不同坐标系之间的变换

不同坐标系之间的变换
不同坐标系之间的变换

§10.6不同坐标系之间的变换

10.6.1欧勒角与旋转矩阵

对于二维直角坐标,如图所示,有:

??

?

?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8)

在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋

转至0

0,OY OX ;

②绕0

OY 旋转Y ε角

10

,OZ OX 旋转至0

2

,OZ OX ; ③绕2OX 旋转X ε角,

0,OZ OY 旋转至22,OZ OY 。

Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与

它相对应的旋转矩阵分别为:

????

?

?????-=X X

X X X R εεεεεcos sin 0sin cos 00

01

)(1 (10-10)

????

??????-=Y Y

Y Y

Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)

????

?

?????-=10

0cos sin 0sin cos )(3Z

Z Z Z

Z R εεεεε (10-12)

令 )()()(3210Z Y X R R R R εεε= (10-13)

则有:

????

?

?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入:

????

???

???

+-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取:

sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z

Z Y Y X X Z Y X εεεεεεεεεεεεεεε

于是可化简

????

?

?????---=111

0X

Y

X Z Y Z

R εεεεεε (10-16) 上式称微分旋转矩阵。

10.6.2不同空间直角坐标之间的变换

当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致,从而还有一

个尺度变化参数,共计有七个参数。相应的坐标变换公式为:

????

?

????????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X

Y

X Z Y Z

εεεεεε(10-17) 上式为两个不同空间直角坐标之间的转换模型,其中含有7个转换参数,为了求得7个转换参数,至少需要3个公共点,当多于3个公共点时,可按最小二乘法求得个参数的最或是值。 10.6.3不同大地坐标系的变换

对于不同大地坐标系的换算,除包含三个平移参数、三个旋转参数和一个尺度变化参数外,还包括两个地球椭球元素变化参数,以下推导不同大地坐标系的换算公式。 由(7-30)式

???

?

?

?????+-++=??????????B H e N L B H N L B H N Z Y X sin ])1([sin cos )(cos cos )(2

取全微分得

???

???+????

?

?????=??????????αd da A dH dB dL J dZ dY dX (10-19) 式中

???

?

???

?

??++-++-+-=???????

?

????

??????????????????????=B B H M L B L B H M L B H N L B L B H M L B H N H Z B

Z L

Z H Y B Y L Y H X B X

L X

J sin cos )(0cos cos sin sin )(cos sin )(cos cos cos sin )(sin cos )((10-20)

???????

?

????????-+-----=????????????

????????????????=)sin cos 1(sin 1sin )1(sin sin cos 1sin cos sin cos cos 1cos cos 222222

B e B B M B e a

N B

L B M L B a

N B L B M L B a N Z a

Z Y a Y X

a X

A ααα

α

αα (10-21)

上式两端乘以1-J 并加以整理得:

???

???-????

?

?????=??????????--αd da A J dZ dY dX J dH dB dL 11 (10-22)

式中

???

?

?

?????-??????????=??????????111222Z Y X Z Y X dZ dY dX

???

?

??????-??????????=??????????111222H B L H B L dH dB dL 顾及(10-21)式及

??

??

?????????

??

?

++-

+-++-=-B L

B L B H M B H M L B H M L B B H N L B H N L J sin sin cos cos cos cos sin sin cos sin 0

cos )(cos cos )(sin 1

(10-23) (10-22)式可写为:

=??????????dH dB dL ????

?

??????????????

?

???

?????

?''+'

'+-''+-'

'+''+-000sin sin cos cos cos cos sin sin cos sin 0

cos )(cos cos )(sin Z Y

X B L

B L B H

M B H M L B H

M L B B H N L

B H N L ρρρρρ ?????

???????????

??????

?

?

'

'''---+Z Y X L

B B Ne L B B Ne L

L

L tgB L tgB εεερρ0cos cos sin sin cos sin 0cos sin 1sin cos 2

2

m

H B e N B B e H M N ????

??????+-''+-+)sin 1(cos sin 0

2

22ρ

?

????????????

?

?

