干燥机常识与工作原理[1]

干燥机常识与工作原理[1]
干燥机常识与工作原理[1]

干燥机常识

冷冻式干燥机(以下简称冷干机)概述

经过空气压缩机压缩、后部冷却器冷却、气水分离器分离、缓冲罐稳压后的压缩空气一般都处于饱和状态,其相对湿度为100%,而且含有油、固体颗粒等杂质,这种压缩空气是不能直接使用的,需要进行干燥净化处理。

工业上曾有三种方法用于压缩空气的干燥处理,它们的原理分别是:

1) 利用吸附剂对压缩空气中的水蒸气具有选择性吸附的特性进行脱水干燥。如吸附式压缩空气干燥机。

2) 利用某些化学物质的潮解特性进行脱水干燥。如潮解式压缩空气干燥机。

3) 利用压缩空气中水蒸气分压由压缩空气温度的高低决定的特性进行降温脱水干燥。如冷冻式压缩空气干燥机。

在上述三种压缩空气干燥设备中,潮解式压缩空气干燥机已基本淘汰;而冷干机和吸附式压缩空气干燥机(以下简称“吸干机”)正在被广泛应用。

冷干机与吸干机相比具有下列特点:

1)没有压缩空气消耗——大部分用户对压缩空气露点要求并不是很高,如使用冷干机可比使用吸干机来得节省能源;

2)无阀件磨损——吸干机有切换阀的问题,虽然冷干机中也有阀件,但是基本无磨损问题;

3)不需要定期添加、更换吸附剂;

4)运转噪音低;吸干机有吸附塔卸压的噪声,在空压房里,一般听不到冷干机的运行噪声;

5)日常维护较简单,只要按时清洗自动排水器滤网即可;

6)对气源的前置预处理要求不高,一般的油水分离器即可满足冷干机对进气质量的要求;

与吸附干燥机相比,经冷干机处理后的压缩空气“压力露点”只能达到0℃以上,因此气体的干燥深度远不及吸干机。在一些的应用领域中,用冷干机是达不到工艺对气源干燥度要求的,如气动仪表、电子工厂等。

J-CD型冷干机(本公司产品)按冷凝器的冷却方式分有风冷型、水冷型两种;按进气温度高低分有高温进气型(80℃以下)和常温进气型(45℃以下);按工作压力分有低压型(0.3-0.6MPa)、普通型(0.6-0.95MPa)和中、高压型(≥1.0MPa)三类。

冷冻干燥机的工作原理

冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程. 冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。

物质在干燥前始终处于低温(冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。在最大程度上防止干燥物质的理化和生物学方面的变性。

冷冻干燥机系由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。它的工作原理是将被干燥的物品先冻结到三相点温度以下,然后在真空条件下使物品中的固态水份(冰)直接升华成水蒸气,从物品中排除,使物品干燥。物料经前处理后,被送入速冻仓冻结,再送入干燥仓升华脱水,之后在后处理车间包装。真空系统为升华干燥仓建立低气压条件,加热系统向物料提供升华潜热,制冷系统向冷阱和干燥室提供所需的冷量。本设备采用高效辐射加热,物料受热均匀;采用高效捕水冷阱,并可实现快速化霜;采用高效真空机组,并可实现油水分离;采用并联集中制冷系统,多路按需供冷,工况稳定,有利节能;采用人工智能控制,控制精度高,操作方便。

对冻干制品的质量要求是:生物活性不变、外观色泽均匀、形态饱满、结构牢固、溶解速度快,残余水分低。要获得高质量的制品,对冻干的理论和工艺应有一个比较全面的了解。冻干工艺包括预冻、升华和再冻干三个分阶段。合理而有效地缩短冻干的周期在工业生产上具有明显的经济价值。

一制品的冻结

溶液速冻时(每分钟降温10~50℃),晶粒保持在显微镜下可见的大小;相反慢冻时(1℃/分),形成的结晶肉眼可见。粗晶在升华留下较大的空隙,可以提高冻干的效率,细晶在升华后留下的间隙较小,使下层升华受阻,速成冻的成品粒子细腻,外观均匀,比表面积大,多孔结构好,溶解速度快,便成品的引湿性相对也要强些。

药品在冻干机中预冻在两种方式:一种是制品与干燥箱同时降温,;另一种是待干燥箱搁板降温至-40℃左右,再将制品放入,前者相当于慢冻,后者则介于速冻与慢冻之间,因而常被采用,以兼顾冻干效率与产品质量。此法的缺点是制品入箱时,空气中的水蒸气将迅速地凝结在搁板上,而在升华初期,若板升温较快,由于大面积的升华将有可能超越凝结器的正常负荷。此现象在夏季尤为显著。

制品的冻结处于静止状态。经验证明,过冷现象容易发生至使制品温度虽已达到共晶点。但溶质仍不结晶,为了克服过冷现象,制品冻结的温度应低于共晶点以下一个范围,并需保持一段时间,以待制品完全冻结。

二升华的条件与速度

冰在一定温度下的饱和蒸汽压大于环境的水蒸气分压时即可开始升华;比制品温更低的凝结器对水水蒸气的抽吸与捕获作用,则是维护升所必需的条件。

气体分子在两次连续碰撞之间所走的距离称为平均自由程,它与压力成反比。在常压下,其值很小,升华的水分子很容易与气体碰撞又返回到蒸汽源表面,因而升华速度很漫。随着压力降低13.3Pa以下,平均自由程增大105倍,使升华速度显著加快,飞离出来的水分子很少改变自己的方面,从而形成了定向的蒸汽流。

真空泵在冻干机中起着抽除永久气体的作用,以维护升华所必需的低压强。1g水蒸气在常压下为1.25L而在13.3Pa时却膨胀为10000升,普通的真空泵在单位时间内抽除如此大量的体积是不可能的。凝结器实际上形成了专门捕集水蒸气的真空泵。

制品与凝结的温度通常为-25℃与-50℃。冰在该温度下的饱和蒸汽压分别为63.3Pa与1.1Pa,因而在升华面与冷凝面之间便产生了一个相当大的压力差,如果此时系统内的不凝性气体分压可以忽略不计,它将促使制品升华出来的水蒸气,以一定的流速定向地抵达凝结器表面结

成冰霜。

冰的升华热约为2822J/克,如果升华过程不供给热量,那末制品只有降低内能来补偿升华热,直至其温度与凝结器温度平衡后,升华也就停止了。为了保持升华与冷凝来的温度差,必须对制品提供足够的热量。

三升华过程

在升温的第一阶段(大量升华阶段),制品温度要低于其共晶点一个范围。因此搁板温要加以控制,若制品已经部分干燥,但温度却超过了其共晶点,此时将发生制品融化现象,而此时融化的液体,对冰饱和,对溶质却未饱和,因而干燥的溶质将迅速溶解进去,最后浓缩成一薄僵块,外观极为不良,溶解速度很差,若制品的融化发生在大量升华后期,则由于融化的液体数量较少,因而被干燥的孔性固体所吸收,造成冻干后块状物有所缺损,加水溶解时仍能发现溶解速度较慢。

在大量升华过程,虽然搁板和制品温度有很大悬殊,但由于板温、凝结器温度和真空温度基本不变,因而升华吸热比较稳定,制品温度相对恒定。随着制品自上而下层层干燥,冰层升华的阻力逐渐增大。制品温度相应也会小幅上升。直至用肉眼已不到冰晶的存在。此时90%以上的水分已除去。大量升华的过程至此已基本结束,为了确保整箱制品大量升华完毕,板温仍需保持一个阶段后再进行第二阶段的升温。剩余百分之几的水分称残余水分,它与自由状态的水在物理化学性质上有所不同,残余水分包括了化学结合之水与物理结合之水,诸如化合的结晶水结晶、蛋白质通过氢键结合的水以及固体表面或毛细管中吸附水等。由于残余水分受到某种引力的束缚,其饱和蒸汽压则是不同程度的降低,因而干燥速度明显下降。虽然提高制品温度促进残余水分的气化,但若超过某极限温度,生物活性也可能急剧下降。保证制品安全的最高干燥温度要由实验来确定。通常我们在第二阶段将板温+30℃左右,并保持恒定。在这一阶段初期,由于板温升高,残余水分少又不易气化,因此制品温度上升较快。但随着制品温度与板温逐渐靠拢,热传导变得更为缓慢,需要耐心等待相当长的一段时间,实践经验表明,残余水分干燥的时间与大量升华的时间几乎相等有时甚至还会超过。

四冻干曲线

将搁板温度与制品温度随时间的变化记录下来,即可得到冻干曲线。比较典型的冻干曲线系将搁板升温分为两个阶段,在大量升华时搁板温度保持较低,根据实际情况,一般可控制在-10至+10之间。第二阶段则根据制品性质将搁板温度适当调高,此法适用于其熔点较低的制品。若对制品的性能尚不清楚,机器性能较差或其工作不够稳定时,用此法也比较稳妥。如果制品共晶点较高,系统的真空度也能保持良好,凝结器的制冷能力充裕,则也可采用一定的升温速度,将搁板温度升高至允许的最高温度,直至冻干结束,但也需保证制品在大量升华时的温度不得超过共晶点。

若制品对热不稳定,则第二阶段板温不宜过高。为了提高第一阶段的升华速度,可将搁板温度一次升高至制品允许的最高温度以上;待大量升华阶段基本结束时,再将板温降至允许的最高温度,这后两种方式虽然使大量的升华速度有一些提高,但其抗干扰的能力相应降低,真空度和制冷能力的突然降低或停电都可能会使制品融化。合理而灵活地掌握第一种方式,仍是目前较常用的方式。

尚科内部学习资料https://www.360docs.net/doc/f218347545.html,

41

干燥机编辑

本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!

一种利用热能降低物料水分的机械设备,用于对物体进行干燥操作。干燥机通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料。干燥的目的是为了物料使用或进一步加工的需要。

目录

1干燥机

?工作原理

?发展和分类

?粮食行业中的发展

2干燥机选型

?选型

?1)开箱验收

?2)设备安装施工

?3)设备式运转

?4)运行后的工作

?小型烘干机

3发展前景

4干燥机未来展望

?特性:

?发展潜力:

1干燥机编辑

工作原理

如木材在制作木模、木器前的干燥可以防止制品变形,陶瓷坯料在煅烧前的干燥可以防止成品龟裂。另外干燥后的物料也便于运输和贮存,如将收获的粮食干燥到一定湿含量以下,以防霉变。由于自然干燥远不能满足生产发展的需要,各种机械化干燥机越来越广泛地得到应用。

压缩空气中水蒸气的量是由压缩空气的温度决定的:在保持压缩空气压力基本不变的情况下,降低压缩空气的温度可减少压缩空气中的水蒸气含量,而多余的水蒸气会凝结成液体。冷冻干燥机就是利用这一原理采用制冷技术干燥压缩空气的。因此冷干机具有制冷系统。冷冻干燥机的制冷系统属于压缩式制冷,由制冷压缩机、冷凝器、蒸发器、膨胀阀等四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化并与压缩空气和冷却介质进行热量交换。压缩空气干燥机还有吸附式干燥机和溶解式干燥机。

制冷压缩机将蒸发器内的低压(低温)制冷剂吸入压缩机汽缸内,制冷剂蒸汽经过压缩,压力、温度同时升高;高压高温的制冷剂蒸汽被压至冷凝器,在冷凝器内,温度较高的制冷剂蒸汽与温度比较低的冷却水或空气进行热交换,制冷剂的热量被水或空气带走而冷凝下来,制冷剂蒸汽变成了液体。这部分液体再被输送至膨胀阀,经过膨胀阀节流成了低温低压的液体并进入蒸发器;在蒸发器内低温、低压的制冷剂液体吸收压缩空气的热量而汽化(俗称“蒸发”),而压缩空气得到冷却后凝结出大量的液体水;蒸发器中的制冷剂蒸汽又被压缩机吸走,这样制冷剂便在系统中经过压缩、冷凝、节流、蒸发这样四个过程,从而完成了一个循环。

在冷冻干燥机的制冷系统中,蒸发器是输送冷量的设备,制冷剂在其中吸收压缩空气的热量,实现脱水干燥的目的。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机输入功率转化的热量一起传递给冷却介质(如水或空气)带走。膨胀阀/节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。

发展和分类

近代干燥机开始使用的是间歇操作的固定床式干燥机。19世纪中叶,洞道式干燥机的使用,标志着干燥机由间歇操作向连续操作方向的发展。回转圆筒干燥机则较好地实现了颗粒物料的搅动,干燥能力和强度得以提高。一些行业则分别发展了适应本行业要求的连续操作干燥机,如纺织、造纸行业的滚筒干燥机。

20世纪初期,乳品生产开始应用喷雾干燥机,为大规模干燥液态物料提供了有力的工具。40年代开始,随着流化技术的发展,高强度、高生产率的沸腾床和气流式干燥机相继出现。而冷冻升华、辐射和介电式干燥机则为满足特殊要求提供了新的手段。60年代开始发展了远红外和微波干燥机。

用于进行干燥操作的机械设备类型很多,根据操作压力可分为常压和减压(减压干燥机也称真空干燥机)。根据操作方法可分为间歇式和连续式。根据干燥介质可分为空气、烟道气或其他干燥介质。根据运动(物料移动和干燥介质流动)方式可分为并流,逆流和错流。

按操作压力,干燥机分为常压干燥机和真空干燥机两类,在真空下操作可降低空间的湿分蒸汽分压而加速干燥过程,且可降低湿分沸点和物料干燥温度,蒸汽不易外泄,所以,真空干燥机适用于干燥热敏性、易氧化、易爆和有毒物料以及湿分蒸汽需要回收的场合。

优势:

1、设计精良的吸附塔体

2、高性能的活性氧化铝吸附剂

3、效果良好的消音器

4、独具功率大和耐用两大特点的进口气动控器

5、可精确调节流量的再生气调节阀

按加热方式,干燥机分为对流式、传导式、辐射式、介电式等类型。对流式干燥机又称直接干燥机,是利用热的干燥介质与湿物料直接接触,以对流方式传递热量,并将生成的蒸汽带走;传导式干燥机又称间接式干燥机,它利用传导方式由热源通过金属间壁向湿物料传递热量,生成的湿分蒸汽可用减压抽吸、通入少量吹扫气或在单独设置的低温冷凝器表面冷凝等方法移去。这类干燥机不使用干燥介质,热效率较高,产品不受污染,但干燥能力受金属壁传热面积的限制,结构也较复杂,常在真空下操作;辐射式干燥机是利用各种辐射器发射出一定波长范围的电磁波,被湿物料表面有选择地吸收后转变为热量进行干燥;介电式干燥机是利用高频电场作用,使湿物料内部发生热效应进行干燥。

