硬质合金刀具的镜面磨削

硬质合金刀具的镜面磨削
硬质合金刀具的镜面磨削

硬质合金刀具的镜面磨削

随着汽车发动机、航空航天工业、模具加工以及工程机械和其他高端精密机械加工领域对整体硬质合金刀具品质要求的不断提高,促进了国产整体硬质合金刀具从生产中低端产品向满足高端应用不断发展。据不完全统计,2010年我国金属切削刀具市场容量达330亿人民币,约占全球市场的20%,已成为全球最大的市场。其中,国产刀具约为220亿元,进口刀具约为110亿元。进口刀具基本上全是高端产品,而国产刀具中高端产品仅有20亿元,不到国产刀具总量的10%。可见,2010年我国高端刀具市场约有130亿元,而国产化率只有15%左右。

自2000年起,中国开始大批量引进国外先进的五轴、六轴数控工具磨床,虽然许多企业拥有了先进的设备,但却大批量生产中低档刀具,造成了巨大的资源浪费。而要生产高端的刀具,只有实现观念的转变,才能在生产工艺和砂轮选择上把握正确方向。

先进高效刀具是提高加工生产率和产品表面质量的重要因素之一。在高档数控加工中心上,可利用一把高效复合刀具替代多把单一功能刀具,按照加工程序自动完成复杂形状工件的加工,有利于提高生产效率、表面质量和降低生产成本。同时,采用先进高效刀具还能减少换刀时间、提高产品质量等。

在对高效刀具进行磨削加工时,当确定了刀具材料、结构形状以及磨床选型后,砂轮就成为决定加工成败的重要因素。砂轮的技术含量和质量则决定了能否生产出符合设计要求的高品质刀具,因此,高端砂轮与先进的数控五轴、六轴数控工具磨床配合使用,才能达到生产出高端刀具的目标。

为何要实现整体硬质合金刀具的镜面磨削?硬质合金刀具表面达到镜面级是高端产品的标志之一,同时也可以实现以下两个效果:(1)使刀具切削刃口的锯齿状降低到最低限度,增加刀具切削的锋利度,从而提高生产效率;(2)硬质合金刀具表面达到镜面级还可以避免积屑瘤的产生,延长刀具使用寿命。

加工实例:Φ8单刃雕刻刀

整体开槽:采用强力开槽(METROX)砂轮(1A1-D125-10T-10X-31.75H,粒度D46,线速度20m/s,进给速度100~120mm/min)、TTS精磨砂轮(1A1-D125-6T-10X-31.75H,粒度D25,线速度26m/s,进给速度200~300mm/min)、K10抛光砂轮(1A1-D125-6T-10X-31.75H,粒度D5,线速度30m/s,进给速度10~20mm/min)、TTS粗磨砂轮(第一后角,11V9-100D-3W-10X-31.75H,粒度D46,线速度24m/s,进给速度200mm/min)、TTS精磨砂轮(多重后角,11V9-100D-3W-10X-31.75H,粒度D25,线速度28m/s,进给速度300mm/min)、K10抛光砂轮(第一后角,11V9-100D-3W-10X-31.75H,粒度D5,线速度30m/s,进给速度10~20mm/min)。

端刃后角:采用TTS粗磨砂轮(第一后角,11V9-100D-3W-10X-31.75H,粒度D46,线速度24m/s,进给速度200mm/min)、TTS精磨砂轮(第二后角,11V9-100D-3W-10X-31.75H,粒度D25,线速度28m/s,进给速度300mm/min)、K10抛光砂轮(第一后角,11V9-100D-3W-10X-31.75H,粒度D5,线速度30m/s,进给速度10~20mm/min)。

对于砂轮修整和出刃问题,应注意砂轮修整(Truing)和出刃(Dressing)是完全不同的两个概念。抛光砂轮的出刃非常重要,需要配备专用的出刃油石。修整间隔(Truing interval)是判断砂轮耐磨性的主要依据,出刃间隔(Dressing interval)是判断砂轮锋利度的主要依据。

对于磨削与挤压加工工艺来说,硬质合金刀具表面需要通过真正的磨削才能达到镜面级,而非挤压形成。磨削可以达到真正所需要的光洁度;挤压只能得到光亮度,这是绝对需要避免的。我们在使用强力开槽砂轮(METROX)时应注意选择:粒度(根据棒料直径和锯齿大小)、线速度(保证光洁度)和进给速度(取决于开槽深度和总的去除量)。

硬质合金刀具基础知识

硬质合金刀具材料基础知识 文章来源:中国刀具信息网添加人:阿刀 硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。 硬度与韧性 WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。 如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。 制粉工艺 碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。 在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在

硬质合金超精密镜面磨削的实验研究

硬质合金超精密镜面磨削的实验研究 作者:大连理工大学 周曙光 徐中耀 关佳亮 由于硬质合金的硬度高、脆 性大、韧性差,加工性能差,采用传统方法难以满足精密及超精密加工的技术要求,而且工序多、效率低、成本高。运用ELID 精密镜面磨削技术加工各种硬质合金,一次磨削成形,效果良好,表面粗糙度普遍达Ra10~20μm ,且效率高、成本低,对机床精度要求不高,具有极大的推广价值和应用前景。 一、硬质合金超精密镜面磨削实验 1. 实验材料 实验材料见表1。 表1 几种典型硬质合金的物理机械性能 2. 实验条件及参数 在MM7120型卧轴矩台平面磨床上,加装自行设计的ELID 平面磨削装置,对上述牌号硬质合金进行ELID 超精密镜面磨削实验。实验条件及参数见下列: 1) 实验设备