???????----''-+-''++ααραρd da B B e M B e a N B B H M B e M B B e a H M N 2

222

2222sin )sin 1(1)sin 1(cos sin )1)(()

sin 2(cos sin )(0

(10-24)

上式通常称为广义大地坐标微分公式或广义变换椭球微分公式。如略去旋转参数和尺度变化参数的影响,即简化为一般的大地坐标微分公式。根据3个以上公共点的两套大地坐标值,可列出9个以上(10-24)式的方程,可按最小二乘法求得8个转换参数。

4坐标系中的旋转变换(2016年)

1. (2016 广西河池市) 】.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3).将线段OA 绕原点O 逆时针旋转30°,得到线段OB ,则点B 的坐标是( ) A .(0,2) B .(2,0) C .(1,―3) D .(―1,3) 答案:】. 答案A 逐步提示作AC ⊥x 轴于点C ,根据勾股定理求出OA 的长,根据正切的概念求出∠AOC 的度数,再根据旋转变换即可得解. 详细解答解:过点A 作AC ⊥x 轴于点C . ∵点A 的坐标为(1,3),∴OC =1,AC =3.∴OA =12+ (3)2=2. ∵tan ∠AOC =AC OC =3,∴∠AOC =60°. ∴将线段OA 绕原点O 逆时针旋转30°得到线段OB 时,点B 恰好在y 轴上. ∴点B 的坐标是(0,2) . 故选择A. 解后反思本题通过作垂线,将点的坐标转化为线段的长度,应用勾股定理求斜边的长,应用特殊角的三角函数值求出特殊角的度数,再根据旋转的方向和角度确定所求点的位置,最后写出其坐标. 关键词 图形旋转的特征、特殊角三角函数值的运用、点的坐标 20160926210454015732 4 坐标系中的旋转变换 选择题 基础知识 2016/9/26 2. (2016 广西贺州市) 】.如图,将线段AB 绕点O 顺时针旋转90°得到线段A ′B ′,那么A (﹣2,5)的对应点A ′的坐标是( )

A.(2,5) B.(5,2) C.(2,﹣5) D.(5,﹣2) 答案:】. 考点坐标与图形变化-旋转. 分析由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论. 解答解:∵线段AB绕点O顺时针旋转90°得到线段A′B′, ∴△ABO≌△A′B′O′,∠AOA′=90°, ∴AO=A′O. 作AC⊥y轴于C,A′C′⊥x轴于C′, ∴∠ACO=∠A′C′O=90°. ∵∠COC′=90°, ∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′, ∴∠AOC=∠A′OC′. 在△ACO和△A′C′O中, , ∴△ACO≌△A′C′O(AAS), ∴AC=A′C′,CO=C′O. ∵A(﹣2,5), ∴AC=2,CO=5, ∴A′C′=2,OC′=5, ∴A′(5,2). 故选:B.

平面图形与立体图形的认识

【几何图形】 从实物中抽象出来的各种图形,包括立体图形和平面图形。 立体图形分为柱体,锥体,球体 多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体 欧拉公式:定点数+面数-棱数=2 练习: 1.下面几何体中,不是多面体的是() A球体 B 三棱锥 C 三棱柱D四棱柱 2.下列判断正确的是 A长方形是多面体B柱体是多面体 C圆锥是多面体D棱柱、棱锥都是多面体 3、将半圆绕它的直径旋转一周形成的几何体是() A、圆柱 B、圆锥 C、球 D、正方体 【点、线、面、体】 (1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 (2)点动成线,线动成面,面动成体。 例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。 解答:五棱柱,7,10,3 【直线】 1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。 2、直线的性质 (1)直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示 练习: 1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线. 2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________. 【射线】 直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。