优势:1、采用高性能蒸发器,超大换热面积,传热温差小,蒸发器出口空气温度更稳定

2、采用高效气水分离结构,油水分离效率高;

按湿物料的运动方式,干燥机可分为固定床式、搅动式、喷雾式和组合式;按结构,干燥机可分为厢式干燥机、输送机式干燥机、滚筒式干燥机、立式干燥机、机械搅拌式干燥机、回转式干燥机、流化床式干燥机、气流式干燥机、振动式干燥机、喷雾式干燥机以及组合式干燥机等多种。

干燥设备常识:常见的预烘干机在我国有常见的喷雾干燥器,空气干燥机,流化床干燥机,闪蒸干燥机,流化床干燥机,如喷雾造粒。闪蒸干燥机喷雾干燥喷雾干燥是干燥设备中的一个最先进的设备。传统方法的三种雾化:旋转雾化,压力雾化及气流雾化。旋转雾化特性喷雾干燥能力的一个大(喷雾量可达二百吨/小时),将负责将容易控制,操作的灵活性,以及更广泛应用。压力雾化喷雾干燥的特点是粗颗粒可以创造,以便日后进行维修。由于喷嘴孔很小,很容易堵塞,必须严格过滤液体。喷嘴孔易磨损,耐磨损材料的使用。还有一个喷嘴压力的新结构,称为压力-流喷嘴。它的特点是喷嘴压力,周围环境的气隙喷嘴。雾化分为两个阶段:第一形成液膜压力喷嘴,电影是第二空气雾化,从而使更多的小水滴。的优势,这种类型的喷嘴:(1)调节压缩空气的压力,可以调节液滴直径,操作简单;(2)生产,高粘度的液体,它可以雾化液滴罚款;3如果您禁用压缩空气,原来的压力式喷嘴都可以使用。雾化气流的实验室和在中东的主要植物,它的电力消耗。头两个不能雾化喷嘴的液体,使用空中可雾化喷嘴。高粘度粘贴,粘贴和滤饼材料,可用于三流体喷嘴雾化。较干燥的空气流动干燥技术成熟,如果操作的数据可以直接设计。

流化床干燥机流化床干燥机喷雾干燥机。饲喂设置分为部分流化床干燥机搅拌器和传

热流化床干燥机。当团结是易于使用的流化床干燥,或聚集的粉末材料的饲料更多的水将流入上述困难的现象,这个时候成立的饲料搅拌机上述情况,消除集束问题,以实现正常流动。后者是热传导和对流换热的组合,使用时的正常流动的热空气量远远不够的国家,以满足所需的热干燥使用设置的换热器,供给部分或大部分热量,哪些类型的操作可以大大节省能源。采取多种形式的换热器。流化床干燥还经常用于组合干燥中等教育和高等教育。实行普通振动流化床说,振动流化床。有一个流动的振动的振动源可分为两类:一为振动电机驱动,其他为普通电机通过激振箱产生振动,使弹簧。振动时,床的大小,后者更好。流化床喷雾造粒干燥机的过程中,流态化技术,雾化技术和干燥的有机结合三个。它是将雾化喷淋液体进入流化床的种子,所以种子继续增长和干燥,以达到所需的规模,时间以外的弹射器。该器件小型和大型的生产能力,可创造大颗粒。该设备的工业应用已日益增加。

常州市是中国干燥设备之乡,也是现在的全国最大的干燥设备产业集聚地,干燥设备企业数量全国第一,并且产品也占据了全国40%的市场,干燥产品远销美国、日本、法国、南非等30多个国家和地区。2010年干燥行业制定18项“国标”,常州市干燥企业全程参与。

粮食行业中的发展

稻谷是我国城乡居民最重要的口粮作物。正常年景,我国年产稻谷2亿吨左右,丰富的稻谷资源为我国稻谷加工业的发展提供了重要的物质基础。

2010年,全国入统企业规模以上大米加工企业5666个,年生产能力9463万吨,其中:日加工干燥能力100吨以下的企业为4741个,100~200吨的企业为754个,200~400吨的企业为132个,400~1000吨的企业为38个,1000吨以上的企业为10个。

20世纪50年代,清理筛、去石机、“59型”谷糙分离溜筛等机械的出现;20世纪60至70年代,日产30吨和50吨成套组合碾米设备、平转谷糙筛、重力谷糙分离机、喷风米机、大米抛光机、大米色选机、谷糙分离设备、白米整理设备等设备的诞生;20世纪90年代,大米精加工及米质干燥调理技术、糙米流通关键技术装备研究及综合示范工程、优质稻产后精加工及保鲜技术装备研究开发、稻米深加工技术研究与开发等技术研究的完成。

中国粮食行业协会大米分会的工作人员表示,这些设备技术的诞生,都可以显示出我国对于稻谷加工技术研究的重视。

20世纪90年代中后期,我国稻谷的加工装备制造业进入了快速发展的时期。

2011年3月,我国第一台农民发明净谷干燥机在湖南诞生!

随着民营资本进入稻谷加工机械生产领域,原国有粮机厂开始逐步转让给民营资本。这些粮机厂自主开发了多种新型装备,在大中型稻谷加工厂普遍推广应用的主要装备有立式碾米机、低温升碾米机、大米抛光机、大米滚筒精选机、大米色选机、重力谷糙分离机、糙米精选机、大米保鲜包装机、米糠膨化机、低破碎提升机、配米装置等。

然而,面对技术开发能力超前的跨国企业,我国土生土长的稻谷加工机械企业,资金薄弱,研发能力差等,已经成为束缚企业发展的重要因素。

有专家表示,随着我国居民膳食结构的进一步改善,我国的稻谷加工业必将进一步加大技术升级的力度。

“今后要着重发展优质稻谷精加工,重视加工过程的精碾、调质、成品整理等技术的开发与应用,大力开发米糠等副产品制油等多种用途,向高出米率、精米、特种米、碎米深加工、大米添加剂及稻壳、米糠综合利用5类系列产品方向发展扶持合理规模企业发展。”2干燥机选型编辑

选型

①物料原始形状颗粒、粉末、微粒、淤泥、晶体、液体、膏状、悬浮液、溶液、连续

的薄片、厚板、不规则物料(小或大)、黏稠或块状等。

②平均产量连续操作投料量或成品、间歇操作投料量或成品及其调节范围等。

③成品颗粒状况平均粒径、粒度分布、粒子密度、体积密度、复水性等。

④物料进、出口含水率干基、湿基。

⑤物料性质化学、生化、微生物活度、热敏性(熔点、玻璃化温度)、吸湿等温线(平

衡含水率)等。

⑥干燥时间干燥曲线、操作参数的影响。

⑦加热器形式接触方式(直接式、间接式)。

⑧燃料选择蒸汽、煤、电、油、燃气。

⑨干燥辅助设备风机、干法除尘器、湿法除尘器、加料器、出料器、成品冷却及输送

装置等。

⑩特殊要求构成材料、腐蚀性、毒性、非亲水溶液、易燃易爆的极限、着火点、色泽、结构、香味要求。

⑩干燥系统干燥设备及附属设备的占地面积。设备安装调试过程及一般要求1)开箱验收

新设备到货后,由设备管理部门,会同购置单位,使用单位(或接收单位)进行开箱验收,检查设备在运输过程中有无损坏、丢失,附件、随机备件。专用工具、技术资料等是否与合同。装箱单相符,并填写设备开箱验收单,存入设备档案,若有缺损及不合格现象应立即向有关单位交涉处理,索取或索赔。

2)设备安装施工

按照工艺技术部门绘制的设备工艺平面布置图及安装施工图、基础图、设备轮廓尺寸以及相互间距等要求划线定位,组织基础施工及设备搬运就位。在设计设备工艺平面布置图时,对设备定位要考虑以下因素。

(1)应适应工艺流程的需要

(2)应方便于工件的存放、运输和现场的清理

(3)设备及其附属装置的外尺寸、运动部件的极限位置及安全距离

(4)应保证设备安装、维修、操作安全的要求

(5)厂房与设备工作匹配,包括门的宽度、高度,厂房的跨度,高度等

应按照机械设备安装验收有关规范要求,做好设备安装找平,保证安装稳固,减轻震动,避免变形,保证加工精度,防止不合理的磨损。安装前要进行技术交底,组织施工人员认真学习设备的有关技术资料,了解设备性能及安全要耱和施工中应事项。

安装过程中,对基础的制作,装配链接、电气线路等项目的施工,要严格按照施工规范执行。安装工序中如果有恒温、防震、防尘、防潮、防火等特殊要求时,应采取措施,条件具备后方能进行该项工程的施工。

3)设备式运转

设备式运转一般可分为空转试验、负荷试验、精度试验三种。

(1)空转实验:是为了考核设备安装精度的保持性,设备的稳固性,以及传动、操纵、控制、润滑、液压等系统是否正常,灵敏可靠等有关各项参数和性能在无贝多芬运转状态下进行。一定时间的空负荷运转是新设备投入使用前必须进行磨合的一个不可缺少的步骤。

(2)设备的负荷实验:试验设备在数个标准负荷工况下进行试验,在有些情况下进行试验。在负荷实验中应按规范检查轴承的温升,考核液压系统、传动、操纵、控制、安全等装置工作是否达到出厂的标准,是否正常、安全、可靠。不同负荷状态下的试运转,也是新设备进行磨合所必须进行的工作,磨合试验进行的质量如何,对于设备使用寿命影响极大。

(3)设备的精度实验:一般应在负荷试验后按说明书的规定进行,既要检查设备本身的几何精度,也要检查工作(加工产品)的精度。这项试验大多在设备投入使用两个月后进行。

4)运行后的工作

首先断开设备的总电路和动力源,然后作好下列设备检查、记录工作:

(1)做好磨合后对设备的清洗、润滑、紧固,更换或检修故障零部件并进行调试,使设备进入最佳使用状态;

(2)作好并整理设备几何精度、加工精度的检查记录和其他机能的试验记录;

(3)整理设备试运转中的情况(包括故障排除)记录;

(4)对于无法调整的问题,分析原因,从设备设计、制造、运输、保管、安装等方面进行归纳。

(5)对设备运转作出评定结论,处理意见,办理移交的手续,并注明参加试运转的人员和日期。

5)设备安装工程的验收与移交使用。

(1)设备基础的施工验收由修建部门质量检查员会同土建施工员进行验收,填写施工验收单。基础的施工质量必须符合基础图和技术要求。

(2)设备安装工程的最后验收,在设备调试合格后进行。由设备管理部门和工艺技术部

门会同其他部门,在安装、检查、安全、使用等各方面有关人员共同参加下进行验收,做出鉴定,填写安装施工质量、精度检验、安全性能、试车运转记录等凭证和验收移交单由参加验收的各方人员签字方可竣工。

(3)设备验收合格后办理移交手续

设备开箱验收(或设备安装移交验收单)、设备运转试验记录单由参加验收的各方人员签字后及随设备带来的技术文件,由设备管理部门纳入设备档案管理;随设备的配件、备品,应填写备件入库单,送交设备仓库入库保管。安全管理部门应就安装试验中的安全问题进行建档。

(4)设备移交完毕,由设备管理部门签署设备投产通知书,并将副本分别交设备管理部

门、使用单位、财务部门、生产管理部门,作为存档、通知开始使用、固定资产管理凭证、考核工程计划的依据.

小型烘干机

脱水烘干机的产品说明:脱水、烘干同步进行,无水渍及污点出现,可避免工件氧化或生锈,提高成品光泽度及质量;脱水槽为不锈钢材质,坚固耐用,内蓝可提出,方便工件装取;

脱水烘干机设有脚踏式煞车器,提高使用的安全性;采用自动控制的电源系统,脱水烘干完成或打开不锈钢盖时,自动切断电源,本机采用铸铣底座,重心稳,内外筒采用不锈钢制成,坚固耐用;加热器装配在上面不锈钢盖,直接加热,电源及煞车系统均采自动控制。

脱水烘干机的特点:适用于各种金属零件经研磨抛光,浸防锈液后脱水烘干用;各电镀及研磨抛光加工厂,烘干必备机器。

脱水烘干机的又叫离心烘干机,热风机,风干机

干燥机(6张)

3发展前景编辑

微波技术是在第二次世界大战期间为了研制雷达而成熟起来的。当大战将结束时,美国调整雷达的工程师发现自己口袋里的巧克力经常熔化了!立刻明白,这是电磁波对物质的作用所引起的,是和大功率电缆中绝缘介质损耗发热是一回事。好奇心驱使他们用微波装置

作爆米花取得成功。这就是微波功率应用设备的雏形。早在三十年代在调试大功率无线电发射机时,常常发现苍蝇或昆虫干瘪的死在空心螺线管中,这些偶然发现,明白的向人们启示了微波和无线电波均可造成加热、干燥现象。其实,微波和无线电波均是电磁波,只是微波的频率在300兆赫以上,而无线电波的频率在300兆赫以下。当然,发展无线电技术早期的工作技术重点,是采用各种频率的电磁波运载信息或获取信息,以构造现代绚丽多彩的生活。初创阶段不可能把昂贵的无线电和雷达设备用于加热干燥。采用无线电波加热作为工业应用,早于微波加热,称为射频加热。随着微波技术的发展,所产生的微波功率不断提高,成本降低,就有可能将微波电磁场的能量转变为物质分子的能量,作为科研、生产和医疗的手段。这种透入物质内部,即时转化为分子热能的方法,改变了传统加热由表及里的概念,创造了快速升温的新技术。