a. 改装的MM7120型平面磨床 b. 自制CIFB砂轮W10,W5,W1.5 c. 自制HDMD-II型ELID磨削专用 d. 高频直流脉冲电源 e. 自制HDMY-201型磨削液 2) 磨削参数 a. 主轴转速1440r/min b. 横向进给速度0.1~3mm/行程 c. 工作台速度0.05~0.08m/s d. 磨削深度0.001~0.005mm 3) 电解参数 a. 电压45~125V b. 电流0.5~6.5A c. 电极间隙0.1~0.75A 3. 实验结果 应用上述设备条件,通过调节电解参数和磨削参数,进行ELID超精密镜面磨削。采用日本KosakaLaboratory Ltd.公司制造的SE-3H型轮廓仪进行表面粗糙度的检测,微观尺寸放大倍数V=20000~50000,走纸方向放大倍数H=10,采样长度Ro0.25~0.3mm,测量长度L=2.5mm。磨后工件达到Ra6~17nm的镜面。检测结果见表2。

硬质合金刀头规格型号用途种类

硬质合金刀头规格型号用 途种类 The Standardization Office was revised on the afternoon of December 13, 2020

硬质合金刀头、规格、型号、用途、种类 ?YD05 ?专用于加工各种镍基、钴基、铁基及含碳化钨自熔性喷涂合金材料。 ? ?YD05 ?专用于加工各种镍基、钴基、铁基及含碳化钨自熔性喷涂合金材料。?YT726 ?红硬性高,耐磨性好。适于冷硬铸铁、合金铸铁、淬火钢的车削、铣削。 ?YT767 ?耐磨性高、抗塑性变形能力好。适于高锰钢、不锈钢的连续或部断切削。 ?YT758 ?高温硬度好,耐磨性好。适于超高强度钢的连续或间断切削。 ?YT798 ?韧性好,具有很高的抗热震裂和抗塑性变形能力。适于铣削合金结构钢、合金工具钢,也适于高锰钢、不锈钢的加工。 ?YT535 ?耐磨性、红硬性高于YT540并有较高的使用强度。适于铸、锻钢的连续粗车、粗铣。 ?ZP10

?耐磨性及使用强度较高,红硬性好,适合于钢铸钢、可锻铸铁、连续球墨铸铁的精加工和音精加工,还可用于仿形、螺纹车削及铣削加工。 ?ZP20 ?使用强度和抗冲击性较高,适合于钢、铸钢可锻铁和球墨铸铁的半精加工和浅粗加工。 ?ZK10SF ?结晶粒合金,具有较高耐磨性,强度高,抗冲击性好,适合各种铸铁、有色金属及非金属材料的加工,是整体硬质合金孔加工刀具的理想材料。?ZK10SF-1 ?具有良好的耐磨,适合于铸铁、有色金属、非金属材料及淬火钢的精加工,是整体硬直金孔加工刀具的理想材料。 ?ZK30SF ?强度高,抗冲击性好,适合于各种铸铁的粗加工和强力切削。 ?ZK30SF-1 ?结晶粒合金,耐磨性好,使用强度高,通用性好。适用于在较高速度下粗,精加工各种钢、铸铁、碳钢,高速和快速进给更佳。 ?ZK10UF ?适用于各种铸铁及有色金属的精加工和半精加工,也是制作整体硬质合金孔加工工具的理想材料。 ?ZK10UF-1 ?适合于铸铁的精加工和半精加工,亦可用于合金铸铁、青铜、黄铜、铝及其合金的加工。

硬质合金刃磨技巧

硬质合金刃磨技巧 硬质合金刀片硬度高、脆性大、导热性差、热收缩率大,通常应采用金刚石砂轮进行刃磨。但因金刚石砂轮价格昂贵,磨损后不易修复,因此很多工厂仍采用普通砂轮 进行刃磨。在刃磨过程中,由于硬质合金硬度较高,普通砂轮的磨粒极易钝化,剧烈 的摩擦使刀片表面产生局部高温,形成附加热应力,极易引起热变形和热裂纹,直接 影响刀具使用寿命和加工质量。因此,应采取必要措施防止刃磨裂纹的产生。通过加 工实践,总结出以下可有效防止或减少刃磨裂纹的工艺措施。 1 负刃刃磨法 负刃刃磨法是指在刃磨刀具前,先在前刀面或后刀面上磨出一条负刃带。硬质合金 属于硬脆材料,刃磨时因砂轮振动使刀具受到冲击载荷,容易发生振裂;同时,磨削 区的瞬间升温与冷却使热应力可能超过硬质合金的强度极限而产生热裂纹。采用负刃 刃磨法可提高刀片强度,增强刀片抗振性和承受冲击载荷的能力,并增大受热面积, 防止磨削热大量导向刀片,从而减少或防止裂纹产生。 2 用二硫化钼浸润砂轮 在常温状态下,将粉状二硫化钼与无水乙醇制成混合溶液,然后在密闭容器内(防 止乙醇挥发)将新的普通砂轮浸泡在混合溶液中,14小时后取出,自然干燥18~20 小时,使砂轮完全晾干。经上述处理的砂轮内部空隙中充满二硫化钼,对磨粒可起到 润滑作用,使砂轮排屑良好,不易堵塞。试验证明,用二硫化钼浸润过的砂轮磨削硬 质合金刀片时,磨削锋利,磨粒不易钝化,工件变形小,排屑顺畅,磨屑形状基本呈 带状,可带走大部分磨削热,从而改善磨削效果,提高刀片成品率。 3 合理选用磨削用量 若刃磨过程中摩擦力过大,可导致磨削温度急剧上升,刀片易发生爆裂,因此合理 选用磨削用量十分重要。常用的合理磨削用量为:圆周速度v=10~15m/min,进给量f纵=0.5~1.0m/min,f横=0.01~0.02mm/行程。手工刃磨时,纵向和横向进给量均 不宜过大。 4 其它工艺措施 刀杆刚性不足、刀具夹持不稳、机床主轴跳动等均可能引起刃磨裂纹的产生,因此,由机床、砂轮、夹具和刀具组成的加工系统应具有足够刚性,且应控制砂轮的轴向和 径向跳动。 造成硬质合金刀具产生刃磨裂纹的因素较多,只有选用合适的砂轮,同时采用合理的 磨削工艺,才能有效避免裂纹产生,提高刃磨质量。

