 1、对自动控制系统的基本要求可以概括为三个方面,即: 稳定性 、快速性和 准确性 。 2、控制系统的 输出拉氏变换与输入拉氏变换在零初始条件下的比值 称为传递函数。 3、在经典控制理论中,可采用 劳斯判据(或:时域分析法)、根轨迹法或奈奎斯特判据(或:频域分析法) 等方法判断线性控制系统稳定性。 4、控制系统的数学模型,取决于系统 结构 和 参数, 与外作用及初始条件无关。 5、线性系统的对数幅频特性,纵坐标取值为20lg ()A ω(或:()L ω),横坐标为lg ω 。 6、奈奎斯特稳定判据中,Z = P - R ,其中P 是指 开环传函中具有正实部的极点的个数,Z 是指 闭环传函中具有正实部的极点的个数,R 指 奈氏曲线逆时针方向包围 (-1, j0 )整圈数。 7、在二阶系统的单位阶跃响应图中,s t 定义为 调整时间 。%σ是超调量 。 8、设系统的开环传递函数为12(1)(1) K s T s T s ++频特性为 01112()90()() tg T tg T ?ωωω--=---。 9、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 10、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 105 0.20.5s s s s + ++。 11、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 闭环控制系统;含有测速发电机的电动机速度控制系统,属于 闭环控制系统。 12、根轨迹起始于开环极点,终止于开环零点。 13、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 14、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值越频率c ω对应时域性能指标 调整时间s t ,它们反映了系统动态过程的快速性

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

自动控制原理试题库(含参考答案)

一、填空题(每空1分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过给定值与反馈量的差值进行的。 2、复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。 3、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为() G s,则G(s) 为G1(s)+G2(s)(用G1(s)与G2(s)表示)。 4、典型二阶系统极点分布如图1所示, ω, 则无阻尼自然频率= n 7 其相应的传递函数为,由于积分环节的引入,可以改善系统的稳态性能。 1、在水箱水温控制系统中,受控对象为水箱,被控量为水温。 2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统稳定。判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。 4、传递函数是指在零初始条件下、线性定常控制系统的输出拉氏变换与输入拉氏变换之比。

5、设系统的开环传递函数为2(1)(1) K s s Ts τ++ arctan 180arctan T τωω--。 6、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标调整时间s t ,它们反映了系统动态过程的。 1、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 是指闭环传系统的性能要求可以概括为三个方面,即:稳定性、准确性和快速性,其中最基本的要求是稳定性。 2、若某单位负反馈控制系统的前向传递函数为()G s ,则该系统的开环传递函数为()G s 。 3、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理 论中系统数学模型有微分方程、传递函数等。 4、判断一个闭环线性控制系统是否稳定,可采用劳思判据、根轨迹、奈奎斯特判据等方法。

自动控制原理试卷包含答案

自动控制原理试卷 一. 是非题(5分): (1)系统的稳态误差有系统的开环放大倍数k 和类型决定的( ); (2)系统的频率特性是系统输入为正弦信号时的输出( ); (3)开环传递函数为)0(2>k s k 的单位负反馈系统能跟深速度输入信号( ); (4)传递函数中的是有量纲的,其单位为 ( ); (5)闭环系统的极点均为稳定的实极点,则阶跃响应是无 调的( ); 二. 是非题(5分): (1)为了使系统的过度过程比较平稳要求系统的相角裕量大于零( ); (2)Bode 图的横坐标是按角频率均匀分度的,按其对数值标产生的( ); (3)对于最小相位系统,根据对数幅频特性就能画出相频特性( ); (4)单位闭环负反馈系统的开环传递函数为) ()()(s D s N s G =,劳斯稳定判据是根据)(s D 的系数判闭环 系统的稳定性( );奈奎斯特稳定判据是根据)(s G 的幅相频率特性曲线判闭环系统的稳定性 ( )。 三. 填空计算题(15分): (1)如图所示:RC 网络,其输出)(t u c 与输入)(t u r 的微分方程描述为 ,假定在零初始条件下,系统的传递函数)(s φ= ,该系统在)(1)(t t u r =作用时,有)(t u c = 。 (2)系统结构如图,该系统是 反馈系 统,是 阶系统,是 型系统,若要使系统的放大系数为1,调节时间为0.1秒(取%σ的误差带),0k 应为 ,t k 应