1.原理和微波功率应用设备微波电磁波具有两种传送状态。第一种,是由天线定向向空间传播,和光线一样,是直线传播。第二种,是由人为设置的导行传输状态,也就是制约电磁波在空心管道中传送,这种空心管道称为波导管,一般是矩形或圆形,由铜或铝等良导体制成。波导管采用的截面尺寸和所用微波的频率有关。在空心波导管中传播的微波电磁波,是将能量封闭起来传送。可以远距离传送,能量损失极小。若在波导管中充以非金属物质,造成传输功率的损耗,传送的距离就有限。是由于产生了电磁场和物质的相互作用,已将电磁波的部份能量转变为物质分子的能量,其转换比例是和电磁波的频率与该物质的损耗因子有关。从原理上说,可以把引入波导管中封闭传送的电磁波能量全部转变为物质分子的能量。温度的升高是物质分子增加能量的主要标志。电磁波是以光的速度传播的,电磁波透入物质的速度也是和光的速度传播速度相接近的;而将电磁波的能量转变为物质分子的能量的时间近似是即时的,在微波频段转换时间快于千万分之一秒。这就是微波可构成内外同时快速加热的原理。传统加热固体物料,必须处在一个加热的环境中,然后由表及里,逐渐传导入固体的内部,获得热平衡的条件,这就需要较长的时间。加热环境,一般不可能很严格的绝热封闭,在很长的加热时间,就可能对环境散发了很多的热量。而微波功率是全部牌封闭状态,以光速渗入物体内部,即时转变为热量,就节省了长时间加热过程中的热散失,这就是微波加热的节能原理。微波加热和射频加热相比的特点:

a. 场能转变为热能的比例高;

b. 容易将电磁波屏蔽起来,不逸散实际的微波功率设备,一般由(1)微波功率源(2)应用器(3)波导元件和应用器馈能结构(4)传感和控制四个部份组成。

产生微波功率的微波功率源,一般采用磁控管作振,在该管中,热阴极发射电子,在强恒磁场作用下,电子作圆周运动;磁控管内部的谐振腔使电子减速,这样就使电子的动能,转变为电磁波的能量,在谐振腔中积累,送入波导管中,再送入应用器供使用。磁控管需要直流高压供电,灯丝加热供电及恒磁场线圈供电并需要相应的保护和控制电路,组成微波功率源的整机。直流高压或恒磁场的励磁电流,均可控制微波功率的输出量。微波应用器是扩大了的波导管,采用它作为电磁波和物质相互作用的场所。设计考虑是适应加工物料的形态

和处理要求,可分为行波型和谐振型。波导元件是微波功率源和应用器之间的连结部件,是为了解决既让磁控管获得最佳的负载工作条件,而又使应用器能获得有效的馈入效果,从微波技术的角度来考虑,是通过多种波导元件和馈能结构来完成的,同时波导元件提供了入射功率量和溢出反射功率量的数据。传感器的配置,是为了觉察场和物质作用的程度,是否符合加工需要,如温度传感和湿度传感等。设备可根据实时的传感数据和微波功率源实时工作状态,对功率源的输出及传送速度等实施有效的控制。

将微波功率应用设备分为四部份,是非常必要的。一般而言,应用设备均是单件生产或小批量的生产,是必须按照特定的使用要求进行设计的,是一种类似“量体裁衣”的过程。将微波功率应用设备分为四部份,其中微波功率源和波导元件是微波工程设计、传感和控制工程设计。这三部份具有较强的通用性,并不受应用对象不同而变更。多年来,我们强化了这三部份的标准化和系列化工作,提高了这些部件的可靠性和稳定性,为整机的可靠性提供了有力的基础,并缩短了研制整机的周期。微波应用器设计具有较强的针对性,因不同的应用对象的处理要求、不同的状态、形状、大小而异,是多学科会合的工程设计,我们采用微波应用器系列设计的方法,不同的系采用特定的通用部件组装,将新设计的部件降到极少,这样,进一步缩短了设备的研制周期,并保证了设备的可靠质量。

2. 我国微波功率应用的现状我国在七十年代的初期,就关注着国外微波功率应用技术的发展。早在1972年底电子工业部在南京772厂(即三乐电气总公司)召开的一次微波电子管技术研讨会上,着重讨论了微波电子管在新领域中的应用可能发展,新领域即是微波加热干燥的工业应用、微波治疗、微波诊断及微波等离子体等领域。而开展新领域的研究工作的先导,必须研制大功率连续波磁控管。当年772厂即着手研制915MHz和450MHz的连续波磁控管,并在研制成功两个频段连续波磁控管的基础上,又研制了我国首台2450MHz 微波理疗仪,及915MHz微波加热设备。1974年春首台微波加热设备在北京展出,展示的微波快速加热现象,吸引了工业界人士的普遍关注。1974年11月电子工业部在南京772厂召开了微波能应用技术座谈会,会议介绍了国外微波功率在工业生产、农业生产和医疗事业中的应用,讨论了在我国发展的前景。经过二十多年的努力,我国已经将微波功率应用这个研究领域初步建立了基础,772厂研制的微波功率设备已在食品、木材和竹制品加工、制药、纸品、酿酒、橡胶、化工等工业生产中站稳了脚根,改善了生产条件,提高了产品的质量,所研制的多种微波等离子设备、微波高温设备和微波真空干燥设备已成为多种学科的重要科研手段。

就全国的情况来说,我国微波功率应用技术的推广,二十多年来是一段十分艰辛的路程,取得了初步成绩,奠定了继续发展的基础,这个基础的主要标志是:(1)微波加热干燥、微波食品加工和微波杀菌、杀虫已在多种工业中广泛应用(2)家用微波炉已形成规模生产的能力;(3)微波医疗仪的临床应用已取得了普遍的成功;(4)多个领域前沿课题,采用微波功率这个有力工具,已取得了许多可喜进展,拓展新领域研究阵地,已跟上了世界的步伐

3.微波功率应用正在走向高科技领域从世界各国研究动向来看,微波功率应用正处在向新领域发展的时期,即研究的重点已从传统的加热干燥、食品加工转向多个高新技术领域,

作为研究工作的一种崭新工具。主要的领域有:微波催化化学反应、新材料微波加工处理、微波气体放电的多种应用的研究等。微波化学的实验研究,几乎遍及化学、化工所有领域,大量的文选报告显示了微波电磁场可以加速化学反应,可将反应时间缩短到原需时间的十分之一到千分之一,给化学工业引入了诱人的前景。微波高温技术可以烧结精细陶瓷,可焊接陶瓷,并可加工和处理材料,如高分子材料的热定型,非金属材料热处理,微波方法优于常规方法。微波气体放电,即以微波电磁场形成低温等离子体,是微波功率应用研究的一个主要方面。微波等离子体化学气相沉积制膜(MPCVD)和等离子体刻蚀,是微电子加工的主要工艺手段,金刚石薄膜的制备和光纤的制备也采用MPCVD方法,超细粉末的制取,微波等离子体方法,具有多种优点。微波等离子体中,多种粒子的活性强于射频等离子体,用于化学反应及材料处理具有更有利的条件。此外,由微波无电极放电构成强照明光源(如硫灯),微波臭气发生器等,有可能逐步走向产业化。据初步的文选调研,我国正在进行的微波功率新领域研究工作的热点,可以列举如下:(1)微波选矿(微波辅助热解)的研究,有色金属的硫化物转化为氧化物,镍的碳酸盐转化为氧化镍,金矿砂的脱硫和放射性同位素的硝酸盐转化为氧化物等已取得了实验室成果。(2)微波辅助有机和无机化学反应,提高化学反应速率做了大量的实验室工作。(3)微波辅助萃取技术的研究。微波电场能加快溶解速率,改善溶解度,已在多种实验室取得了显著成效。用微波辅助萃取方法,科学规范生产,将是必然趋势。(4)以天然气代石油制取乙烯等化工原料,采用微波辅助催化化学反应和微波等离子体技术,在实验室中已取得了较好的收率。(5)活性碳和柴油过滤器的微波再生方法,已得到了良好的实验效果。(6)我国早在八十年代初期就开始研制多种微波等离子设备,如MPCVD设备,等离子刻蚀设备,激光的微波泵源的研制工作。并且又开始研制微波无线电极放电硫灯强光源,微波气体放电构成臭氧发生器(在臭氧的环境下,延长粮食的保质期,是一种有效方法)。(7)微波高温技术,用于烧结陶瓷和焊接陶瓷,我国已经取得了许多实验成果。国外的趋势是常规加温技术并结合微波高温方法,以改进陶瓷工业的生产,已有小规模的生产设备。我国也具有这方面的基础和经验,应早日启动该项工作。(8)从八十年代初就已经立项从事煤和石油的微波脱硫的研究工作,目的希望早日形成燃烧过程中清洁排放。对固、液、气三态的废物处理,也结合微波方法,进行了初步的实验研究。从这些课题的内容可以看到,对新领域的研究工作,我国和国外的差距并不太大。应切实解决许多实际难题,以加强向产业化转化的力度,才能对我国的经济建设和生态环境的改善见实效。

4.加强微波应用基础研究是进一步发展的基本条件如上所述,我国对微波功率应用对新领域开拓性的实验研究工作涉及的面很广,积累了很多经验,取得了许多开创性的研究成果,这是令人鼓舞的。但是,把这些实验室的结果转变为生产力,使产业化的进程赶上世界前进的步伐,还不容乐观。从微波工程的角度来看,我国用于新领域实验研究的设备,尚属较原始的状态,而且处理量一般较小,扩大到产业化的规模,还有许多具体难点需要解决,走向产业化还有一段艰苦奋斗的路程。从国外新领域的实验研究表明:需要对微波功率应用设备有更高的要求。停留在原有水平的设备,难于适应新领域研究的需要。首先,对微波功率源就有较高的要求,要求工作高可靠,输出的微波功率具有高稳定度和重调精确度,低波纹因素,并具有调制功能,以适应改变条件,取得较佳的实验效果,并具有可靠的重复性。第二,设备远实时传感,监示和高速是需要的。传感设置,是国产设备的薄弱环节,需要完善这些

功能。为了确保监示的精确性,及调整的可靠性,需要着手改进大功率波导元件的性能,及研制应用器的多种适应性强的馈入结构。

由此可见,为适应新领域应用研究的需要,微波功率源、波导元件及传感和控制这三部份通用性强的基础部件,还有大量的改进工作要做,使这些基础部件的技术指标,国外先进的水平。已成功运用的微波功率生产设备,还需要改进和提高。这些通用基础部件质量的提高,将为改进应用设备,提供扎实的基础。就可能使微波功率应用设备更规范化,使工作更稳定可靠,加热更均匀,并配以可靠的传感功能,可使设备的工作状态得到实时监示,使电磁场和物质相互作用的状态具有可觉察性,具有配置闭环自控的基本条件,设备日趋完善,这样就可缩小和国外先进同类产品的差距,使目前国内以进口设备为主的橡胶微波硫化设备和印刷干燥设备,全部采用国产设备。一旦我们的应用设备的质量跃上一个台阶,就有可能将微波功率应用于加热的领域不断拓宽。如化工材料、玻纤的干燥、陶瓷坯体的干燥和定型、纺织、印染、印刷工业的应用,大型冷冻肉食品解冻的应用,完全可以采用微波功率设备,改善生产条件并缩短生产时间。现有微波功率应用设备的改进和提高,并可靠的运用,无疑将为新领域应用设备提供了有益的经验和基础部件。

5.多学科会合攻关使研究工作早日转向产业化微波功率应用是多学科交叉的课题,就新领域的研究而言,多学科的充分渗透犹为重要。二十多年的经验表明,应用学科的许多研究工作若不清楚微波原理的基本框架、主要原则和现状,所立的研究课题往往会多次反复,长期在实验室中徘徊,研究工作进展的速度不快,而不清楚应用学科具体课题的基本要求,处理的主要环节,所作的微波应用器的工程设计,将会造成使用不当,造成大量浪费。这些虽然都是过去的历史,但是这些应该吸取的经验,必须给予高度的重视,对于开拓新的应用领域,更具重要意义。微波应用的研究课题,必然存在着多学科能够从充分对话、渗透,然后找到多学科规律的会合点的过程。不能忽视多学科从理论角度深入对话的必要性,因为多学科的理论规律,可以预示许多方向性的原则,就可以较可靠的给出应用器设计的具体要求,及实验的实际运作程序,避免多走弯路,节省时间。多学科的会合既应包括研究工作策略、方案和设计,又应包括失败和成功的经验的讨论和总结,才能涵盖研究工作的完整规律,而找到前进的方向。预计将科研成果转化为生产力,更要注意从多学科会合来考虑,一个科研项目的成果应还要充分重视类似产业或现有同类规模生产产业的成功经验,作出向产业化转化的方案。微波技术并不能替代原有生产流程的一切规律,微波技术可以找到原有生产流程的薄弱环节,在这个环节上补充、加强或代替,而使原有的流程得到一个很大跨度的改进。如微波橡胶硫化设备的研制就是一个明显的例子。硫化温度和硫化时间对一定的产品均有一个确定的最佳区间,常规方法是升温时间和硫化时间的矛盾,对大体积的产品而言,由表及里的常规加热,欲使内部达到预定的硫化温度,需要很长的时间,表层橡胶已超过了硫化时间,达到了过硫化状态,而内部尚处于硫化处理不足。传统方法对整个产品难于达到均匀一致的硫化处理。微波橡胶硫化设备的设计、微波加热仅用于迅速升温到预定的硫化温度一段区间,而已到达硫化温度后,立即由传统的加热方法作保温处理,如此安排,微波橡胶硫化设备,既加快了生产时间、节约了能源,又得到均匀硫化处理的效果,改善了产品质量。再

如微波高温烧结陶瓷的研究工作表明,微波高温方法升温快,可缩短生产时间,改善陶瓷产品的质量。但是实验研究烧结过程烧成率低,难于掌握迅速升温的各个环节。冷静的思考,改进陶瓷烧结的工艺,还应该是常规加热和微波加热相结合的方法,初始升温不必采用微波方法,待到达500°C以上,(陶瓷坯体吸收微波能量的系数受温度升高而提高),此时,用微波方法即可将坯体内外一致达到烧结温度,而保温、降温仍然采用常规方法。这个想法和看到的报导不谋而合,国外已在这个思路的前提下,研制小型微波烧结和传统烧结相结合的传送式窑炉,得到了很好的烧结效果。利用微波功率所进行的多项科学研究,实际上是在寻求相关多学科规律会合点上下功夫。微波功率工程方面的技术工作,正在积累经验,逐渐探索和相关应用学科相配合,在不同领域共同找到攻克研究工作难点的方法,使各项高科技研究早日向产业化转化。