空间立体几何建立直角坐标系

空间立体几何建立直角坐标系 1.[2015·浙江]如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB = AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是 B 1C 1的中点。 (1)证明:A 1D ⊥平面A 1BC ; (2)求二面角A 1-BD -B 1的平面角的余弦值。 解析:(1)证明:设E 为BC 的中点,连接A 1E ,AE ,DE ,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE 。 因为AB =AC ,所以AE ⊥BC 。 故AE ⊥平面A 1BC 。 由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B ,从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形。 故A 1D ∥AE 。 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC 。 (2)方法一:作A 1F ⊥BD 且A 1F ∩BD =F ,连接B 1F 。 由AE =EB =2,∠A 1EA =∠A 1EB =90°, 得A 1B =A 1A =4。 由A 1D =B 1D ,A 1B =B 1B ,得△A 1DB 与△B 1DB 全等。 由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1-BD -B 1的平面角。 由A 1D =2,A 1B =4,∠DA 1B =90°,得 BD =32,A 1F =B 1F =43 , 由余弦定理得cos ∠A 1FB 1=-1 8。 方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示。

直角坐标系中图形的两次平移与坐标的变化(20200719184846)

直角坐标系中图形的两次平移与坐标的变化导学案 【学习目标】[ 1.在学习一次平移坐标的变化特点的基础上,继续探究依次沿两个坐标轴方向平移 后坐标的变化特点及根据坐标的变化探究图形变化特点? 2.经历探究依次沿两个坐标轴方向平移后所得到的图形与原来图形之间的关系,提高学生的探究能力和方法,发展空间观念? 【学习过程】 一、复习导入 1、平移的定义:在平面内,将一个图形沿着____________ 移动 _________ 的距离,这样 的图形运动称为平移。平移不改变图形的_________ 和________ ,改变的是位置。 原图形上点的坐标平移方向平移距离对应点的坐标 (x,y) 沿x轴方向 向右平移 a个单位长度 (a > 0) x a, y 沿y轴方向 向上平移 x,y a 内容1:将图中鱼F”先向右平移3个单位长度,再向下平移2个单位长度,得到新 “鱼F'”,请在平面直角坐标系中画出平移后的图形解:(1)在平面直角坐标系中画出“鱼F'”。 (2)能否将“鱼F'”看成是“鱼F”经过一次平移得到的?如果 能,请指出平移的方向和平移的距离。 (3)在“鱼F”和“鱼F'”中,对应点的坐标之间有什 么关系?

内容2:如果将“鱼” F向右平移4个单位长度,再向下平移3 个单位长度,得到“鱼” N, 上面问题的探究结果又是什么情 况呢? 内容3、议一议: 一个图形依次沿x轴方向、y轴方向平移后所得图形与原来的图形相比,位置有什 么变化? 规律归纳:设(x,y)是原图形上的一点,当它沿x轴方向平移a(a > 0)个单位长度、沿y轴方 原图形上的点平移方向和平移距离对应点 的坐标 坐标的变化 (x, y) 向右平移a个单位长度,向上平移b个单位长度 向右平移a个单位长度,向下平移b个单位长度 向左平移a个单位长度,向上平移b个单位长度 向左平移a个单位长度,向下平移b个单位长度 归纳如下: 在平面直角坐标系中,一个图形先沿X轴方向平移a( a >0)个单位长度, 再沿丫轴方向平移b( b>0)个单位长度,可以看成是由原来的图形经过一次平移 得到的,则图形沿对应点连线方向平移______________ 单一位长度。

平面图形与立体图形教案

4.1几何图形 4.1.1立体图形与平面图形 【教学目标】 1、能从实物图形中抽取出几何图形;能在生活中寻找出相应的几何图形;会认识常见的平面几何图形和立体几何图形。 2、通过实物抽取几何图形的体验,培养自己的几何图形感,能用几何图形描述生活中的物体。 3、通过对多彩多姿的图形世界体验,激发自己对几何学习的兴趣,也体会学习的快乐。 【教学重难点】 1.重点: (1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;?初步建立空间观念. (2)理解几何图形是从实物图形中抽象出来的。 (3)从实际出发,用直观的形式,让学生感受图形的丰富多彩,激发学生学习的兴趣. 2.难点: (1)立体图形与平面图形之间的互相转化. (2)从现实情境中,抽象概括出几何图形 【教具准备】 长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.