硬质合金刀具牌号

焊接刀、焊接刀片:A1型:A116、A118、A120、A122、A125、A130、A136、A140等 A2型:A216 A220 A225等 A3型:A315 A320 A325 A330 A340等 A4型:A416 A420 A425 A430等 B2型:B214 B216 B220 B225等 C1型:C116 C120 C122 C125等 C3型:C304 C305 C306 C308 C310 C312 C316等 C4型:420 C425 C430 C435等 D2型:D216 D220 D224 D226 D228 D230等 E3型:E325 E330等 F2型:F216 F216A F220 F230 F230A等 机夹刀片主要型号: 3A型:31305A 31605A等 3C型:31303C 31603C等 3D型:31303D 31603D 31903D等 3V型:31305V 31310V 31320V 31605V 31610V 31620V等 C-H型:C1610H6 C1610H6Z C1910H6 C1910H6Z等 T3A型:T31305A T31605A T31905A等 T3F型:T31305F T31605F T31905F等 T3V型:T31305V T31310V T31605V T31610V T31910V等 4A型:41305A 41315A 41605A 41905A等 4F型:41305F 41605F 41905F等 4H型:41305H 41605H 41905H 41910H 42210H8 42510H8等 4V型:41305V 41310V 41605V 41610V 41620V等 铣刀片主要型号: 3-0型:313100 316100等 3-8型:313058 313108等 3-11型:3100511 3130511 3131011等 4-0型:413050 413100 416050 416100 419100 419200等 4-8型413058 416058 416108 416158 419108等 4-11型:4130511 4131011 4160511 4161011 4161511 4191011等 G3-0型:G307050 G310050 G313050 G316050等

硬质合金切削刀片牌号性能及用途

硬质合金切削刀片牌号性能及用途介绍 YG3X:在钨钴合金中耐磨性最好,但冲击韧性较差,适于铸铁、有色金属及合金、淬火钢、合金钢小切屑断面高速精加工; YG6:耐磨性较高,但低于YG3,抗冲击和震动比YG3X为好,适于铸铁、有色金属及合金、非金属材料中等切削速度的半精加工和精加工; YG6X:属细颗粒碳化钨合金,其耐磨性较YG6高,使用强度近于YG6合金,适于加工冷硬合金铸铁与耐热合金钢,也适于普通铸铁的精加工; YG8:使用强度高,抗冲击、抗震性较YG6好,但耐磨性和允许的切削速度较低,适于铸铁、有色金属及合金、非金属材料低速粗加工; YT5:在钨钴钛合金中,强度、抗冲击性及抗震性最好,但耐磨性较差,适于碳素钢与合金钢(包括钢锻件、冲压件、铸铁表皮)间断切削时的粗车、粗刨、半精 刨; YT14:使用强度高,抗冲击和抗震性好,仅次于YT5合金,但耐磨性较YT5为好,适用于碳素钢与合金钢连续切削时的粗车、粗铣,间断切削时的半精车和精车; YT15:耐磨性优于YT5合金,但抗冲击韧性较YT5差。适于钢、铸钢、合金钢中切屑断面的半精加工或小切屑面的精加工; YT30:耐磨性和允许的切削速度较YT15高,但使用强度、抗冲击韧性较差。适用于碳素钢与合金钢的精加工,如小断面的精车、精镗、精扩等; YW2A:红硬性较好,使用强度高,能承受较大的冲击负荷,是通用性较好的合金,适于耐热钢、高锰钢、不锈钢及高级合金钢等难加工钢材的粗加工、半精加工, 也适于铸铁; YW1:红硬性较好,能承受一定的冲击负荷,是通用性较好的合金。适于耐热钢、高锰钢、不锈钢等难加工钢材的加工,也适于普通钢和铸铁的加工; YW2:耐磨性仅次于YW1,但其使用强度较高,能承受较大的冲击负荷。适于耐热钢、高锰钢、不锈钢及高级合金钢等粗加工、半精加工,也适于普通钢和铸铁; CP20:韧性好,具有很高的抗热震裂和抗塑性变形能力。适合于铣削合金结构钢、合金工具钢,也适合于高锰钢、不锈钢的加工; CP25:韧性好,适用于碳钢、铸钢、锰钢、高强钢及各种合金钢的粗车、铣削、刨削和深孔加工,同时也是制作深孔加工导料块的理想材料; CP30:红硬性好,并且有良好的抗冲击及抗热震性和高的使用强度,是通用性良