6.微波与传统加热干燥技术相结合,大型微波功率应用设备主要在加热干燥和食品加的生产中运用。但从需求的情况来看,微波功率应用设备尚未能满足多个领域需求。由于家用微波炉的普及,许多企业改进生产的意图已在家用微波炉中做成了可行性试验,或者已经看到了改进的预兆,需要进一步促成,但是已有的微波功率设备又不可能完全适应这些要求,也就是说,就微波加热干燥而言,微波功率工程仍然还有大量的开拓性工作可做。这些领域大致是非金属材料的高温处理、高分子热定型、化工材料的绝度干燥、脱结晶水、玻璃纤维的干燥、各种生物化学材料、食品的低温干燥、真空脱水干燥。有些领域的加热和干燥,传统方法已进行大量的研究工作。例如干燥方法,着眼于在不同状态最有效地将水分疏导排出、喷雾干燥、硫化床干燥、振动硫化床干燥、腾干燥、真空干燥都是应物料的不同状态和热风刻分相接触而排出水分。如果适当的引入微波能量,完全可能将干燥过程加快,并改善干燥质量。这些领域微波方法宜与传统方法相结合,补充向物料提供热量不足的弱点,可采用微波加热。疏导排出水分的方法,还应采用传统方法的优点,这就需要对原有设备进行改革,以兼容馈入微波功率及防止微波泄漏的措施。许多材料的绝干处理,及非金属材料的热处理方面的应用,大型微波功率设备密度还不够高,设计高场强密度的设备,有望而却步微波功率设备可以改善对非金属材料的热处理方法,从理论上估计,对化工材料的绝干处理会取得良好的效果。统一电磁场功率工程方法,为改善生产条件,为前沿研究工作的进展作出努力从许多报导文献来看,国外射频加热设备其设计方法拟逐步和微波功率相接近,即发展所谓50Ω射频工业加热技术,标准射频设备应由如下四部份组成:(1)具有50Ω输出阻抗的射频振荡器;(2)连结射频振荡器和匹配盒的50Ω同轴线;(3)具有控制和鉴别器discrimmatic的匹配盒;(4)应用器。也就是说,射频功率设备发展方向不再是统一体的设备,也可以用通用件组装设备,而且将振荡源和应用器可以按需要拉开距离(目前的f工业设备根本无法达到这种要求)。这样的工作方法,实际是和微波功率设备的研制的方法是一致的;即按标准件组装设备的方法。同时射频功率输出拟改用晶振馈入放大器,以便于稳定频率与控制功率;此种方案和进一步改进微波功率源;应用正交场放大器,由有源微波网络组成振荡电路称为稳频管(Stabililotron)思路是一致的。稳频管的输出功率在2450MHz是10—50KW和10—100KW。典型的Rf使用频率是13.56MHz、2

7.12MHz、40.68MHz目前有提高使用频率的趋势,所试制的Klystron采用267MHz作为高功率工业应用,而微波功率应用的频率是2450MHz,915MHz,向发展434MHz的趋势。上从设备设计方法来看,射频设备和微波

设备正在逐步接近,而微波使用频率在向下扩展,射频使用频率在向上升。即二者上下延展,进一步连结成统一的电磁场功率设备,实际上微波功率设备和射频功率设备是电磁场功率设备的二叶,应该用电磁场功率应用统一的角度来处理方案,射频和微波各有特长,各有短处,应该用其所长,避其所短,使人国的电磁场功率设备做得更合理,更贴近实用。微波与射频电磁场功率工程工作领域主要是加热干燥、材料处理和气体放电,应用面非常广,非常贴近生产实际,既是对传统的加热干燥方法的改进,又是当前许多重要研究方法的重要工具。当前应该是在调查研究的基础上作一些总体规划。哪些行业加热干燥存在着薄弱环节,电磁场功率设备应以何种频段采用哪些技术手段处理,这些环节较为合理。当前采用射频和微波方法的前沿研究工作,设备基础的薄弱环节存在什么问题,应该逐步加强基础建设,以有力地促进前沿的研究工作。

4干燥机未来展望编辑

特性:

干燥机的未来发展将在深入研究干燥机理和物料干燥特性,掌握对不同物料的最优操作条件下,开发和改进干燥机;另外,大型化、高强度、高经济性,以及改进对原料的适应性和产品质量,是干燥机发展的基本趋势;同时进一步研究和开发新型高效和适应特殊要求的干燥机,如组合式干燥机、微波干燥机和远红外干燥机等。

发展潜力:

干燥机的发展还要重视节能和能量综合利用,如采用各种联合加热方式,移植热泵和热管技术,开发太阳能干燥机等;还要发展干燥机的自动控制技术、以保证最优操作条件的实现;另外,随着人类对环保的重视,改进干燥机的环境保护措施以减少粉尘和废气的外泄等,也将是需要深入研究的方向。

中国干燥机设备市场现状及分析联合国当前的需要,国内市场的常规干燥设备,以及主要的国际市场干燥设备,基本都在中国制造,这表明,在中国干燥设备进口为导向的历史已经结束。但是,仍存在一些问题和困难,据中国通用机械干燥设备行业协会预测,未来几年,中国的需求,化工行业将干燥设备3000(套)左右;制药干燥设备的年需求量将达到3000(套)左右;农业,林业,粮食,轻工等行业,如干燥设备,年需求量预计将达到5000(套)左右。

干燥设备在国内市场占有率已达到80%以上。

预计“十五”期间,中国干燥设备在国内市场占有率将达到90%。性能存在问题的区域重点和技术创新能力的方法有两种。分布集中的企业在中国干燥设备行业的大多数生产企业在该行业的基础上逐步产生早期企业,相对集中的地理位置,人员结构存在的严重缺陷。到目前为止,企业主要分布在江苏,浙江,上海,辽宁,这些企业占整个行业几乎是总数的50%,而与此形成鲜明对比的是,有一些地区在中国不存在干燥设备制造商。高度竞争性的行业,有些公司专注于眼前的结果,不需要任何系统的发展,提高整体素质,进展缓慢,严

重妨碍了正常发展的行业。技术开发是不强改革开放以来,尤其是在最近几年,中国的经济增长潜力得到有效释放,短缺经济的供给和需求发生了根本的变化,初步形成了买方市场。压力的买方市场,一些企业在市场上追赶,而不是寻找和开拓新市场,企业专注于市场在不久的将来的需求,更为成熟的产品。因此,在烤箱,振动流化床干燥机和其他产品,制造商们更集中,更具有竞争力。干燥设备行业从事小企业的发展,新产品,以及完善的推出新产品主要是模仿对方。建议开发先进技术,提高产品质量在中国干燥设备技术与世界发达国家相比,在同一行业内还有一定的差距。当前的市场,技术含量较低的产品为主。中国加入世贸组织,将有更多的进入国内市场的国际同行,与日益严重的国际竞争,我们将面临巨大的竞争压力。世界领先的干燥设备制造商,如丹麦尼鲁集团有限公司大河原日本设立了分支机构中国一个又一个,抓住中国市场。随着加快经济全球化的进程中,更多的公司将针对中国市场。日益激烈的竞争,这要求我们必须通过企业的进步,吸收国外先进技术,创新,提高产品质量。的想法,产品开发到大规模的设备,控制的自动化程度,质量,表面处理设备,选择抗腐蚀材料的努力,开发多功能组合机,产品生命周期继续延长。行业协会要多组织企业参与国际技术交流和吸收的结果,最新的技术,以加快整个行业,以提高技术水平。调整的企业,培育企业核心竞争力在中国的特点是干燥行业的企业不这样做,不强,不适合,而不是完善,但整体素质不高一些,多数企业管理落后,不符合相应的规模经济,通过行业协会的指导和协调,改变盲目发展的情况。

江苏,浙江,上海,以相对集中的3家企业可以考虑使用该合资企业,合作和收购的中部和西部地区迁移到找到一个更广泛的空间,生存和发展的企业。工业企业走强强联合之路的行业,培养了一些技术实力,与知名品牌和自主知识产权的大公司,企业集团。形成了自己的特色产品和特色服务。干燥设备制造企业在中国的相对较低的创新能力,推出拥有自主知识产权的新技术,新产品,少数几家公司,这是干燥的重要原因发展缓慢。现有有几十个高校,科研院所从事研究和开发的干燥技术,位于中国东部,西部,南部,大部分知识成果没有有效地转化为现实生产力。企业成为技术创新的主体应该是直接关系到这些大学和研究机构的各种形式的联合,因此,合理的资源分配和使用,有效地培育和发展创新能力的企业。

展望未来的竞争力的干燥设备行业的重点将集中在产品质量,技术,服务和价格。类型的设备在干燥,热空气将干大气加热设备,真空干燥设备为基础的,其他设备,如远红外干燥,闪蒸干燥机微波干燥设备和其他特殊领域的用户也将逐步扩大的数目应用。在食品,药品干燥,真空冷冻干燥设备的大型标准设备的需求将会增加,相结合的功能(如制粒干燥,干燥-过滤器)设备的需求将增加,高自动化干燥设备在一些应用将受到欢迎。此外,出现了干燥设备将会有越来越多的重视质量,耐腐蚀材料的干燥设备和使用性能可靠,将特别关注的用户。干燥设备行业开始进入较成熟的发展阶段,能够更好地满足各个领域用户的实际需求,价格的国外同类产品,只有1/3,这使干燥设备在中国比在市场竞争中进口设备的价格具有明显的优势;另一方面,较大的干燥设备,大多数还涉及现场安装,调试和售后服务工作,为国内用户,国产设备的进口设备选择更多的选择和更方便。在国际市场上,中国加入世贸组织,干燥设备更有利于扩大出口。中国的主要出口产品是真空干燥设备干燥设备,干燥设备,振动,中小型粮食,农业,林业,食品和本地产品干燥设备,年出口量超过100

辆,主要出口地区东南亚国家和其他发展中国家,并敞开了大门欧洲和美洲市场。中国的出口占了干燥设备的比例总额的不到5%,专家预测,“十五”期间出口产品的干燥设备干燥设备在国内的总份额将超过10%。国际竞争,干燥设备制造企业在中国的主要竞争对手是丹麦,瑞士,英国,德国,美国和日本。竞争对手相比,优势在中国干燥设备很便宜,这主要是由于不足,控制自动化程度的产品,外观质量,功能集和组合的领域得到进一步改善。因此,国内干燥设备生产企业应充分利用中国加入WTO的机遇,加强技术交流,同外国的国家学习和借鉴外国先进的干燥设备,干燥设备,以加速提高中国的自动化程度和控制,外观的质量,功能集和组合,并缩小与国外的产品,来改善我们的产品在用户的信任,因此,干燥设备在中国,不仅在国内市场,而且在国外市场可以进行。我国正越来越多的生产干燥设备品种,扩大规模,水平和质量的产品迅速增加,越来越多的市场竞争力。特别是,中国政府支持出口的有关政策,生产干燥设备为国内企业创造良好的外部条件,这表明,中国的发展前景良好的干燥设备。

干燥机单位热耗和干燥能力折算

热耗和生产能力是粮食千燥机试验的重要指标,但是由于试验时环境条件、根食条件和千

燥介质条件的多变性,试验结果往往没有可比性,因此必须将干燥机的性能试验数据折算到一个公认的标准条件才能进行比较和标定。本文以粮食千燥机的试验数据为墓础,参考国内外根食干燥机试验标准,时根食千燥单位热耗和生产能力折算系数进行了研究和探索;总结了四种折算方法,分析了粮食干燥机在不同的环境和谷物条件下折算系数的计算方法和步骤,阐述了各种方法的优缺点,提出了折算方法的初步的建议,为干燥机试验数据的可比性和完善干燥机试脸标准提供了依据。

我国是世界上最大的粮食生产国,粮食年产总量达5亿吨。每年由刊文获季节天气阴雨以及干燥设备不足而造成粮食的霉变损失高达5%。我国的粮食干燥设备和技术,经过30多年的发展,已具有一定的水平,在农业现代化建设中发挥了重要作用。但是,与我国对干燥设备的需求相比,还存在较大的差距。以水稻烘干为例,日本全国水稻干燥机的保有量已达110万台,稻谷干燥机械化水平达90%以上,而我国机械烘干的稻谷还不到l%,稻谷干燥设备不到1万台。造成上述差距的原因是多方面的,其中粮食干燥技术标准的研究工作落后也是一个重要原因。目前我国仍采用80年代国家标准(如粮食烘干机试验方法,粮食烘干技术条件),其中的某些条件和指标已不适应当前干燥机发展的需要,例如现有标准中缺乏干燥机生产能力和单位热耗的折算方法,有关干燥品质的指标也还不够完善合理,有些指标未规定统一的测试方法,有些指标比较落后,因而制约了粮食干燥新设备、新工艺的开发、推广和应用。国际上粮食干燥技术标准已经修订了多次,如501巧20一l:1997;农用粮食烘干机烘干性能的测定,如15011520一2:2印l。在这些新的干燥技术标准中都有主要干燥性能参数的折算方法,采用的模型和公式多达数十个〔由于它是一个比较复杂和难解决的问题,在我国粮食干燥技术标准中尚无这方面的规定。

粮食干燥是一个非常复杂的加工过程,影响因素多,干燥条件多变,其中的影响因素有介质参数(如热风温度、热风风量和热风湿度)、粮食参数(如粮食类别、粮食水分、粮食温度和粮食流量)、环境条件(如大气温度和大气湿度)、干燥工艺(如顺流干燥、逆流干燥、横