【教学过程】 一、引入新课 由多媒体展示美丽的图形世界 在同学们所观看中,有哪些是我们熟悉的几何图形? 二、新授 1.学生在回顾刚才所看到的图片,充分发表自己的意见,?并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等. 教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征. 3.立体图形的概念. (1)长方体、正方体、球、圆柱、圆锥等都是立体图形. (2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥) (3)用多媒体放映课本4.1-4的幻灯片 (4)提出问题:在这个幻灯片中,包含哪些简单的平面图形? (5)探索解决问题的方法. ①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案. ②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.

第七讲坐标系中的几何问题(包含答案)

中考数学重难点专题讲座 第七讲 坐标系中的几何问题 【前言】 前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。此类问题也是失分最高的,往往起到拉开分数档次的关键作用。作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。 第一部分 真题精讲 【例1】2010,石景山,一模 已知:如图1,等边ABC ?的边长为x 轴上且() 10A ,AC 交y 轴于点E ,过点E 作EF ∥AB 交BC 于点F . (1)直接写出点B C 、的坐标; (2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值; (3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段 OB 上运动时,现给出两个结论: 。 ① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判 断哪个结论正确,并证明.

图2 图1 【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。最后三分收起来有点麻烦,不过稍微认真点画图,不难猜出①式成立。抛物线倒是好求,因为要证的是角度相等,所以大家应该想到全等或者相似三角形,过D 做一条垂线就发现图中有多个全等关系,下面就忘记抛物线吧,单独将三角形拆出来当成一个纯粹的几何题去证明就很简单了。至此,一道看起来很难的压轴大题的7分就成功落入囊中了。 【解析】解:(1 )() 10B ;()13C ,. (2)过点C 作CP AB ⊥于P ,交EF 于点Q ,取PQ 的中点R . ∵ABC ? 是等边三角形,() 10A . ∴60EAO ∠=? . 在Rt EOA ?中,90EOA ∠=?. ∴( tan 6013EO AO =??=-= ∴(0,3E . … ∵EF ∥AB 交BC 于F ,()13C , .

最新人教版初中九年级上册数学《旋转作图与坐标系中的旋转变换》导学案

23.1图形的旋转 第2课时旋转作图与坐标系中的旋转变换 一、新课导入 1.导入课题: 如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形? 2.学习目标: (1)能按要求作出简单平面图形旋转后的图形. (2)能通过图形的旋转设计图案. 3.学习重、难点: 重点:用旋转的有关知识画图. 难点:根据要求设计美丽图案. 二、分层学习 1.自学指导: (1)自学内容:教材第60页例题. (2)自学时间:4分钟. (3)自学方法:依据旋转的性质,关键是确定三个顶点的对应点的位置. (4)自学参考提纲: ①因为A是旋转中心,所以A点的对应点是A . ②根据正方形的性质:AD=AB,∠OAB=90°,所以点D的对应点是点B . ③因为旋转前、后的两个图形全等,所以本例根据三角形全等的判定方法SAS ,作出△ADE 的对应图形为△ABE′ . ④E点的对应点E′,还有别的方法作出来吗? 以AB为一边向正方形外部作∠BAM,在AM上截取AE′=AE即可.(答案不唯一) 2.自学:学生可参考自学指导进行自学. 3.助学: (1)师助生: ①明了学情:看学生能否规范作图,并说明这样作图的理由.

②差异指导:根据学情进行个别指导或分类指导. (2)生助生:小组内相互交流、研讨. 4.强化: (1)作一个图形旋转后的图形,关键是作出对应点,并按原图的顺序依次连接各对应点. (2)在△ABC中,AB=AC,P是BC边上任意一点,以点A为中心,取旋转角等于∠BAC,把△ABP逆时针旋转,画出旋转后的图形. 解:①以AC为一边向△ABC外部作∠CAM=∠BAP. ②在AM上截取AP′=AP. ③连接CP′,则△ACP′就是所求作的三角形. 1.自学指导: (1)自学内容:教材第61页“练习”以下的内容. (2)自学时间:5分钟. (3)自学方法:观察课本上图案的形成过程,探讨它们分别是改变旋转中的哪些要素旋转而成的? (4)自学参考提纲: ①把一个基本图形进行旋转来设计图案,可以通过哪两种途径获得不同的图案效果? a.旋转中心不变,旋转角改变,产生不同的旋转效果. b.旋转角不变,旋转中心改变,产生不同的旋转效果. ②任意画一个△ABC,以A为中心,把这个三角形逆时针旋转40°; ③任意画一个△ABC,以AC中点为中心,把这个三角形旋转180°. ④如图,菱形ABCD中,∠BAD=60°,AC、BD相交于点O,试分别以点O和点A为旋转中心,以90°为旋转角画出图案,并相互交流.