硬质合金刀具选用明细表

加工高温合金的硬质合金刀具 1.加工高温合金的硬质合金刀具材料,宜选择超细微粒硬质合金 YS2,YG8W,YG813,YG643,YM052,YM051和钨钴类YG8及钨钛钽(铌)钴类YG8N,YW3,YW4等.其中,YS2,YG8W用于粗加工,其他用于精加工.不宜选择YT类.(进口刀具材料各品牌的编号不 一样,要查清楚需要他们材料供应商提供一些资料,难度大些,我手上资料不够,以后有了再 介绍). 2.刀具合理几何参数选择:前角应选正值,后角稍大些,前面宜磨成圆弧断屑槽形,刃区一般 不磨负倒棱.主偏角根据工艺系统刚性来定,刚性好取小些,反之取大些. 3.合理选择切削用量.背吃刀量粗加工取1-6mm,精加工0.2-0.5.进给取0.1-0.5mm/r.根据 被切削材料查一下切削速度.根据切削温度原理,以700-1000度为宜. 4.选择切削液,可选择压力切削油,尽量不选择含硫的切削液. 实际加工时,要多做测试和调整,自己的经验比较保险. 硬质合金常用牌号及用途介绍 牌号/相当标准ISO/ 物理机械性能(min):抗弯强度N/mm2 ;硬度HRA/用途 1、YG3x/ K01/ 1420; 92.5 /适于铸铁.有色金属及合金.淬火钢合金钢小切削断面高速精加工. 2、YG6/ K20 /1900; 90.5 /适于铸铁.有色金属及合金.非金属材料中等到切削速度下半精加工和精加工. 3、YG6x /K15/ 1800; 92.0/ 适于冷硬铸铁.球墨铸铁.灰铸铁.耐热合金钢的中小切削断面高速精加工.半精加工. 4、YG6A/ K10/ 1800 ;92.0 /适于冷硬铸铁.球墨铸铁.灰铸铁.耐热合金的中小切削断面高速精加工 5、YG8/ K30/ 2200 ;90.0/ 适于铸铁.有色金属及合金.非金属材料低速粗加工. 6、YG8N/ K30/ 2100; 90.5 /适于铸铁.白口铸铁.球墨铸铁以及铬镍不锈钢等合金材料的高速切削. 7、YG15/ K40/ 2500 ;87.0 /适于镶制油井.煤炭开采钻头.地质勘探钻头. 8、YG4C/ 1600; 89.5/ 适于镶制油井.煤炭开采钻头.地质勘探钻头. 9、YG8C/ 1800; 88.5 /适于镶制油井.矿山开采钻头一字.十字钻头.牙轮钻齿.潜孔钻齿. 10、YG11C/ 2200 ;87.0 /适于镶制油井.矿山开采钻头一字.十字钻头.牙轮钻齿.潜孔钻齿. 11、YW1/ M10/ 1400; 92.0 /适于钢.耐热钢.高锰钢和铸铁的中速半精加工. 12、YW2/ M20/ 1600; 91.0 /适于耐热钢.高锰钢.不锈钢等难加工钢材中.低速粗加工和半精加工. 13、GE1/ M30/ 2000; 91.0 /适于非金属材料的低速粗加工和钟表齿轮耐磨损零件. 14、GE2 /2500; 90.0 /硬质合金顶锤专用牌号. 15、GE3/ M40/ 2600; 90.0 /适于制造细径微钻.立铣刀.旋转挫刀等. 16、GE4/ 2600; 88.0/ 适于打印针.压缸及特殊用途的管. 棒.带等. 17、GE5 /2800 ;85.0 /适于轧辊.冷冲模等耐冲击材料.

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 ......................................................... 错误!未定义书签。 2 常用刀具材料及特点 ........................................................ 错误!未定义书签。 碳素工具钢 ................................................................... 错误!未定义书签。 合金工具钢 ................................................................... 错误!未定义书签。 高速钢 ........................................................................... 错误!未定义书签。 硬质合金 ....................................................................... 错误!未定义书签。 陶瓷 ............................................................................... 错误!未定义书签。 超硬材料 ....................................................................... 错误!未定义书签。 3 刀具材料的典型应用 ........................................................ 错误!未定义书签。 工件材料与刀具材料 ................................................... 错误!未定义书签。 加工条件与刀具材料 ................................................... 错误!未定义书签。 4 总结 .................................................................................... 错误!未定义书签。 5 参考文献 ............................................................................ 错误!未定义书签。

硬质合金刀具材料的研究现状与发展思路【深度解读】

硬质合金刀具材料的研究现状与发展思路【深度解读】

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500——600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢至今仍是一种常用刀具材料。高速钢是一种加

入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%——1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40——60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10——20倍,其红硬性比硬质合金高2——6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93——95HRC,

数控刀具种类_数控车床刀片型号

数控刀具种类_数控刀片型号 数控刀具是指与数控机床(包括加工中心、数控车床、数控镗铣床、数控钻床、自动线以及柔性制造系统)相配套使用的各种刀具的总称,是数控机床不可缺少的关键配套产品。在国外数控刀具发展很快,品种很多,已形成系列。在我国,由于对数控刀具的研究开发起步较晚,数控刀具成了工具行业中最薄弱的一个环节。数控刀具的落后已经成为影响我国国产和进口数控机床充分发挥作用的主要障碍。 数控刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括刀具及连接刀柄:刀柄要连接刀具并装在机床的动力头上,因此已逐渐标准化和系列化。近年来,快速发展的数控加工技术促进了数控刀具的发展。每当一种新型数控刀具产品的面市,会使数控加工技术跃上一个新台阶,产生巨大的经济和社会效益。 数控刀具的分类方法很多。一般可按下列方法进行分类。 1.按刀具切削部分的材料分 按刀具切削部分的材料可分为高速钢刀具、硬质合金刀具、陶瓷刀具、立方氮化硼刀具、金 刚石刀具和涂层刀具等。 2.按刀具的结构形式分 按刀具的结构形式可分为整体式、镶嵌式和特殊形式等。 (1)整体式。整体式包括钻头和立铣刀等。