流干燥、混流干燥)以及干燥机的结构参数。一台粮食干燥机可能在很低的环境温度下(零下20℃)工作,也可能在高达30℃的环境条件下工作,其工作条件完全不同,甚至相差甚远二所以必需将测得的性能指标进行折算,折算到一个统一的公认的干燥条件。该项标准的研究制定,需要针对不同环境条件、粮食条件,女[I大气温度、大气相对湿度、粮食初始水分、终了水分、降水幅度、粮食类别、品质、加热方式、热风温度、热风相对湿度、热风量、干燥方式等一系列参数进行大量的试验验证,要形成正式的国家标准难度比较大。最有可能的成果方式是完成研究报告,给出并非完全准确的折算系数,作为指导性技术文件公布试行,然后再进行比较和评价。因此,干燥机生产能力和单位热耗的折算是一个十分重要的标准。单位耗热量和烘干能力是粮食烘干设备的关键指标。对于不同类型或同一类型的粮食烘干设备,当其验收工况条件存在差异时,都必须通过有关折算系数将其折算到标准工况条件下,才能进行单位耗热量和烘干能力的判定、比较。我国尚无统一的烘干单位耗热量与烘干能力折算系数规范。本课题将对折算系数进行研究,研究并制定折算系数的统一国家标准。粮食烘干单位热耗和烘干能力折算一直是困扰对粮食干燥机进行性能评价、鉴定的重要问题;多年来由于研究工作量大和科研经费缺乏,此问题一直没有解决。黑龙江农垦科学院提出了一个解决方法,但由于不能适用于多种干燥工艺和机型以及标准条件和机型选的不够合理而未能成为国家标准。笔者在深入分析和研究国内外现有干燥技术研究成果的基础上,通过试验和理论分析,确定了折算的标准烘干条件,给出了各种烘干机型和不同粮食干燥时的折算系数的计算方法和使用条件。

1粮食干燥机热耗和生产能力的折算方法

1.1计算机模拟法

粮食干燥机使用中的一个常见问题是粮食的初水分经常变化,为了达到要求的终水分,需要经常调整粮食流量(生产能力),为了比较粮食干燥机性能的好坏也需要知道干燥机的生产能力,因此,必须进行折算。我们认为利用计算机模拟方法进行干燥机热耗和生产能力的折算是一种较好而且可行的方法,即建立粮食千燥过程的数学模型,编写干燥模拟程序,在计算机上进行模拟计算,最后得出折算系数。

此法的优J点是通用性好,可以i}·算不同机型(顺流,逆流,横流和混流干燥机)和不1司粮食(玉米,小麦,水稻)的干燥性能和折算系数;!万r对任何干燥条件进行折算,计算速度较快;各种一!几燥工艺都可以使用。

该方法的缺点是模拟方法还不够普及,掌握该方法需要有一定的计算机基础,干燥机使用人员一般没有这种软件,此外,干燥过程的数学模型还不够精确。以后应加强这方面的研究、模拟方法的计算步骤如下:

l)建立干燥过程模型;

2)开发各种粮食干燥工艺的计算机模拟程序;

3)利用模拟程序计算标准条件下干燥机的热耗和生产能力;

4)模拟计算非标准条件下的热耗和生产能力;

5)计算热耗和生产能力折算系数;

6)对干燥机性能进行折算。

1.2 ISO11520一2国际标准法

150(Intemational Standard Oganization)国际干燥机性能试验标准给出了一种折算方法,它利用4个校正系数K1、K2、K3、K4对试验所得水分蒸发率进行折算。各校正系数的意义如下:

K1——水分校正系数,K1=(8.971一0.05578Td)X.+1.139InTd一4.652

K2——热风温度校正系数,K2=(0.00565-0.000061Td)+0.000915Td+0.915

K3——空气湿度校正系数,K3=1.0175一0.01072(l一Φ)

K4——风量校正系数,K4=(0.022Td一3.445)a/V一0.271InTd+2.608

1.3黑龙江省级标准

黑龙江省农垦科学院农业机械鉴定总站于1989年提出了一种粮食干燥单位热耗和生产能力

折算方法,标准条件为降水幅度5%(20%~巧%)、热风温度93℃、环境温度20℃、环境相对湿度为60%,折算方法比较简单易行。它的主要缺点是只适用于横流式粮食干燥机和玉米小麦的烘干,有些系数的选择缺乏依据。此外,它还考虑了热风炉间接加热和油炉直接加热及冷却段的影响。具体计算方法如下:

1.3.1单位热耗的折算

标准条件下谷物干燥机的单位热耗量按下式计算:

Qrb=Qr/(K0*K1)

式中Qrb一标准条件下的单位热耗,MJ/kg Qr一试验时的实测热耗,MJ八g; K。一大气条件折算系数,可根据大气温度和相对湿度查表求出,见“粮食干燥单位热耗及生产能力折算系数”标准;K1一粮食条件折算系数,在相同的环境条件下,根据粮食的初水分和终水分查表求出。

1.4数据表法

通过热力计算,把各种条件下参数变化时的折算系数列成表格,再用插入法折算,标准给出两种表格,一种是大气条件折算表,另一种是粮食条件折算表,从表中查出两个系数后,其乘积即为总折算系数。

本文在深入分析和研究国内外现有研究成果的基础上,分析和探讨了折算的标准条件,给出了各种烘干机型和不同粮食干燥工艺的折算系数的计算方法和使用条件。

2干燥参数折算标准条件的确定

为了对比粮食干燥机在不同干燥条件下的性能,必须确定一个公认的标准条件;在非标准条件下进行干燥作业或试验时必须将干燥过程测得的数据都换算到标准条件,然后才能进行干燥性能的比较。所谓标准条件,一般包括降水幅度、环境温度、环境湿度、热风温度和干燥机类型等。不同国家制定的标准条件是不同的(见表1)。英国小麦干燥时的标准条件定为初水分20%、终水分巧%、环境温度20℃、环境湿度为80%。我国黑龙江省规定干燥玉米的标准条件为降水幅度5%(20%一巧%)、热风温度90℃、环境温度20℃、环境相对湿度为60%。法国对不同季节规定了不同的标准条件。俄罗斯规定降水幅度6%、环境温度ro℃。我国尚无粮食干机性能折算的国家标准。有些单位正在对它进行研究,不久可能会发布并列人国家标准。

3粮食条件的折算系数

干燥机常识与工作原理

干燥机常识 冷冻式干燥机(以下简称冷干机)概述 经过空气压缩机压缩、后部冷却器冷却、气水分离器分离、缓冲罐稳压后的压缩空气一般都处于饱和状态,其相对湿度为100%,而且含有油、固体颗粒等杂质,这种压缩空气是不能直接使用的,需要进行干燥净化处理。 工业上曾有三种方法用于压缩空气的干燥处理,它们的原理分别是: 1) 利用吸附剂对压缩空气中的水蒸气具有选择性吸附的特性进行脱水干燥。如吸附式压缩空气干燥机。 2) 利用某些化学物质的潮解特性进行脱水干燥。如潮解式压缩空气干燥机。 3) 利用压缩空气中水蒸气分压由压缩空气温度的高低决定的特性进行降温脱水干燥。如冷冻式压缩空气干燥机。 在上述三种压缩空气干燥设备中,潮解式压缩空气干燥机已基本淘汰;而冷干机和吸附式压缩空气干燥机(以下简称“吸干机”)正在被广泛应用。 冷干机与吸干机相比具有下列特点: 1)没有压缩空气消耗——大部分用户对压缩空气露点要求并不是很高,如使用冷干机可比使用吸干机来得节省能源; 2)无阀件磨损——吸干机有切换阀的问题,虽然冷干机中也有阀件,但是基本无磨损问题; 3)不需要定期添加、更换吸附剂; 4)运转噪音低;吸干机有吸附塔卸压的噪声,在空压房里,一般听不到冷干机的运行噪声; 5)日常维护较简单,只要按时清洗自动排水器滤网即可; 6)对气源的前置预处理要求不高,一般的油水分离器即可满足冷干机对进气质量的要求; 与吸附干燥机相比,经冷干机处理后的压缩空气“压力露点”只能达到0℃以上,因此气体的干燥深度远不及吸干机。在一些的应用领域中,用冷干机是达不到工艺对气源干燥度要求的,如气动仪表、电子工厂等。 J-CD型冷干机(本公司产品)按冷凝器的冷却方式分有风冷型、水冷型两种;按进气温度高低分有高温进气型(80℃以下)和常温进气型(45℃以下);按工作压力分有低压型(0.3-0.6MPa)、普通型(0.6-0.95MPa)和中、高压型(≥1.0MPa)三类。 冷冻干燥机的工作原理 冷冻干燥是利用升华的原理进行干燥的一种技术,是将被干燥的物质在低温下快速冻结,然后在适当的真空环境下,使冻结的水分子直接升华成为水蒸气逸出的过程. 冷冻干燥得到的产物称作冻干物(lyophilizer),该过程称作冻干(lyophilization)。 物质在干燥前始终处于低温(冻结状态),同时冰晶均匀分布于物质中,升华过程不会因脱水而发生浓缩现象,避免了由水蒸气产生泡沫、氧化等副作用。干燥物质呈干海绵多孔状,体积基本不变,极易溶于水而恢复原状。在最大程度上防止干燥物质的理化和生物学方面的变性。

真空干燥机工作原理

1真空干燥机的基本工作原理 干燥过程中,液体水分汽化有轴蒸发和沸腾两种方式。水在沸腾时的汽化速度比在蒸发时的汽化速度快得多,水分蒸发变成蒸汽可以在任何温度下进行。水分沸腾变成蒸汽,只能在特定温度下进行,但是当降低压强的时候,水的沸点也降低。例如,在19 .6kPa 气压下,水的沸点即可降到60°C。真空干燥机就是在真空状态下,以蒸汽为热源,通过传导加热方式供给革中水分足够的热量,使蒸发和沸腾同时进行,加快汽化速度。同时,抽真空又快速抽出汽化的蒸汽,并在革周围形成负压状态,革的内外层之间及表面与周围介质之间形成较大的湿度梯度,加快了汽化速度,达到快速干燥的目的。 真空干燥过程受供热方式、加热温度、真空度、冷却剂温度、革的厚度和初始温度及所受压紧力大小等因素的影响,通常向革供热有热传导、热辐射和两者结合三种方式。 真空干燥机采用热传导法,真空干燥转鼓采用热辐射法。采用真空干燥机干燥时,最适合的真空干燥机干燥条件是:加热板表面温度为75°C 左右,可使干燥较快,时间较短,革机积收缩较小,革的收缩温度不易降低;真空度为(50~100)*133.32Pz,干燥过程较缓和,对具空干燥机的密封要求低,设备配置的经济效益较好。压紧压力为2.94~39.2kPa 可使革与加热板表面紧密接触,传热效果好,各处温度相同,干燥均匀,干燥后革身平展,结构紧实,收缩较小。冷却剂温度为5~15°C,可保持革面和冷凝器间有恒定的蒸汽。因此,冷凝器应处于真空室外,且尽量靠近真空室,以免革未覆盖住的加热板面辐射而使

冷凝水蒸发,影响干燥效率。同时,革本身的厚度和初始含水量对于干燥过程影响也较大。例如。铬鞣牛皮革厚度增加0.2mm,干燥时间就增加3min。因此生产中应按厚度不同分批,选择好干燥时间,才能达到规定的最终含水量。为了保证真空干燥机达到要求的工作参数,机器结构要从生产实际情况出发,进行设计确定。 2真空干燥机的基本工作原理2 真空干燥机系由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。它的工作原理是将被干燥的物品先冻结到三相点温度以下,然后在真空条件下使物品中的固态水份(冰)直接升华成水蒸气,从物品中排除,使物品干燥。物料经前处理后,被送入速冻仓冻结,再送入干燥仓升华脱水,之后在后处理车间包装。真空系统为升华干燥仓建立低气压条件,加热系统向物料提供升华潜热,制冷系统向冷阱和干燥室提供所需的冷量。 设备采用高效辐射加热,物料受热均匀;采用高效捕水冷阱,并可实现快速化霜;采用高效真空机组,并可实现油水分离;采用并联集中制冷系统,多路按需供冷,工况稳定,有利节能;采用人工智能控制,控制精度高,操作方便。对冻干制品的质量要求是:生物活性不变、外观色泽均匀、形态饱满、结构牢固、溶解速度快,残余水分低。要获得高质量的制品,对冻干的理论和工艺应有一个比较全面的了解。 冻干真空干燥工艺包括预冻、升华和再冻干三个分阶段。合理而有效地缩短冻干的周期在工业生产上具有明显的经济价值。真空干燥机

气流干燥管

◎气流干燥管 8、电气绝缘完好,设备外壳必须有可靠的保护接地或保护接零。 9、真空泵应经常更换真空泵油。 10、取出被处理的物品时,如处理的是易燃物品,必须待温度冷却到低于燃点后,才能放入空气,以免发生氧化反应引起燃烧。 工作原理 湿物料经输送机与加热后的空气同时进入干燥器,松散的粉粒状物料分散悬浮于热空气中,二者充分混和,在气流夹带的过程中瞬间脱除水分。通过气流干燥器管径的大小交替变化,使得物料颗粒在干燥的目的、干燥后的成品从旋风分离器排出,一小部分飞粉由二级旋风除尘器或布袋除尘器得到回收利用根据干燥作业形式不同,有以下四种系列产品:1、F系列2、z系列3、x系列4、sz系列。F型是负压操作,物料经过风机带有粉碎作用,X型为多级尾气循环型,SZ型是集闪蒸干燥与气流干燥为一体的强化型气流干燥器,式我公司根据用户要求设计的新型干燥设备。 产品特点 ● 适用于粒径范围在5um~5mm之间的粉粒状物料表面水的干燥; ● 干燥强度大、设备投资省:占地面积小。 ● 自动化程度高、产品质量好,干燥时间极短,产品不与外界接触,污染小,质量好。 ● 设备成套供应、热源自由选择,用户可根据需要添置除尘器或其他辅助设备。 在加热方式选择上,气流干燥设备有较大的适应性,用户可以根据所在地区的条件选用蒸汽、点、热风炉加热、同时又可根据物料耐热温度(或热风温度)选择:≤150℃时。可选用蒸汽加热;≤200时,电加热(或蒸汽加热,电补偿或导热油加热);≤300℃时,热媒热风炉;≤600℃时,燃油热风炉。 技术咨询及试验 气流干燥式一种批量大、热效率较高的快速连续瞬间干燥设备,虽然其适用于多种物料的干燥,如糯米粉、糟渣类、南瓜子皮等饲料颗粒、A.B.C中间体、白炭黑、苯吡唑酮、茶粕、