高中数学平面直角坐标系下的图形变换及常用方法

高中数学平面直角坐标系下的图形变换及常用方法 摘要:高中数学新教材中介绍了基本函数图像,如指数函数,对数函数等图像等。而在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其他的图像,要让学生理解并掌握图形变换方法。 高中数学研究的对象可分为两大部分,一部分是数,一部分是形,高中生是最需要培养的能力之一就是作图解图能力,就是根据给定图形能否提炼出更多有用信息;反之,根据已知条件能否画出准确图形。图是数学的生命线,能不能用图支撑思维活动是学好初等数学的关键之一;函数图像也是研究函数性质、方程、不等式的重要工具。 提高学生在数学知识的学习中对图形、图像的认知水平,是中学数学教学的主要任务之一,教师在教学过程中应该确立以下教学目标:一方面,要求学生通过对数学教材中基本的图形和图象的学习,建立起关于图形、图象较为系统的知识结构;培养和提高学生认识、研究和解决有关图形和图像问题的能力。为达到这一目标,教师应在教学中让学生理解并掌握图形变换的思想及其常用变换方法。 函数图形的变换,其实质是用图像形式表示的一个函数变化到另一个函数。与之对应的两个函数的解析式之间有何关系?这就是函数图像变换与解析式变换之间的一种动态的对应关系。在更多的数学问题中,需要将这些基本图像通过适当的图形变换方式转化成其它图像,要让学生理解并掌握图像变换方法。 常用的图形变换方法包括以下三种:缩放法、对称性法、平移法。 1.图形变换中的缩放法 缩放法也是图形变换中的基本方法,是蒋某基本图形进行放大或缩小,从而产生新图形的过程。若某曲线的方程F (x ,y )=0可化为f (ax ,by )=0(a ,b 不同时为0)的形式,那么F (x ,y )=0的曲线可由f (x ,y )=0的曲线上所有点的横坐标变为原来的1/a 倍,同时将纵坐标变为原来的1/b 倍后而得。 (1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; (2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵 坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到. ①y=f(x)ω?→x y=f(ω x );② y=f(x)ω?→y y=ωf(x). 缩放法的典型应用是在高中数学课本(三角函数部分)介绍函数)s i n (?ω+=x A y 的图像的相关知识时,课本重点分析了由函数y=sinx 的图像通

高斯平面直角坐标系的建立

空间数据的地理参照系和控制基础 4、高斯—克吕格投影 高斯—克吕格投影是一种横轴等角切椭圆柱投影。它是将一椭圆柱横切于地球椭球体上,该椭圆柱面与椭球体表面的切线为一经线,投影中将其称为中央经线,然后根据一定的约束条件即投影条件,将中央经线两侧规定范围内的点投影到椭圆柱面上,从而得到点的高斯投影(图3-2-5)。将一球椭球体地球装在椭圆柱内上下切点为中央经线。 高斯投影的条件为: (1)中央经线和地球赤道投影成为直线且为投影的对称轴; (2)等角投影; (3)中央经线上没有长度变形。 根据高斯投影的条件推导出的高斯—克吕格投影的计算公式为: 式中:X、Y为点的平面直角坐标系的纵、横坐标;