(2)镶嵌式。镶嵌式包括刀片采用焊接和机夹式等。 (3)特殊形式。特殊形式包括复合式和减振式等。 3。按切削加工工艺分 按切削加工工艺可分为车削刀具、铣削刀具、钻削刀具和镗削刀具等。 (1)车削刀具。车削刀具包括外圆车刀、内孔车刀、切槽(断)刀、端面车刀、螺纹车刀等: (2)铣削刀具。铣削刀具包括面铣刀、立铣刀和螺纹铣刀等。 (3)钻削刀具。钻削刀具包括钻头、铰刀和丝锥等。 (4)镗削刀具。镗削刀具包括粗镗刀和精镗刀等。 数控加工刀具可分为常规刀具和模块化刀具两大类。 模块化刀具是发展方向。发展模块化刀具的主要优点:减少换刀停机时间,提高生产加工时间;加快换刀及安装时间,提高小批量生产的经济性;提高刀具的标准化和合理化的程度;提高刀具的管理及柔性加工的水平;扩大刀具的利用率,充分发挥刀具的性能;有效地消除刀具测量工作的中断现象,可采用线外预调。事实上,由于模块刀具的发展,数控刀具已形成了三大系统,即车削刀具系统、钻削刀具系统和镗铣刀具系统。 (1)从结构上可分为 ② 体式 ②镶嵌式可分为焊接式和机夹式。机夹式根据刀体结构不同,分为 可转位和不转位; ③减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振

硬质合金刀具并使用高效率的切削条件

硬质合金刀具并使用高效率的切削条件 选择合适的硬质合金刀具并使用高效率的切削条件,这就是车削三要素。 1.切削深度(ap) 切削深度指未加工表面与已加工表面的差值,单位毫米。它是工件未加工直径与已加工直径差值的一半。 切削深度应根据工件的加工余量、形状、机床功率、刚性及刀具的刚性来确定。 切削深度变化对硬质合金刀具寿命影响不大。切削深度过小时,会造成刮擦,只切削工件表面的硬化层,缩短刀具寿命。当工件表面具有硬化的氧化层时,应在机床功率允许范围内选择尽可能大的切削深度,以避免硬质合金刀尖只切削工件表面硬化层,造成刀尖的异常磨损甚至破损。 2.进给量(fn) 进给量是指工件每旋转一周,刀具的移动量,单位为毫米/转。 进给量是决定被加工表面质量的关键因素,同事也影响加工时切屑形成的范围和切削的厚度。 在对硬质合金刀具寿命影响方面,进给量过小,后刀面磨损大,刀具寿命大幅度降低;进给量过大,切削温度升高,后刀面磨损也增大,但较之切削速度对硬质合金刀具寿命的影响要小。 3.切削速度(Vc)

工件在车床上旋转,将其每分钟的转数定义为主轴转速(n)。由于工件旋转,在其直径的切削点处产生切削速度,称为线速度,单位米/分钟。通常用线速度来参考切削速度对加工的影响。 切削速度对刀具寿命有非常大的影响。提高切削速度时,切削温度就上升,而使硬质合金刀具寿命大大减短。加工不同种类、硬度的工件,切削速度会有相应的变化。通过大量钨钢刀片切削试验得出: a.在通常情况下,切削速度提高20%,刀具耐用度降低1/2;切削速度提高50%,刀具耐用度降低至原来的1/5。 b.低速(20-40m/min)切削易产生震动,使刀具寿命缩短。

硬质合金刀具材料的研究现状与发展思路

硬质合金刀具材料的研究现状与发展思路 作者:佚名来源:不详发布时间:2008-11-21 23:35:38 发布人:admin 减小字体增大字体 材料、结构和几何形状是决定刀具切削性能的三要素,其中刀具材料的性能起着关键性作用。国际生产工程学会(CIRP)在一项研究报告中指出:“由于刀具材料的改进,允许的切削速度每隔10年几乎提高一倍”。刀具材料已从20世纪初的高速钢、硬质合金发展到现在的高性能陶瓷、超硬材料等,耐热温度已由500~600℃提高到1200℃以上,允许切削速度已超过1000m/min,使切削加工生产率在不到100 年时间内提高了100多倍。因此可以说,刀具材料的发展历程实际上反映了切削加工技术的发展史。 常规刀具材料的基本性能 1) 高速钢 1898 年由美国机械工程师泰勒(F.W.Taylor)和冶金工程师怀特(M.White)发明的高速钢 至今仍是一种常用刀具材料。高速钢是一种加入了较多W、Mo、Cr、V等合金元素的高合金工具钢,其含碳量为0.7%~1.05%。高速钢具有较高耐热性,其切削温度可达600℃,与碳素工具钢及合金工具钢相比,其切削速度可成倍提高。高速钢具有良好的韧性和成形性,可用于制造几乎所有品种的刀具,如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等。但是,高速钢也存在耐磨性、耐热性较差等缺陷,已难以满足现代切削加工对刀具材料越来越高的要求;此外,高速钢材料中的一些主要元素(如钨)的储藏资源在世界范围内日渐枯竭,据估计其储量只够再开采使用40~60年,因此高速钢材料面临严峻的发展危机。 2) 陶瓷 与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷材料的缺点是脆性大、横向断裂强度低、承受冲击载荷能力差,这也是近几十年来人们不断对其进行改进的重点。 陶瓷刀具材料可分为三大类:①氧化铝基陶瓷。通常是在Al2O3基体材料中加入TiC、WC、ZiC、TaC、ZrO2等成分,经热压制成复合陶瓷刀具,其硬度可达93~95HRC,为提高韧性,常添加少量Co、Ni等金属。②氮化硅基陶瓷。常用的氮化硅基陶瓷为Si3N4+TiC+Co复合陶瓷,其韧性高于氧化铝基陶瓷,硬度则与之相当。③氮化硅—氧化铝复合陶瓷。又称为赛阿龙(Sialon)陶瓷,其化学成分为77%Si3N4+13%Al2O3,硬度可达1800HV,抗弯强度可达1.20GPa,最适合切削高温合金和铸铁。 3) 金属陶瓷 金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、M o等构成。金属陶瓷的硬度和红硬性高于硬质合金,低于陶瓷材料;其横向断裂强度大于