喷雾干燥机原理及组成和设备的日常操作及注意事项

喷雾干燥机是PTC热敏陶瓷生产工艺中的重要设备,该设备价格较高,组成复杂,使用和维护难度较大。设备的良好运转,不仅能够保证PTC热敏陶瓷生产的正常进行,还可以适当延长设备使用寿命,降低生产成本,因此对喷雾干燥机的正确操作以及加强维护保养十分必要。 1 喷雾干燥机原理及组成 造粒是PTC 热敏陶瓷片生产过程中十分重要的工序,粒料的质量直接影响PTC陶瓷片的外观、机械性能以及阻温特性。造粒是指在磨细的粉料中加入一定量的粘合剂,均匀调和后使之形成颗粒状粉体,这种粉料具有较好的流动性与压延性,以便在压片工序中可以得到具有较好强度、不易分层开裂的片子。在工业化生产中采用喷雾干燥法造粒,其基本原理是把带有粘合剂的粉料,用喷雾器喷入造粒塔中进行雾化,塔中的雾滴被塔中热气流干燥成颗粒状粉体,然后从干燥塔底部卸出。 压力式喷雾干燥机主要由供料系统、干燥系统、除尘系统、加热系统和电器系统组成,而每一系统又包括一些相关设备。 供料系统由搅拌桶、过滤器、隔膜泵和喷枪等组成。球磨好的二次料浆从球磨机转移到搅拌桶中,经过滤器被隔膜泵抽取并传送,然后经过喷枪进入干燥塔内。 料浆由喷枪喷嘴进入干燥塔开始了喷雾造粒干燥过程,具体过程分为三个阶段: (1)料浆雾化。料浆由供料系统中的隔膜泵以一定压力从喷嘴压入干燥塔,压力的能量转换为动能,料浆由下向上从喷嘴喷出,形成一层高速的液膜,液膜随即分裂为液滴。雾化产生的液滴尺寸与压力成反比,喷嘴的生产能力与压力的平方成正比。 (2)雾粒干燥成球。雾粒与热空气以混合流的方式工作,热空气是通过顶盖上的热空气分配器进入塔内,热风分配器产生一股向下的流线空气气流,雾滴由下向上喷入热空气流。雾滴由于表面张力作用而形成球形,同时由于雾滴具有很大的表面积,其中水分迅速蒸发干燥,而最终收缩形成干燥的球形颗粒粉料。 (3)颗粒粉料卸出。形成的球形颗粒粉料在干燥塔内逐渐沉降,与热空气分离,塔下部的漏斗型腔使颗粒料汇集并从出料口卸出。较细的颗粒料与干燥空气一起由与漏斗形上部相连的抽风机抽取而进入除尘系统。为干燥塔输送热空气的送风机、干燥塔以及抽风机组成了干燥系统。 除尘系统由高效旋风分离器、布袋除尘器、离心风机等组成。抽风机将较细的颗粒料与干燥空气一起送入高效旋风分离器。经过有效分离,较细颗粒料进入分离器底部的收集筒回收,所剩的含有极少量微细颗粒料的废气由离心风机吸入布袋除尘器经过再次除尘收集,实现了废气的无害化处理,最后的废气从烟囱排出。 此外,电加热器和燃气机热风炉等组成的加热系统为干燥塔提供热空气。电器控制柜以及安装于进风口和出料口监测温度的现场传感器等组成的电器系统对整个喷雾干燥机的各个主要环节进行监测和控制,保证整个设备的正常运行。 2 日常操作及注意事项 在日常生产过程中,开动喷雾干燥机设备前应进行必要的准备工作。首先检查各个装置的轴承和密封部分连接处有无松动,各个机械部件的润滑油状况以及各个水、风、浆管阀口等是否处于所需位置。然后接通电源检查电压和仪表是否正常,最后检查料浆搅拌桶内料浆的量以及浓度等情况,若出现问题应及时排除。 随后依次开启送风机、抽风机,接着打开加热开关开始升温。当出料口温度达到设定温度时(一般为130℃左右),启动料泵和除尘系统。当泵压达到2MPa后,打开喷枪开始造粒。设备运行后,应及时观察雾化情况及料泵工作状况,若出现堵枪现象需立即清洗或更换喷嘴。设备正常运行后,还应定时收料、定时检查各系统运行情况,记录各工艺参数,并注意清理振动过滤筛。

空气净化静电吸附原理及静电除盐雾试验装置的研制

空气净化静电吸附原理及静电除盐雾试验装置的研制 摘要:海洋石油平台透平机组进气系统的空气净化均采用物理过滤方法,空气 中以溶胶状存在的盐雾不可避免地会造成滤芯寿命大幅度降低。根据静电吸附原理,采用电晕线和集电极管束结构、运用全生命周期经济效果分析方法设计、研 制的静电吸附装置能够提高透平进气质量,除盐雾效率可达94%(质量分数), 从而提升滤芯使用寿命。简要介绍了静电吸附原理,较为详细地论述了静电除盐 雾试验装置的研制及除盐雾效果、透平进气系统静电吸附实用装置的研制,最后 阐明了采用全生命周期经济效果分析方法确定吸附实用装置结构参数的过程及该 装置的使用效果。 关键词:透平机组;进气系统;静电吸附装置;设计 经前期调研,静电吸附技术在陆地火力发电烟气除尘、石化除酸雾等领域已 得到广泛的应用,这为静电吸附原理在除盐雾方面的应用提供了借鉴。本文采用 问题导向、技术移植的研究方法,将静电吸附原理成功应用于除盐雾领域,研制 出了用于透平进气系统的空气净化静电吸附装置。采用电晕线和集电极管束结构 研制的静电吸附装置在海洋石油平台已成功应用。经分析该装置的应用能够提高 透平进气质量,从而提升滤芯使用寿命(意味着滤芯成本降低),降低机组故障率,对保障平台设施的正常生产、降低运维成本具有积极作用。 1静电吸附装置研制 静电吸附装置采用电晕线与集电极管束的结构设计方法,由电晕线(阴极系统)、集电极管束(碳纤维管,即蜂窝阳极系统)、高压直流电源等部件组成, 从而建立了静电吸附所需的静电,正、负极必备条件。电晕线和集电极管束如图 1所示。 图1电晕线和集电极管束 1.1静电除盐雾工作原理 利用可调高压直流电源(10-70 kV)在集电极和电晕线之间产生一个非均匀电场。电压值改变时,电晕线周围的电场强度随之改变,当电场强度接近空气的击 穿电场强度时气体发生电离,形成大量的正离子和自由电子。自由电子随电场向 正极漂移过程中和盐雾中性分子或颗粒发生碰撞,带上负电的盐雾和尘埃在电场 的作用下向集电极管束方向移动直至被吸附。 1.2静电除盐雾试验装置的研制及除盐雾效果 研制的一套静电除盐雾试验装置,该装置采用超声波盐雾发生器模拟沿海盐 雾环境,离心风机模拟透平进气系统,通过在装置进出口处的视镜观察除盐雾效果。通过试验,发现除盐雾效果良好,按照GBT 10593.2-2012《电工电子产品环 境参数测量方法盐雾》对环境盐雾进行采样、分析和计算其盐雾含量和盐雾沉降率,并经第三方检测机构检测,确认其除盐雾效果可达94%(质量分数)以上。 1.3透平进气系统静电吸附实用装置的研制 在对静电除盐雾试验装置进行除盐雾论证及效果验证的基础上,针对海洋石 油平台透平机组进气量、空间限制等情况,研制了一套静电吸附装置。目前海洋 石油平台透平机组绝大多数为进口设备,国内外透平进气滤器均选用物理过滤法,将静电吸附装置应用于透平进气滤器进行吸附空气中的盐雾属首次。 2静电吸附实用装置结构参数的确定及装置使用效果 经过实践检验、论证,静电吸附实用装置(以下简称静电吸附装置)的除盐

干燥机工作原理

工作原理 主要应用领域 使用特点 技术特征 操作流程 工作原理 湿物料自加料器连续地加到干燥器上部第一层干燥盘上,带有耙叶的耙臂作回转运动使耙叶连续地翻抄物料。物料沿指数螺旋线流过干燥盘表面,在小干燥盘上的物料被移送到外缘,并在外缘落到下方的大干燥盘外缘,在大干燥盘上物料向里移动并从中间落料口落入下一层小干燥盘中。大小干燥盘上下交替排列,物料得以连续地流过整个干燥器。中空的干燥盘内通入加热介质,加热介质形式有饱和蒸汽、热水和导热油,加热介质由干燥盘的一端进入,从另一端导出。已干物料从最后一层干燥盘落到壳体的底层,最后被耙叶移送到出料口排出。湿份从物料中逸出,由设在顶盖上的排湿口排出,真空型盘式干燥器的湿气由设在顶盖上的真空泵口抽出。从底层排出的干物料可直接包装。通过配加翅片加热器、溶剂回收冷凝器、袋式除尘器、干料返混机构、引风机等辅机,可提高其干燥的生产能力,干燥膏糊状和热敏性物料,可方便地回收溶剂,并能进行热解和反应操作。

主要应用领域 干燥热解煅烧冷却反应升华 (一)有机化工产品 聚氯乙烯树脂、聚四氟乙烯树脂、反丁烯二酸、蒽醌、硝基蒽醌、对氨基苯酚、三聚氰胺、氰尿酸、对氨基苯磺酸、抗氧剂168、色酚As、硬脂酸盐、苯胺、硝基苯胺、双季戊四醇、氯化石蜡、甲酸钙、三乙烯二胺、苯亚磺酸钠、间苯二甲酸、二甲酯五磺酸钠、硫脲、油溶性苯胺黑染料、酸性黑染料等有机化工原料和中间体。 (二)无机化工产品 轻质碳酸钙、活性碳酸钙、纳米级超细碳酸钙、碳酸镁、氢氧化铝、白灰黑、碳酸锶、碳酸钡、碳酸钾、立德粉、保险粉、硫酸钡、硫酸钾、微球催化剂、氢氧化镁、硫酸铜、硫酸镍、镍酸胺、钼酸钠、氯化钠、冰晶石、氧化铁红、氢氧化锂、氢氧化镍、氢氧化锆、磷酸钙、硫磺等。 (二)医药、食品 氨苄青毒素、邓盐、左旋苯甘氨酸及中间体、头孢氨噻、头孢三嗪、安乃近、西咪替丁、维生素B12、维生素C、药用盐、药用氢氧化铝、药用偏硅酸镁、咖啡因、茶、花提取物、银杏叶、巧克力粉、淀粉、玉米胚芽等原料及医药中间体。 (三)饲料、肥料 碳酸钾、生物钾肥、蛋白饲料、饲料用金霉素、菌丝体、麸皮、酒糟、粮食、种子、除草剂、纤维素、饲料磷酸氢钙等。

空气冷冻干燥机

◎空气冷冻干燥机 ☆常温高压的液体冷媒流过膨胀阀,因为膨胀阀的节流作用压力降低,使得冷媒变成常温低压的液体。 ☆常温低压的液体进入蒸发器后 一、工况条件与技术指标 Working condition and technical data 进气温度(Inlet temperature): ≤80℃ 冷却方式(Cooling method): 风冷(Air-cooling) 进气压力(Inlet pressure): 0.4~1.0MPa 压力损失(Pressure drop): ≤0.03MPa 压力露点(Dew point): 2~10℃ 制冷剂(Refrigerant): R22 二、伽利略冷冻式干燥机产品特点: 1)人性化设计:科学合理结构设计,外型新颖,美观大方,操作、维护、保养方便,安装简便(无基础)。2)机器制冷系统及空气系统经专家结合全国各地不同工况的差异性进行综合准确计算,设计参数留20%以上的裕量。 3)制冷压缩机:采用国际知名品牌,如:松下、谷轮、泰康、美优乐公司等高性能制冷压缩机,低震动、低噪音、性能可靠、节能高效,确保整机的使用寿命长。压缩机防护等级为IP54级。 4)特殊热交换设计,可降低入口温度,并提高出口空气温度,可避免管路产生水滴,影响生产环境。5)多种形式(单、集、联控、PLC、变频等)的控制线路。适合不同用户的选用。 6)完善的智能保护装置:特设冷媒高低压保护、相序缺相保护、过低温保护以及自动融霜、故障自动停机、自动报警、电机过热保护等保护功能。 7)自动排水器按需设置,除水效率高。浮球式、电子定时可根据机器工况选择设置。 8)本机组采用独特的旋风式分离器。可将冷凝水从空气中彻底分离出来,并在各种气流条件下防止液态水份随压缩空气带出,保持高效的运行,达到最佳之干燥除水目的。 三、型号规格与性能参数 Model,size & technical data

干燥设备原理动图

最全最专业的干燥设备原理动图(二) 发布日期:2017-11-15 来源:粉体技术网浏览次数:142 干燥过程就是脱除表面水分,同时发生传热和传质的单元操作过程。干燥设备在石化企业中的应用非常普遍,如今更是在医药,食品,造纸等跟生活密切相关的行业中得到广泛应用。完成干燥任务的机械设备通常是由多台装置构成的系统,但往往称为干燥机或干燥器。例如,喷雾干燥系统称为喷雾干燥机或喷雾干燥器,冷冻干燥设备系统称为冷冻干燥机或冷冻干燥器等。 喷雾干燥器 20世纪初期,乳品生产开始应用喷雾干燥机,为大规模干燥液态物料提供了有力的工具。 喷雾干燥器是将溶液、浆液或悬浮液通过喷雾器而形成雾状细滴并分散于热气流中,使水分迅速汽化而达到干燥的目的。热气流与物料可采用并流、逆流或混合流等接触方式。这种干燥方法不需要将原料预先进行机械分离,且干燥时间很短(一般为5~30s),因此适宜于热敏性物料的干燥,如食品、药品、生物制品、染料、塑料及化肥等。

LPG高速离心喷雾干燥机 喷雾干燥的优点是干燥速率快、时间短,尤其适用于热敏物料的干燥;可连续操作,产品质量稳定;干燥过程中无粉尘飞扬,劳动条件较好;对于其它方法难于进行干燥的低浓度溶液,不需经蒸发、结晶、机械分离及粉碎等操作便可由料液直接获得干燥产品。 其缺点是对不耐高温的物料体积传热系数低,所需干燥器的容积大;单位产品耗热量大及动力消耗大。另外,对细粉粒产品需高效分离装置。 流化床和气流式干燥机 20世纪40年代开始,随着流化技术的发展,高强度、高生产率的沸腾床和气流式干燥机相继出现。 (1)流化床干燥器

流化床干燥器又称沸腾床干燥器,是流态化技术在干燥操作中的应用。流化床干燥器种类很多,大致可分为:单层流化床干燥器、多层流化床干燥器、卧式多室流化床干燥器、喷动床干燥器、旋转快速干燥器、振动流化床干燥器、离心流化床干燥器和热式流化床干燥器等。