φ、λ为点的地理坐标,以弧度计,λ从中央经线起算; S为由赤道至纬度φ处的子午线弧长; N为纬度φ处的卯酉圈曲率半径; 其中η为地球的第二偏心率,a、b则分别为地球椭球体的长短半轴。 高斯投影由于是等角投影,故没有角度变形,其沿任意方向的长度比都相等,其面积变形是长度的两倍。对高斯—克吕格投影长度变形的研究可以依下述长度比表达式进行: 由该长度比公式可以分析出高斯投影变形具有以下特点: (1)中央经线上无变形; (2)同一条纬线上,离中央经线越远,变形越大; (3)同一条经线上,纬度越低,变形越大; 由此可见,高斯投影的最大变形处为各投影带在赤道边缘处,为了控制变形,我国地形图采用分带方法,即将地球按一定间隔的经差(6°或3°)划分为若干相互不重叠的投影带,各带分别投影。1:2.5万至1:50万的地形图均采用6°分带方案,即从格林尼治零度经线起算,每6°为一个投影带,全球共分为60个投影带。我国领土位于东经72°到136°之间,共包括11个投影带(13带~22带)。1:1万及更大比例尺地形图采用3°分带方案,全球共分为120个投影带。图3—4给出了高斯投影的6°带和3°带分带方案。

《数学》第四册坐标系平移和旋转

坐标系平移和旋转 平面上的坐标系 地理坐标是一种球面坐标。由于地球表面是不可展开的曲面,也就是说曲面上的各点不能直接表示在平面上,因此必须运用地图投影的方法,建立地球表面和平面上点的函数关系,使地球表面上任一点由地理坐标(φ、λ)确定的点,在平面上必有一个与它相对应的点,平面上任一点的位置可以用极坐标或直角坐标表示。 平面直角坐标系的建立 在平面上选一点O为直角坐标原点,过该点O作相互垂直的两轴X’OX和Y’OY而建立平面直角坐标系,如图5所示。 直角坐标系中,规定OX、OY方向为正值,OX、OY方向为负值,因此在坐标系中的一个已知点P,它的位置便可由该点对OX与OY轴的垂线长度唯一地确定,即x=AP,y=BP,通常记为P(x,y)。 平面极坐标系(Polar Coordinate)的建立 图:平面直角坐标系和极坐标系 如图5所示,设O’为极坐标原点,O’O为极轴,P是坐标系中的一个点,则O’P称为极距,用符号ρ表示,即ρ=O’P。∠OO’P为极角,用符号δ表示,则∠OO’P=δ。极角δ由极轴起算,按逆时针方向为正,顺时针方向为负。

极坐标与平面直角坐标之间可建立一定的关系式。由图5可知,直角坐标的x轴与极轴重合,二坐标系原点间距离OO’用Q表示,则有: X=Q–ρcosδ Y=ρsinδ 直角坐标系的平移和旋转 坐标系平移 如图1所示,坐标系XOY与坐标系X’O’Y’相应的坐标轴彼此平行,并且具有相同的正向。坐标系X’O’Y’是由坐标系XOY平行移动而得到的。设P点在坐标系XOY中的坐标为(x,y),在X’O’Y’中坐标为(x’,y’),而(a,b)是O’在坐标系XOY中的坐标,于是: x=x’+a y=y’+b 上式即一点在坐标系平移前后之坐标关系式。 图1:坐标平移 坐标系旋转 如图2所示,如坐标系XOY与坐标系X’O’Y’的原点重合,且对应的两坐标轴夹角为θ,坐标系X’O’Y’是由坐标系XOY以O为中心逆时针旋转θ角后得到的。 x=x’cosθ+y’sinθ

平面直角坐标系中如何求几何图形的面积

图1 图2 图3 平面直角坐标系中如何求几何图形的面积 一、 求三角形的面积 1、有一边在坐标轴上或平行于坐标轴 例1:如图1,平面直角坐标系中,△ABC 的顶点坐标分别为(-3,0)、(0,3)、(0,-1),你 能求出三角形ABC 的面积吗 2、无边在坐标轴上或平行于坐标轴 例2:如图2,平面直角坐标系中,已知点A (-3,-1)、B (1,3)、C (2,-3),你能求出三角形ABC 的面积吗 归纳:求三角形面积的关键是确定某条边及这条边上的高,如果在坐标系中,某个三角形中有一条边在坐标轴上或平行于坐标轴,则根据这条边的两个顶点的坐标易求出这边的长,根据这条边的相对的顶点可求出他的高。 二、求四边形的面积 例3:如图3,你能求出四边形ABCD 的面积吗 分析:四边形ABCD 是不规则的四边形,面积不能直接求出,我们可以利用分割或补形来求。