金属加工刀具基本知识、金属刀具材料介绍

金属加工刀具基本知识、金属刀具材料介绍 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。 制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。 通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。 聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。 硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻

头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。 由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。 内容来源网络,由深圳机械展收集整理! 更多相关内容,就在深圳机械展!

工件转速对硬质合金外螺纹磨削质量和效率的影响

龙源期刊网 https://www.360docs.net/doc/f27915953.html, 工件转速对硬质合金外螺纹磨削质量和效率的影响 作者:马海军罗登银 来源:《科学与财富》2017年第30期 摘要:本文以硬质合金3/4-10UNC-3A外螺纹喷嘴磨削为研究对象,加工设备为数控车床EL6140n改造的螺纹磨床,在相同砂轮线速度和组合进给量的前提下,改变工件转速,对螺纹的中径、根径、螺距、牙侧角、槽底R、砂轮修整频率、加工时间等行分析,研究工件转速对磨削质量效率的影响;试验表明磨削效率随工件转速增加而逐渐提高,同时砂轮的消耗也随工件转速而加快,槽底R和牙侧角变化速度加快,砂轮修整一次后加工产品数量逐渐减少。 关键词:工件转速;砂轮线速度;组合进给量;中径;根径;螺距;牙侧角;槽底R;修整频率;磨削效率;磨削时间;加工时间 一、前言 2008年前,耐磨零件分厂深加工对象主要是硬质合金套类零件,产品单一、市场风险 大,在石油行业不景气的年份,整条生产线大量人员富裕、设备闲置;为了适应市场多元化硬质合金深加工产品需求,在08年分厂成立了硬质合金螺纹喷嘴开发小组,针对石油采掘市场开发PDC钻头上的硬质合金螺纹喷嘴,为减少设备投资费用,在数控车床上组装一个多用磨床的内磨头,实现硬质合金外螺纹的磨削。2011年我对不同的工件转速进行试验,找出工件 转速对磨削效率影响的规律,为批量化生产提供可行的试验数据。 二、试验方案 1、试验前提 1)研磨设备:EL6140n车改磨,砂轮线速度13.5m/s 2)产品型号:3/4-10UNC-3A外螺纹螺纹喷嘴嘴,螺纹3/4-10UNC-3A 中径,根径,槽底R0.25±0.05,螺距2.54±0.03,牙侧角30°±25′,粗糙度Ra0.8 3)同一生产厂家的砂轮,砂轮规格150×8×32×6×4×60°,砂轮前角,砂轮后角,顶宽 0.25~0.3 4)磨削方式:深切缓进 5)组合进给量

数控车床刀片型号大全

数控车床刀片型号 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控刀片上一般都会有一连串的字母加数字来作为数控刀片的型号,对于专业的人员来说,看懂这些字母以及数字的含义非常简单,但是对于很多商家来说这些字母都认识,字母代表的意义却是截然不知道的。 数控刀具是指与数控机床(包括加工中心、数控车床、数控镗铣床、数控钻床、自动线以及柔性制造系统)相配套使用的各种刀具的总称,是数控机床不可缺少的关键配套产品。在国外数控刀具发展很快,品种很多,已形成系列。在我国,由于对数控刀具的研究开发起步较晚,数控刀具成了工具行业中最薄弱的一个环节。数控刀具的落后已经成为影响我国国产和进口数控机床充分发挥作用的主要障碍。 数控刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括刀具及连接刀柄:刀柄要连接刀具并装在机床的动力头上,因此已逐渐标准化和系列化。近年来,快速发展的数控加工技术促进了数控刀具的发展。每当一种新型数控刀具产品的面市,会使数控加工技术跃上一个新台阶,产生巨大的经济和社会效益。 数控刀具的分类方法很多。一般可按下列方法进行分类。 1.按刀具切削部分的材料分

按刀具切削部分的材料可分为高速钢刀具、硬质合金刀具、陶瓷刀具、立方氮化硼刀具、金刚石刀具和涂层刀具等。 2.按刀具的结构形式分 按刀具的结构形式可分为整体式、镶嵌式和特殊形式等。 (1)整体式。整体式包括钻头和立铣刀等。 (2)镶嵌式。镶嵌式包括刀片采用焊接和机夹式等。 (3)特殊形式。特殊形式包括复合式和减振式等。 3。按切削加工工艺分 按切削加工工艺可分为车削刀具、铣削刀具、钻削刀具和镗削刀具等。 (1)车削刀具。车削刀具包括外圆车刀、内孔车刀、切槽(断)刀、端面车刀、螺纹车刀等: (2)铣削刀具。铣削刀具包括面铣刀、立铣刀和螺纹铣刀等。 (3)钻削刀具。钻削刀具包括钻头、铰刀和丝锥等。 (4)镗削刀具。镗削刀具包括粗镗刀和精镗刀等。 数控加工刀具可分为常规刀具和模块化刀具两大类。 模块化刀具是发展方向。发展模块化刀具的主要优点:减少换刀停机时间,提高生产加工时间;加快换刀及安装时间,提高小批量生产的经济性;提高刀具的标准化和合理化的程度;提高刀具的管理及柔性加工的水平;扩大刀具的利用率,充分发挥刀具的性能;有效地消除刀具测量工作的中断现象,可采用线外预调。事实上,由于模块刀具的发展,数控刀具已形成了三大系统,即车削刀具系统、钻削刀具系统和镗铣刀具系统。 (1)从结构上可分为 ②体式