振动流化床干燥机的结构特点及工作原理

振动流化床干燥机的结构特点及工作原理 每款干燥设备都各有特点,其结构原理以及加工物料种类也各不相同,所以在选择购买干燥设备时,首先要详细了解设备的技术资料,参照详细资料看到底适不适合自己所要加工行业的需求,这对于选择一款合适设备是非常重要的。下面日宏佳尔特粉体设备公司,就为大家介绍一下振动流化床干燥机,以便大家参照购买。 振动流化床干燥机结构特点 振动流化床干燥机是由振动电机产生激振力使机器振动,物料在给定方向的激振力作用下跳跃前进,同时床底输入的热风使物料处于流化状态,物料颗粒与热风充分接触,从而达到理想干燥效果。物料从料口进入,振槽上的物料与振槽下部通入的热风正交接触传热,湿空气由引风引出,干料由排利口排出。 振动流化床干燥机工作原理 目前应用较广的卧式振动流化床干燥机,形状和基本结构与普通卧式流化床干燥机很相似。区别在于振动流化床整个机体通过弹簧支撑在底座上,多孔板稍向出料端倾斜,机体一侧或两侧装有振动电机。物料依靠机械振动和穿孔气流双重作用流化,并在振动作用下向前运动。 振动流化床干燥机具有非常突出的优点: (1 )在很低的气速下可获得均匀的流化,从而大大降低了能耗、颗粒间的磨损和粉尘夹带; (2 )物料停留时间分布均匀,几乎可以认为是“活塞式流动”,并且停留时间易于调节控制,因此可获得非常理想的产品含水率。 振动流化床干燥机产品特点 1、物体受热均匀,热交换充分,干燥强度高,比普通干燥机节能30%-50% 2、振动源是采用振动电机驱动,运转平衡、维修方便、噪音低、寿命长 3、流态化均匀,无死空隙和吹穿现象,可以获得均匀的干燥、冷却、增湿的制品 4、可调性好,适应面宽,料层厚度和在机内移动速度以及全振幅变更均可实现无级调节 5、对物料表面损伤小,可用于易碎物料的干燥,物料颗粒不规则时亦不影响工作效果 6、采用全封闭式的结构,有效地防止了物料与外界空气的交叉感染,作业环境清洁 本文主要讲了振动流化床干燥机的工作原理及技术特点,通过介绍让我们更加深入的了解了振动流化床干燥机,希望这些知识,对于大家以后购买及使用中有所帮助。

盐雾腐蚀实验

盐雾腐蚀实验主讲教师:

一、实验目的 ?1.了解盐雾腐蚀的基本原理以及盐雾腐蚀箱的结构与使用。 ?2. 掌握盐雾气氛中金属腐蚀的试验方法。

二、实验原理 盐雾实验是评价金属材料的耐蚀性以及涂层对基体金属保护程度的加速试验方法.该方法已广泛用于确定各种保护涂层的厚度均匀性和孔隙度,作为评定批量产品或筛选涂层的试验方法。近年来,某些循环酸性盐雾实验已被用来检验铝合金的剥落腐蚀敏感性。盐雾试验亦被认为是模拟海洋大气对不同金属(有保护涂层或无保护涂层)最有用的实验室加速腐蚀实验方法。盐雾试验一般包括:中性盐雾(NSS)试验、醋酸盐雾腐蚀(ASS)试验及铜加速的醋酸盐雾(CASS)试验。中性盐雾试验是最常用的加速腐蚀试验方法。

1.中性盐雾试验 本试验适用于很多金属和电镀层的质量控制。有孔隙的镀层可作极短的盐雾喷雾,以免由于腐蚀而产生新的孔隙。根据美国材料试验协会标准,中性盐雾试验条件为:5%(质量比)NaCl,95%(质量比)蒸馏水,喷雾溶液的PH值:6.5-7.2,雾化压缩空气的压力:0.7-1.8Kg/cm2,喷雾箱的温度:35±1℃,盐雾的降落速度:1.6- 2.5ml/h·dm2。

2. 醋酸盐雾试验 为了缩短试验时间,盐溶液中加入醋酸即 为醋酸盐雾试验法。它适用于无机及有机 镀层和涂层(黑色及有色金属)根据美国 材料试验协会标准,醋酸盐雾试验条件为:5%(质量比)NaCl,95%(质量比)蒸 馏水,冰醋酸(CH 3COOH)按雾液的PH 值加溶液PH值为3.1-3.3(25℃),溶液容器的温度54-57℃,喷雾箱的温度35±1℃,雾化压缩空气压力0.7- 1.8Kg/cm2,盐雾降落速度0.7~ 2.0ml/h·dm2。

脉冲气流旋流干燥机

◎脉冲气流旋流干燥机 电源缺相,加热器不能全部加热,处理方法是维修或更换固态继电器。而加热器的局部断路,也将使加热不能全部工作,造成加热过程过于缓慢。维修或更换加热器。将故障问题完全处理好。闭合循环烘箱空气开关,按照该烘箱的操作说明书运行其程序,经过2.5h的升 工作原理 湿物料经输送机与加热后的空气同时进入干燥器,松散的粉粒状物料分散悬浮于热空气中,二者充分混和,在气流夹带的过程中瞬间脱除水分。通过气流干燥器管径的大小交替变化,使得物料颗粒在干燥的目的、干燥后的成品从旋风分离器排出,一小部分飞粉由二级旋风除尘器或布袋除尘器得到回收利用根据干燥作业形式不同,有以下四种系列产品:1、F系列2、z系列3、x系列4、sz系列。F型是负压操作,物料经过风机带有粉碎作用,X型为多级尾气循环型,SZ型是集闪蒸干燥与气流干燥为一体的强化型气流干燥器,式我公司根据用户要求设计的新型干燥设备。 产品特点 ● 适用于粒径范围在5um~5mm之间的粉粒状物料表面水的干燥; ● 干燥强度大、设备投资省:占地面积小。 ● 自动化程度高、产品质量好,干燥时间极短,产品不与外界接触,污染小,质量好。 ● 设备成套供应、热源自由选择,用户可根据需要添置除尘器或其他辅助设备。 在加热方式选择上,气流干燥设备有较大的适应性,用户可以根据所在地区的条件选用蒸汽、点、热风炉加热、同时又可根据物料耐热温度(或热风温度)选择:≤150℃时。可选用蒸汽加热;≤200时,电加热(或蒸汽加热,电补偿或导热油加热);≤300℃时,热媒热风炉;≤600℃时,燃油热风炉。 技术咨询及试验 气流干燥式一种批量大、热效率较高的快速连续瞬间干燥设备,虽然其适用于多种物料的干燥,如糯米粉、糟渣类、南瓜子皮等饲料颗粒、A.B.C中间体、白炭黑、苯吡唑酮、茶粕、草酸催化剂、沉淀碳粉、对乙酰氮基苯磺酰氨、对氨基水杨酸、哆耳玛托、对苯二酸、二乙

压缩空气干燥方法及吸附式干燥机原理

压缩空气干燥方法 通常大气中总会含有一定量的气态水,水的含量与季节、地理位置以及气候条件有关。当外 界空气进入空压机并被压缩时,这些气态水将凝结为液态水。压缩空气中的水分对气力除灰 系统的运行会产生以下影响: 1)使压缩空气管路、阀件等产生锈蚀; 2)使被输送的粉煤灰粘结,增加输送阻力,降低流速,甚至堵塞管道; 3)对于气动操作和控制系统,压缩空气中的水分会由于高速气流降压而发生冰堵,使气流中 断; 4)在布袋除尘器上,反吹空气的潮湿会使细灰粘结在过滤布袋上,使布袋过滤器的阻力增加, 滤气能力下降,输灰管的背压增高,严重时会造成布袋破损、脱落,甚至压扁布袋龙骨,除 去压缩空气中的水分是确保气力除灰系统稳定运行的重要环节。 压缩空气的干燥方法有以下几种: (一)冷冻法 利用类似空调机的原理,通过制冷系统使压缩空气中的水蒸气冷凝成液态水,并使之通 过自动排水器排出,达到除水的目的。这种利用冷冻法净化压缩机空气的设备称为冷冻式压 缩空气干燥机(以下简称冷干机)。冷干机设计的最低压力露点为1.7℃(o.7MPa 时)。设定 此温度既考虑了避免温降的惰性可能使压力露点达到冰点而引起冰堵,又使冷干机具有最大 的干燥能力(压力露点尽可能低)。此压力露点相当于大气露点23℃,即每1M3 饱和空气仅 含有o.836g 的水分.已能满足大部分压缩空气用户的要求。 冷干机在除水的同时,还可使一部分油雾凝结,并使一部分尘粒和水汽与油雾凝并后一 同排出,其除油效率约70%,除尘效率约75%。 (二)吸附法

吸附法系用硅胶、活性氧化铝或分子筛等干燥剂能够吸附水分的特点,达到除去压缩空 气中水分的目的。基于吸附法原理的压缩空气干燥装置有: 1.有热再生式压缩空气干燥机 通常采用两个吸附剂储罐,工作时一个储罐对压缩空气进行干燥,另一个对罐内的吸附 剂进行加热脱水再生。经有热再生式压缩空气于燥机处理后的压缩空气,其大气露点约-40 ℃:。加热方式有电加热或蒸汽加热,加热温度一般为200-300℃。 当吸附剂升沮后,导人占总量不到10%的再生空气带走吸附剂中的水分,使干燥剂中 的平衡含水宰下降。当干燥罐内的吸附剂失去干燥作用.而再生罐内吸附剂脱水再生完毕时, 两罐通过气路阀门切换,使原干燥罐转入再生状态,原吸附罐进入干燥状态。 由于对再生罐进行加热后还需冷却,故通常要6—12h 切换一次,这就使有热再生式 干燥机罐体较大,需装较多的干燥剂,因而目前很少采用。 2.无热再生式压缩空气干燥机__ 该干燥机的结构原理类似于有热再生式压缩空气干燥机,不同的是吸附剂的再生不再加 热,而是直接用占总量12%—30%的压缩空气作为再生空气将再生吸附剂中的水分带走排 出,因而其罐体较小,但两罐切换频繁,通常30~600s 切换一次,故对切换阀的可靠性要求 较高。此外,因其切换频繁,吸附剂易粉化,因此在无热再生式干燥机后需设过滤器。无热 再生式干燥机处理后的压缩空气的大气露点也是-40qg。目前英国DOMNICKHUNTER 公司 生产了一种新型的无热再生式干燥机,其主体结构为内置双腔的扁平型钢,双腔即为干燥腔 和再生腔,每段型钢立置为一单元,可视用户气量积木式组合,上置封盖和连接管,下置切 换阀和控制装置、仪表等,结构紧凑,可靠性好,其大气露点可

气流干燥机工作原理

主要结构与工作原理 主要结构: SH93型叶丝高速膨胀干燥机主要由进料罩、进料气锁、喷射式松蒸装置、紊流装置、干燥装置、物料管道、旋风分离装置、回风管道、循环风机、排潮管道、分配管道、间接式热风发生炉、混合箱、检修平台、电控以及水气汽管路系统等组成 工作原理: 叶丝经超级回潮机充分加温加湿后(22~35%MC,55±5℃)。由进料振槽均匀地将叶丝送入进料气锁,然后由气锁落入松散装置内。期间高温蒸汽不断地喷入松散装置里,使叶丝不但快速松散,而且温度得以升高。 由松散装置落下的叶丝接着被高速度的过热蒸汽流带入干燥机内,叶丝与高温蒸汽充分接触迅速进行热交换,其内部水份的瞬间蒸发的速度远比从叶丝壁排出的速度要快,因此叶丝在干燥的同时得以迅速膨化。(同时叶丝中的部分青杂气被去除)。其后叶丝在重力和风力的作用下,进入物料管道进一步干燥。最后,叶丝进入旋风分离装置,与蒸汽分离的同时冷却部分定型,并从旋风分离装置下部的出料气锁排出,输送到下一工序进行处理。而分离出的温度下降的蒸汽则进入回风管道和循环风机(主风机),在风机下部的排潮管排出部分的潮湿废蒸汽后,进入热风发生炉加热,经混

合箱被循环使用。 使用与操作: 1. 操作规程 1.1 开机前应检查蒸汽、水、气等的供应是否正常。 1.2 排放蒸气管道内的冷凝水(一般排放5~10min)。 1.3 检查系统的所有的排污球阀(热风发生炉排污球阀、紊流装置排污球阀、干燥装置排污球阀)和检修门是否关闭到位。 1.4 检查燃料(油、天然气或液化气)的供应是否完全符合国家标准的要求,否则将会造成一系列严重后果。 1.5 叶丝高速膨胀干燥机的烘丝温度(即混合风温)与炉温的关系 一般炉温比烘丝温度高20℃~35℃之间为好,而且温差越小越好。特别注意不要用调节风门来较大幅度的降低温度,否则将会造成炉温设定的很高,烘丝温度与炉温之间的温差过大,系统内大量的循环风不经过热风发生炉,这样一来热风发生炉内的热量就不能及时有效的被带走,最终导致热风发生炉烧损。 1.6 SH9叶丝高速膨胀干燥机的生产进行分三个阶段,分别在主控电脑的控制界面上进行操作 1.6.1 预热阶段 当准备生产时,通过选择“预热”按钮而使设备进入预

干燥机工艺流程及说明

三种干燥机的工作原理 1、冷冻式干燥机系统流程图及工作原理 工作原理 ※潮湿高温的压缩空气流入前置冷却器(高温型专用)散热后流入热交换器与从蒸发器排出来的冷空气进行热交换,使进入蒸发器的压缩空气的温度降低。 换热后的压缩空气流入蒸发器通过蒸发器的换热功能与制冷剂热交换,压缩空气中的热量被制冷剂带走,压缩空气迅速冷却,潮湿空气中的水份达到饱和温度迅速冷凝,冷凝后的水分经凝聚后形成水滴,经过独特气水分离器高速旋转,水分因离心力的作用与空气分离,分离后水从自动排水阀处排出。经降温后的空气压力露点最低可达2℃。 降温后的冷空气流经空气热交换与入口的高温潮湿热空气进行 ① 压缩机 ⑨ 压力表 ⑩ 气枪 ⑧ 前置冷却器 ⑥ 气水分离器 ⑤ 储液器 ④ 蒸发器 ② 冷凝器 ③ 节流阀 ⑦ 自动排水器 ⒁ 压缩空气进口 ⒀ 热气旁通阀 ⑿ 高低压保护开关 ⑾ 干燥过滤器 ⑿ ⑤ ④ ⑾ ③ ② ① ⑨ ⑥ ⑩ ⑦ ⑧ ⒂ 干燥空气出口 ⒂ ⒀ ⒁ ⒃ 预冷回热器 ⒃