为 。 (3)如果单位负反馈系统的开环传递函数是) )(()()(b s a s c s k s G +++=,该系统是 阶系统,是 型系统,该系统的稳态位置误差系数为 ,稳态速度误差系数为 ,稳态加速度误差系数为速度误差系数为 。 四. 是非简答题(5分): (1)已知某系统的开环传递函数在右半s 平面的极点数为,试叙述Nyquist 稳定判据的结论。 (2)试叙述系统稳定的充分必要条件。 (3)系统的稳定性不仅与系统结构有关,而且与输入信号有关,该结论是否正确。 (4)增加系统的开环放大倍数,系统的稳定性就变差,甚至变为不稳定,该结论是否正确。 五.计算题(10分) 已知某电路的微分方程为: t t i d t i C t U t U t i R t U d t i t i C t U t U t i R t U ??=+=-=+=)(1)()()()(])()([1)() ()()(22002212111111 其中)(t U i 为输入,)(0t U 为输出,2211,,,C R C R 均为常数,试建立系统方筷图,并求传递函数。 六. 计算题(15分) 某非单位反馈控制系统如图所示,若),(1*20)(t t r =,(1)求系统的稳态输出)(∞c ,及max c ,超调量%σ和调整时间s t 。(2)试画出单位阶跃响应曲线,并标出s t 及max c ,)(∞c 。

自动控制原理模拟题及答案

学习中心 姓 名 学 号 西安电子科技大学网络与继续教育学院 《自动控制原理》模拟试题一 一、简答题(共25分) 1、简述闭环系统的特点,并绘制闭环系统的结构框图。( 8分) 2、简要画出二阶系统特征根的位置与响应曲线之间的关系。( 10分) 3、串联校正的特点及其分类( 7分) 二、已知某单位负反馈系统的开环传递函数为) 42()(2++=s s s K s G K ,试确定使系 统产生持续振荡的K 值,并求振荡频率ω。( 15分) 三、设某系统的结构及其单位阶跃响应如图所示。试确定系统参数,1K 2K 和a 。( 15分) 四、某最小相角系统的开环对数幅频特性如图示。要求(20分) 1)写出系统开环传递函数; 2)利用相角裕度判断系统的稳定性; 3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。 五、设单位反馈系统的开环传递函数为 ) 1()(+= s s K s G 试设计一串联超前校正装置,使系统满足如下指标:(25分) (1)在单位斜坡输入下的稳态误差151

模拟试题一参考答案: 一、简答题 1、简述闭环系统的特点,并绘制闭环系统的结构框图。 解: 闭环系统的结构框图如图: 闭环系统的特点: 闭环控制系统的最大特点是检测偏差、 纠正偏差。 1) 由于增加了反馈通道, 系统的控制精度得到了提高。 2) 由于存在系统的反馈, 可以较好地抑制系统各环节中可能存在的扰动和由于器件的老化而引起的结构和参数的不确定性。 3) 反馈环节的存在可以较好地改善系统的动态性能。 2、简要画出二阶系统特征根的位置与响应曲线之间的关系。 解: 3、串联校正的特点及其分类 答:串联校正简单, 较易实现。设于前向通道中能量低的位置,减少功耗。主要形式有相位超前校正、相位滞后校正、相位滞后-超前校正。 二、已知某单位负反馈系统的开环传递函数为) 42()(2 ++=s s s K s G K ,试确定使系统产生持续振荡的K 值,并求振荡频率ω。

控制系统状态空间分析的 MATLAB 设计

《控制系统状态空间分析的MATLAB 设计》 摘要 线性系统理论主要研究线性系统状态的运动规律和改变这些规律的可能性与实施方法;它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。本文说明,线性变换不改变系统的传递函数,基于状态空间的极点配置不需要附加矫正装置,是改变系统指标的简单可行的重要技术措施;全维状态观测器与降维观测器不影响系统的输出响应。 关键词:状态反馈、极点配置、全维状态观测器、降维观测器 前言 线性系统理论是现代控制理论的基础,主要研究线性系统状态的运动规律 和改变这些规律的可能性与实施方法;建立和揭示系统结构、参数、行为和性能之间的关系。它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。 该报告结合以线性定常系统作为研究对象,分析控制系统动态方程,系统 可控标准型,线性变换传递函数及其不变性,系统可控性与可观测性。系统状态观测器及降维观测器对系统的阶跃响应的影响,并分别绘制模型,及其系统阶跃响应的仿真。 正文 1. 已知系统动态方程: x?=[?0.40?0.01100?1.49.8?0.02]x +[6.309.8]u y =[0 1]x 2. 设计内容及要求:

验证线性变换传递函数不变性,适当配置闭环适当配置系统闭环极点,使 σ%<15%、t s <4s ,以及当系统闭环极点为λ1,2=-3±j4时设计系统的降维状态观测器也使σ%<15%、t s <4s ,并绘制带反馈增益矩阵K 的降维状态观测器及其系统仿真。 3. 系统设计: 1)求系统可控标准型动态方程; >> A1=[-0.4 0 -0.01;1 0 0;-1.4 9.8 -0.02]; >> B1=[6.3;0;9.8]; >> C1=[0 0 1]; >> D1=0; >> G1=ss(A1,B1,C1,D1); >> n=size(G1.a); >> Qc=ctrb(A1,B1); >> pc1=[0 0 1]*inv(Qc); >> Pc=inv([pc1;pc1*A1;pc1*A1*A1]); >> G2 = ss2ss(G1,inv(Pc)); >> Gtf=tf(G2); 程序运行结果知n=3,原系统是可控的且可控标准型为: x?=[0 1 00 01?0.0980.006 ?0.42]x?+[001 ]u y ?=[61.74 ?4.99.8]x? 传递函数为: G (s )=9.8s 2?4.9s+61074 s 3+0.42s 2?0.006s+0.098 2)计算系统的单位阶跃响应 >> hold on >> grid on;hold on; >> step(G1,t,'b-.') >> step(Gtf,t,'r--')