硬质合金刀片

硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能。硬质合金刀片,又叫钨钢刀片,是以硬质合金也就是钨钢为材料的电子行业刀片。接下来为您简单介绍,希望能给您带来一定程度上的帮助。 硬质合金材料本身的特性决定硬质合金切脚机刀片安全作业的重要性刀片安装前请做好防护措施,避免刀片掉落伤人造成不必要的人身财产安全损失。 1、听声检查:刀片安装时,请用右手食指小心地勾起刀片并使刀片悬空,然后用木锤轻敲刀体,侧耳辩听刀体上发出的声音,如发出浊音的刀片,经验证明刀体往往已受外力冲撞破坏存在裂纹、损伤。这种刀片应立即禁止使用。禁止使用发出浊音的切脚机刀片! 2、刀片安装:刀片安装前,请事先仔细清扫切脚机转动轴承安装面上的粉尘、切屑及其它杂物,保持轴承安装面及切脚机的清洁干净。

①将刀片小心平稳地置于轴承的安装面上,用手转动切脚机轴承使之与刀片中心自动找中对正。 ②装上压刀块在切脚机刀片上并使之螺栓孔与切脚机轴承上的螺栓孔对正。 ③装入内六角螺栓,用内六角扳手紧固螺钉把刀片牢固地安装在轴承上。 ④刀片安装后,不能有松动及偏斜现象。 马鞍山恒诺机械有限公司紧邻南京禄口机场,环境优美,交通便利。整个厂区占地20亩,生产车间4000平米,办公楼3000平米。本公司专业研发生产3大系列刀片:钨钢刀片、锋钢刀片以及全钢刀片,主要包括横切螺旋刀、横切直刀、凹口用刀、平口用刀、旋切刀、切刀、切纸刀、三面切书刀、电动切纸刀、封切刀并承接3米整体钨钢刀片;我们研制成功了与国外同等材质的刀具,完全可替代同类进口产品。

我们的定制流程:前期接洽-图纸设计-确认订单-生产加工包装发货-售后保障。公司形成了一套完整的合作流程,愿意以更好地产品质量,合适的价格服务新老客户,合作共赢!

硬质合金刀片介绍

适用范围:航空、军工、电动阀、发动机缸体、圆柱体、球体 数控刀片分为车削和铣削两种: 车削是工件旋转,刀具做进给运动,适用于超精密加工,质量可达优质; 铣削是刀具旋转,工件做进给运动,适用于小工件批量生产。 车削刀片 加工方式有:超精加工、精加工、半精加工、粗加工、重粗加工。 工作对象包括: 1.加工碳钢、合金钢、铸钢、软钢 相关硬质合金牌号功能: YT30 超精加工(P01 P05) YT05 超精加工、精加工(P05 P10) YT15 精加工(P10 P15) YT14 精加工、半精加工(P15 P20) YT5 粗加工、重粗加工(P30 P35 P40) YC40 粗加工、重粗加工(P35 P40) YC45 粗加工、重粗加工(P35 P40 P45) 2.加工铸铁、冷硬铸铁、淬火钢、有色金属、非金属 相关硬质合金牌号功能: YG3 精加工(K05 K10) YT26 精加工(K05 K10) YG6 精加工、半精加工(K05 K10 K15 K20) YG6X 精加工、半精加工(K05 K10 K15) YG6A 精加工、半精加工(K05 K10 K15) YD201 半精加工( K20 K25) YG8 半精加工粗加工(K15 K20 K25 K30) 3.加工不锈钢、锰钢、耐热金属 相关硬质合金牌号功能: YS8 精加工(M05 M10) YW4 精加工(M05 M10) YW3 精加工、半精加工(M10 M15) YW1 精加工、半精加工(M10 M15) YW2 半精加工(M15 M20) YT26 半精加工、粗加工(M20 M30)

加工方式有:精加工、半精加工、粗加工 工作对象包括: 1.加工碳钢、合金钢、铸钢、软钢 相关硬质合金牌号功能: YS14 精加工、半精加工(P15 P20 P25) YT14 精加工、半精加工(P15 P20 P25) YS25 半精加工、粗加工(P20 P25 P30) YC30S半精加工、粗加工(P25 P30 P40) YT5 半精加工、粗加工(P25 P30 P40) 2.加工铸铁、冷硬铸铁、淬火钢、有色金属、非金属 相关硬质合金牌号功能: YT26 精加工(K05 K10) YD201 半精加工(K20 K25) YG6X 精加工、半精加工(K05 K10 K15) YG6A 精加工(K05 K10) YG6 精加工、半精加工(K05 K10 K15) YG8 半精加工、粗加工(K20 K25 K30 K35) 焊接刀片 相对机夹刀片来说,焊接刀片刀具的成本都更低 焊接式硬质合金刀片适用说明: 1.焊接式切削刀具结构应具有足够的刚性 足够的刚性是以最大允许的外形尺寸,以及采用较高强度的钢号和热处理来保证。2.硬质合金刀片应固定牢靠 硬质合金刀片应有足够的牢靠程度,它是靠刀槽及焊接质量来保证的,故要根据刀片形状及刀片几何参数,选择刀片镶槽型状。 在将刀片焊接至刀杆上以前需要对刀片、刀杆进行必要的检查,首先应检查刀片的支撑面不能有严重弯曲。硬质合金焊接面不得有严重渗碳层,同时还应将硬质合金刀片表面及刀杆镶糟中的污垢进行清除,以保证焊接牢靠。