热交换,经热交换的冷空气因吸收了入口空气的热量提升了温度,同时压缩空气还经过冷冻系统的二次冷凝器(同行独有的设计)与高温的冷媒再次热交换使出口的温度得到充分的加热,确保出口空气管路不结露。同时充分利用了出口空气的冷源,保证了机台冷冻系统的冷凝效果,确保了机台出口空气的质量。 2、无热式干燥机的产品流程图及工作原理 1、塔压力表(小型机组不安装);2逆止阀;3再生风量调节阀;4塔压力表;5逆止阀;6 再生风量调节阀; 工作原理 由空压机排出的大量空气,由压缩空气入口管流入,通过气阀进入两个塔中的运转塔,其中的湿气会被吸附剂所吸收而干燥。当空气流通到塔顶时,空气中的水份被全部吸收,露点温度可达-40℃,从而达到干燥目的。整个循环标准需10分钟,每塔各运行5分钟,一

气流闪蒸干燥机结构特点及工作原理

----- 气流闪蒸干燥机结构特点及工作原理在这个技术高速发展的时代,各类机械设备都在不断的推陈出新,更新换代,以满足更多的市场需求,但由于设备的种类太多,却让人在购买及使用中,产生了很大的麻烦,其实主要问题还是对设备的不了解造成的。下面日宏佳尔特粉体设备公司就为大家介绍一下气流闪蒸干燥机的相关知识。一、气流闪蒸干燥机工作原理:热空气由入口管以适宜的喷动速度从闪蒸干燥机底部进入搅拌粉碎干燥室,对物料产生强烈的剪切、吹浮、旋转作用,于是物料受到离心、剪切、碰撞、摩擦而被微粒化,强化了传质传热。在干燥机底部,较大较湿的颗粒团在搅拌器的作用下被机械破碎,湿含量较低,颗粒度较小的颗粒被旋转气流夹带上升,在上升过程中进一步干燥。由于气固两相作旋转流 动,固相惯性大于气相,固气两相间的相对速度较大,强化两相间的传质传热,所以该机生产强度高。二、气流闪蒸干燥机主要特点: 1.由于物料受到离心、剪切、碰撞、摩擦而被微粒化,呈高度分散状态及固气两相间的相对速度较大,强化了传质传热,使该机生产强度高 2.干燥气体

进入干燥机底部,产生强烈的旋转气流,对器壁上物料产生强烈的冲刷带出 作用,消除粘壁现象。 3.在闪蒸干燥机底部高温区,热敏性物料不与热表面直接接触,并装有特殊装置,解决了热敏性物料的焦化变色问题。 4.由于干燥室内周向气速高,物料停留时间短,达到高效、快速、小设备、大生产。 5.干燥室上部加装陶析环及旋流片可以控制出口物料的粒度及湿度,以达到不同物料的终水份粒度的要求。气流闪蒸干燥机适用物料膏糊状、泥浆状、滤饼等物料、板框压滤或离心机脱水的物料。如: 1无机类:硼酸、碳酸钙、氢氧化物、硫酸铜、氧化铁、碳酸钡、三氧化锑、各种金属氢氧化物、各种重金属盐、合成冰晶石等; 2有机物:阿特拉津(农药杀虫剂)、月桂酸隔、苯甲酸、安息香酸、杀菌丹、草酸钠、醋酸纤维素等; 3陶瓷:高岭土、三氧化硅、粘土等; 4染料类:蒽醌、黑色氧化铁、靛蓝颜料、丁酸、氢氧化钛、硫化锌、各种偶氮染料中间体。 5食品类:大豆蛋白求恩、胶疑淀粉、酒糟、小麦糖、小麦淀粉等。通过上面的介绍,让我们比较深入的了解了气流闪蒸干燥机,其工作特点也比较突出,适合加工物料的种

盐雾机喷嘴堵塞的完美解决方案

盐雾机喷嘴堵塞的完美解决方案 一、前言 盐雾机喷嘴堵塞是很多管理盐雾试验人员头痛的事情,设备工作几个小时就发生不喷雾的现象。维护人员得不停的取下喷雾头清洁,稍不注意就会将喷雾头搞坏。虽然喷雾头在网络上购买一个不算太贵,但少则24小时,多则72小时的连续试验过程中的喷雾头清洁,将试验人员折腾的够呛。由于各个生产厂家相互抄袭,因此各个品牌的盐雾机均出现喷嘴堵塞的相同现象时,厂家都以用户没有使用蒸馏水或去离子水、压缩空气中有油和汽水等等原因将不喷雾归罪与用户。 二、喷雾原理及堵塞原因 以下通过喷嘴堵塞前后图片的对比分析不喷雾的根本原因。 图一为清洁后正常喷雾时的图片,图二为正常喷雾时的喷嘴放大图片。 (图一、正常喷雾图)

正常工作时放大喷嘴头部分 (图二、正常喷雾时喷嘴放大图) 通过图一、图二可以看出喷雾的产生是由压缩空气喷嘴(图二横向)产生的强气流吹向另外一个喷嘴(图二纵向)形成负压,吸取下部盐水槽内盐水,盐水通过强气流吹动而产生水雾。 在盐雾机工作一段时间后不喷雾现象出现后,我们将喷嘴取下观察,见下图三喷嘴堵塞时图,图四为喷嘴堵塞时喷嘴的放大图片。

(图三、喷嘴堵塞时图)

喷嘴堵塞时喷嘴头放大部分 (图四、喷嘴堵塞时喷嘴放大图) 通过喷嘴堵塞时喷嘴放大的图片可以看到,盐水管喷嘴头部分有大量的盐结晶形成,堵塞了出口。 因此,真正造成堵塞的原因是长时间工作时,由于强气流吹干了盐水中的水分而在喷嘴形成了盐结晶。工作原理及方式决定了盐结晶不可避免,厂家要求用户使用蒸馏水或去离子水、压缩空气中完全没有油和汽水等等只不过可以延缓盐结晶的时间。所以,解决问题的关键就是怎么样处理已经产生的盐结晶。最简单而不损坏喷嘴的方法是将喷嘴取下后,将继续通气的喷嘴整体放入水中工作一段就行。 但是,由于盐结晶的时间过于频繁,试验人员如此操作劳民伤财(多次清洗、晚上值班)。 三、喷雾堵塞解决方案 解决问题的完美方案出台了。 1)一个小小的抽水泵;

闪蒸干燥机的工作原理及未来改进方案

闪蒸干燥机的工作原理及未来改进方案 随着科学技术的进步,机械设备行业也在不断的求新求变,现在来说,已经没有一款设备是没有缺陷,十全十美的。对于干燥设备企业来说,就是要不断的开发新技术,以弥补这些设备上的不足。下面日宏佳尔特粉体设备公司就以闪蒸干燥机为例,讲一下其升级改进方案。 闪蒸干燥机的原理 热空气由入口管以切线方向进入干燥室底部的环隙,并螺旋状上升,同时,物料由加料器定量加入塔内,并与热空气进行充分热交换,较大较湿的物料在搅拌器作用下被机械破碎, 湿含量较低及颗粒度较小的物料随旋转气流一并上升,输送至分离器进行气固分离,成品收集包装,而尾气则经除尘装置处理后排空。 干燥设备的选定 干燥可以分为两大类,一类要求干燥结束后,仍保持原料的原形,如很多食品类的干燥, 建筑材料的干燥等。另一类是把液 体、泥状、块状、粉状物料干燥后,成为粉状或颗粒状的产品,有的干燥过程,特别是 药品的干燥,希望不破坏原来的晶形。药品生产中,还常用到液体和粉状物经干燥后,达到一定粒径的颗粒。 被干燥物料的特性 干燥装置的选择应根据物料性质和工艺要求主要是考虑到: 干燥成品的形状要求(包括粒径、松密度、溶解性、流动性等 工艺要求的水份变化范围、运输方法、成形性、定量性(含量 )。 耐热特性,物料的允许温度含水率限制、加热温度(物料热稳定性)和干燥温度的关系,物料在高温区停留时间。 粘着性、凝聚性、静电特征等应在选择设备时预先估计到。 安全性和环保性,溶剂回收等。 其他工艺上的考虑。 处理量和运转时间 在决定设备形式和操作方式(间歇或连续操作)时,应考虑处理量的大小。例如,步量多 品种的材料干燥处理时,应选择容易进行多种切换的设备,医药干燥设备应易于清洗和清场。 现在 GMP 特别强调CIP 现地清洁 )。根据小试结果放大时。单位加热面积的物料量对同一 机种大多是一致的,但夹套加热时,加热面积和直径是平方关系,容积和直径为三跃方关系,所以,干燥物料增加,干燥所需的时间,随着直径的增大而增加。有的物料加热时间长时,容易造成 不稳定性,这种情况在设计时应特别注意。 实验与放大 设计前应研究被干燥物料在干燥前后的状态及干燥过程中的状态变化。粒子的凝集性虽然很难预见.但百r 以由小型干燥机的实验来预测。以粘附性为例,可以由小型设备中了解 到其粘附特性,是否在湿料时容易粘附,还是出料时容易粘附,是在粒子成长过程中的粘附, 还是停止成长后发生粘附,设备壁材质与粘附的关系等等。由小型实验机可以了解到能否达 到完成工艺要求的目的,物料在干燥过程中的注意事项,能否控制物料干燥后的水份变化, 干燥时间的推算。放大过程中需要考虑的因素很多,如搅拌的设备转速变化对干燥过程的影 响,是采用平面放大好还是立体相似的。处理量和装置较佳容量的关系等,在设计时,也应予考虑。 干燥机的进料和出料也有很多技术问题,很多方面还是要凭借丰富的实践经验。 组合干燥机 组合式干燥机使用也越来越广泛,如喷雾干燥和振动流化床干燥机的组合,耙式干燥式

盐雾试验与实际情况的关系

一、盐雾地腐蚀 腐蚀是材料或其性能在环境地作用下引起地破坏或变质.大多数地腐蚀发生在大气环境中,大气中含有氧气、湿度、温度变化和污染物等腐蚀成分和腐蚀因素.盐雾腐蚀就是一种常见和最有破坏性地大气腐蚀.这里讲地盐雾是指氯化物地大气,它地主要腐蚀成分是海洋中地氯化物盐——氯化钠,它主要来源于海洋和内地盐碱地区.盐雾对金属材料表面地腐蚀是由于含有地氯离子穿透金属表面地氧化层和防护层与内部金属发生电化学反应引起地.同时,氯离子含有一定地水合能,易被吸附在金属表面地孔隙、裂缝排挤并取代氯化层中地氧,把不溶性地氧化物变成可溶性地氯化物,使钝化态表面变成活泼表面.造成对产品极坏地不良反应. 二、盐雾试验及与实际地联系 盐雾试验是一种主要利用盐雾试验设备所创造地人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能地环境试验.它分为二大类,一类为天然环境暴露试验,另一类为人工加速模拟盐雾环境试验.人工模拟盐雾环境试验是利用一种具有一定容积空间地试验设备——盐雾试验箱,在其容积空间内用人工地方法,造成盐雾环境来对产品地耐盐雾腐蚀性能质量进行考核.它与天然环境相比,其盐雾环境地氯化物地盐浓度,可以是一般天然环境盐雾含量地几倍或几十倍,使腐蚀速度大大提高,对产品进行盐雾试验,得出结果地时间也大大缩短.如在天然暴露环境下对某产品样品进行试验,待其腐蚀可能要年,而在人工模拟盐雾环境条件下试验,只要小时,即可得到相似地结果. 人工模拟盐雾试验又包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验. () 中性盐雾试验(试验)是出现最早目前应用领域最广地一种加速腐蚀试验方法.它采用地氯化钠盐水溶液,溶液值调在中性范围(~)作为喷雾用地溶液.试验温度均取℃,要求盐雾地沉降率在~之间. () 醋酸盐雾试验(试验)是在中性盐雾试验地基础上发展起来地.它是在氯化钠溶液中加入一些冰醋酸,使溶液地值降为左右,溶液变成酸性,最后形成地盐雾也由中性盐雾变成酸性.它地腐蚀速度要比试验快倍左右. () 铜盐加速醋酸盐雾试验(试验)是国外新近发展起来地一种快速盐雾腐蚀试验,试验温度为℃,盐溶液中加入少量铜盐—氯化铜,强烈诱发腐蚀.它地腐蚀速度大约是试验地倍. () 交变盐雾试验是一种综合盐雾试验,它实际上是中性盐雾试验加恒定湿热试验.它主要用于空腔型地整机产品,通过潮态环境地渗透,使盐雾腐蚀不但在产品表面产生,也在产品内部产生.它是将产品在盐雾和湿热两种环境条件下交替转换,最后考核整机产品地电性能和机械性能有无变化. 三、盐雾试验标准及试验结果地判定 标准是对重复性事物和概述所做地统一规定.盐雾试验标准是对盐雾试验条件,如温度、湿度、氯化钠溶液浓度和值等做地明确具体规定,另外还对盐雾试验箱性能提出技术要求.同种产品采用那种盐雾试验标准要根据盐雾试验地特性和金属地腐蚀速度及对盐雾地敏感程度选择.下面介绍几个盐雾试验标准,如—《电工电子产品基本环境试验规程试验:盐雾试验方法》,—《电工电子产品环境试验第部分:试验试验:盐雾,交变(氯化钠溶液)》,—《轻工产品金属镀层和化学处理层地耐腐蚀试验方法》,—《色漆和清漆耐中性盐雾性能地测定》. 盐雾试验地目地是为了考核产品或金属材料地耐盐雾腐蚀质量,而盐雾试验结果判定正是对产品质量地宣判,它地判定结果是否正确合理,是正确衡量产品或金属抗盐雾腐蚀质量地关键.盐雾试验结果地判定方法有:评级判定法、称重判定法、腐蚀物出现判定法、腐蚀数据

相关文档
最新文档