《自动控制原理》模拟试卷三及答案

《自动控制原理》模拟试卷三 一、填空题(每空1分,共15分) 1、在水箱水温控制系统中,受控对象为_______________________ ,被控量 为_____________ 。 2、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺 向作用而无反向联系时,称为________________ ;当控制装置与受控对象之间不 但有顺向作用而且还有反向联系时,称为________________ ;含有测速发电机的 电动机速度控制系统,属于______________ 。 3、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振 荡,则该系统____________ 。判断一个闭环线性控制系统是否稳定,在时域分析 中采用_______________ ;在频域分析中采用___________________ 。 4、传递函数是指在—初始条件下、线性定常控制系统的__________________ 与____________________________ 之比。 5、设系统的开环传递函数为K 2 ( s 1) ,则其开环幅频特性 s 仃s 1) 为_____________ ,相频特性为__________________________ 。 6频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅 值穿越频率c对应时域性能指标________________ ,它们反映了系统动态过程 的____________ 。 二、选择题(每题2分,共20分) 1、关于传递函数,错误的说法是() A 传递函数只适用于线性定常系统; B 传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C 传递函数一般是为复变量s的真分式; D闭环传递函数的极点决定了系统的稳定性。 2、下列哪种措施对改善系统的精度没有效果()。 A、增加积分环节 B 、提高系统的开环增益K C、增加微分环节 D 、引入扰动补偿 3、高阶系统的主导闭环极点越靠近虚轴,则系统的()。 A、准确度越高 B、准确度越低 C、响应速度越快 D、响应速度越慢 50

自动控制原理2实验三状态空间分析..

实验三 用Matlab 进行状态空间分析及设计 一、实验目的: 掌握使用MATLAB 进行及状态空间分析及状态反馈控制系统的设计。 二、实验内容 实验内容一:系统状态空间模型如下: 100016116A ????=?? ??---?? ;001B ????=??????;[]100C = (1) 求其传递函数,由传递函数求系统的极点; (2) 由上述状态空间模型,求系统的特征值; (3) 求上述系统状态转移矩阵; (4) 求其在x0=[2; 1; 2], u 为单位阶跃输入时x 及y 的响应; (5) 分析上述系统的可控性、可观性; (6) 将上述状态空间模型转换为其他标准形式; (7) 取T=[1 2 4;0 1 0;0 0 1] 对上述状态空间模型进行变换,分析变换后的系统。 实验matlab 程序: A=[0 1 0;0 0 1;-6 -11 -6]; B=[0 0 1]';C=[1 0 0];D=0; %输入矩阵ABCD sys1=ss(A,B,C,D) %显示ABCD 构成的状态空间模型 [num,den]=ss2tf(A,B,C,D) %实现状态空间模型到传递函数模型的转换 sys2=tf(num,den) %得到系统按分子分母多项式降幂排列的传递函数 P=roots(den) %求出系统的极点 eig(sys1) % 由状态空间模型得到系统的特征值 syms t1 expm(A*t1) %求系统状态转移矩阵 x0=[2;1;2] %系统的初始状态 t=[0:0.1:20]'; %定义时间t u(1,1:201)=1*ones(1,201); %输入单位阶跃 [y t x]=lsim(sys1,u,t,x0); %计算系统的单位阶跃响应 figure(1) plot(t,x(:,1),'-',t,x(:,2),'-',t,x(:,3),'-') %绘制系统单位输入响应状态曲线 xlabel('t/秒');ylabel('x(t)');title('单位阶跃输入响应状态曲线') grid text(6,0.3,'x_1(t)') text(6,-1.5,'x_2(t)') text(6,1.8,'x_3(t)') figure(2) plot(t,y);grid; %绘制系统单位输入响应输出曲线 xlabel('t/秒');ylabel('y(t)');title('系统单位输入响应输出曲线') s=ctrb(A,B) %计算可控性矩阵S f=rank(s) %通过rank 命令求可控矩阵的秩 n=length(A) %计算矩阵A 的维数

自动控制原理试卷及答案

自动控制原理试题及答案 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 (用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 ,终止于 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函 数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。 4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( ) A 、 型别2

相关文档
最新文档