整体硬质合金刀具磨削裂纹的原因分析及其工艺改进

整体硬质合金刀具磨削裂纹的原因分析及其工艺改进 硬质合金, 刀具, 裂纹, 工艺, 磨削 1 引言 整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。 2 整体硬质合金刀具磨削裂纹的原因分析 2.1 整体硬质合金刀具的磨削加工特点 硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。这些裂纹一般非常细小,裂纹附近的磨削表面常有蓝、紫、褐、黄等颜色相间的不同氧指数的钨氧化物的颜色,沿裂纹敲断后,裂纹断口的断裂源处也常有严重烧伤的痕迹,整个裂纹断面常因渗入磨削油而与新鲜断面界限分明。传统碳化硅砂轮磨削硬质合金由于磨削效率很低、磨削力较大、自砺性差以及磨削接触区表面局部温度高(高达1100℃左右)等造成刀具刃口质量差、表面粗糙度差和废品率高等缺点已逐渐被淘汰使用;而金刚石砂轮则由于磨削效率高、磨削力较小、自砺性好、金刚石刃口锋利、不易钝化以及磨削接触区表面局部温度较低(一般在400℃左右)等优点被广泛应用于硬质合金刀具的磨削加工中。但在整体硬质合金刀具的金刚石砂轮磨削过程中,由于磨削余量很大,加工方法、金刚石工具特性和磨削制度如果选择不当,也会造成刀具磨削接触区表面局部瞬时温度偏高,从而产生磨削裂纹。 2.2 整体硬质合金刀具磨削裂纹的产生机理分析 制造硬质合金刀具采用的金刚石磨削处理可以使刀具表面层的物理—机械特性变坏或者改善。决定表面层质量的基本参数是:微观形貌(即表面粗糙度),表面层的结构和亚结构,第Ⅰ类残余应力值及其分布。烧结后的硬质合金通常具有不低于Rz5μm的表面粗糙度, 金刚石加工可以保证Rz不低于 2μm,在Rz= 1~5μm范围内显微粗糙度的深度实际上不影响硬质合金的寿命指标。在磨削加工中硬质合金晶粒内部的细微结晶结构参数也发生变化,嵌晶块发生破碎(相干分散区),其值减小一个数量级,由(10~15)×10-5mm降到(10~15)×10-6mm。晶粒显微畸变值(Δd/d,第Ⅱ类应力)发生变化,表面层性能也相应变化。但是,实际上细微结晶结构参数变化与硬质合金寿命之间并未发现直接关系。所以在循环载荷下(如铣削力)硬质合金的使用寿命既与表面层的结构和亚结构无直接关联,又首先不是决定于表面粗糙度,而是决定于表面层的残余应力状态,即第Ⅰ类残余应力值及其沿截面的分布对硬质合金的强度和寿命起着决定性因素。表面层残余压应力的形成促使断裂源迁移到距离表面更深的受载荷较小的层次,抑制了裂纹的萌生和扩展,这就使得强度和寿命增加;同时随着硬质合金表面层残余压应力层分布深度的增加,其强度和寿命逐渐提高。而表面层形成的残余拉应力则促进裂纹的萌生和扩展,是产生裂纹的必要条件,且使得强度和寿命降低。但磨削后的表面往往既有残余压应力又有拉应力,因此,理想的磨削表面层状态应是表面层残余压应力值越高越好,残余压应力层分布越深越好;近表面层残余拉应力值越低越好,残余拉应力层越薄越好,最大拉应力值距离表面越深越好。反之,表面层较浅的压应力分布和近表面层过高的拉应力值则是萌生磨削裂纹的主要原因。所以,在磨削加工过程中应尽量减小和避免残余拉应力的产生。 在多数情况下硬质合金制品烧结后在表面层产生残余拉应力(起源于热),这种拉应力值可达500~1000MPa。该应力层的深度不大于5~7μm,应力渗入深度不超过30~40μm。越接近表面,其值越高;钴含量越高,其值越高。因此烧结后的硬质合金抗弯强度值(TRS值)和疲劳寿命值很低。但磨削余量常大于0.1mm,因而随后的磨削加工在去除硬质合金表层后完全可以消除烧结合金中的残余拉应力,并形成新的应力状态。由此可见,烧结工艺引起的残余应力对在磨削过程中残余应力的形成没有影响。 在磨削加工过程中,影响刀具表面状态的有两个主要因素:施加的力和局部温度。施加的力对合金表面的作用会引起不可恢复的塑性变形、结构的变化和相变并伴随着单位体积的增大,从而导致形成残余压应力,提高抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生强化过程;局部温度对合金表面的作用会在表面层中产生不均匀的热塑性变形、结构和相的变化并伴随着单位体积的减小,从而导致形成残余拉应力、降低抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生弱化过程。因此,硬质合金刀具最终表面层状态是被强化还是被弱化,是残余压应力为主,还是残余拉应力为主,则取决于在磨削过程中对其表面的作用是以力为主还是以温度为主。当磨削过程中磨削接触区的局部瞬时温度达到一定程

相关文档
最新文档