归纳:会将图形转化为有边与坐标轴平行的图形进行计算。 怎样确定点的坐标 一、 象限点 解决有关象限点问题的关键是熟记各象限的符号特征,由第一到底四象限点的符号特征分别为(+,+)、 (-,+)、(-,-)、(+,-)。 例1:已知点M (a 3-9,1-a )在第三象限,且它的坐标都是整数,则a =( ) A 、1 B 、2 C 、3 D 、0 二、轴上的点 解决有关轴上点问题的关键是把握“0”的特征,x 轴上点的纵坐标为0,可记为(x ,0);y 轴上点的横坐标为0,可记为(0,y );原点可记为(0,0)。 例2:点P (m+3,m+1)在直角坐标系的x 轴上,则P 点的坐标为( ) A 、(0,-2) B 、(2,0) C 、(4,0) D 、(0,-4) 三、象限角平分线上的点 所谓象限角平分线上的点,就是各象限坐标轴夹角平分线上的点。解决这类问题的关键是掌握“y x =”的特征,一、三象限角平分线上点的横、纵坐标相等,可记为(x ,x );二、四象限角平分线上的点横、纵坐标互为相反数,可记为(x ,-x )。 例3:已知点Q (8,4m 22 2++++m m m )在第一象限的角平分线上,则m=_________. 四、对称点 对称点的横、纵坐标之间有很密切的关系,点P (a ,b )关于x 轴对称的点的坐标上(a ,-b );关于y 轴对称的点的坐标是(-a ,b );关于原点对称的点的坐标是(-a ,-b );关于一、三象限角平分线对称的点的坐标是(b ,a );关于二、四象限角平分线对称的点的坐标是(-b,-a ). 例4:点(-1,4)关于原点对称的点的坐标是( ) A 、(-1,-4) B 、(1,-4) C 、(1,4) D 、(4,-1) 五、平行于坐标轴的直线上的点 平行于x 轴的直线上点的纵坐标相同,平行于y 轴的直线上点的横坐标相同。 例5:点A(4,y)和点B (x ,-3),过A 、B 的直线平 行于x 轴,且AB=5,则x=____,y=_____.

北师大版八下数学《图形的平移与旋转》专题专练

《图形的平移与旋转》专题专练 专题一:确定图形变换后的坐标 把图形放在平面直角坐标系中,利用点的坐标,可进行图形的变换或确定图形的位置与形状,解答这类问题,是数与形结合的体现,有利于提高综合运用知识的能力.现以坐标系中的平移与旋转的图形变换为例加以说明.例1 如图1,在△AOB中,AO=AB.在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上.则点B′的坐标是. 析解:因为△AOB是等腰三角形,容易得到B点坐标为(4,0),将△AOB 平移得到△A′O′B′,使得点A′在y轴上,是将图形向左平移2个单位长度.根据平移特点,平移后对应线段相等,因此点B也向左平移2个单位长度,所以点B′的坐标为(2,0). 例2 已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A,B的对应点坐标为A1(,),B1(,). 析解:建立如图2所示的直角坐标系,则OA2,所以OA1=OA2,所以点A120).因为∠AOB=45°,所以△AOB是等腰直角三角 形,所以△A1OB1是等腰直角三角形,且OA12 ,所以B1 22 ?? ,. 练习一:1.如图3,若将△ABC绕点C顺时针旋转90°后得到△A′B′C′,则A点的对应点A′的坐标是(). (A)(-3,-2)(B)(2,2)(C)(3,0)(D)(2,1)

2.如图4,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图案中左眼的坐标是(3,4),则右图案中右眼的坐标是. 3.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O 按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.4.如图5,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1). (1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形,并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C 的图形,并写出点B2的坐标. 专题二:图形的变换分析 分析图形的变换一般选择合适的“基本图形”,然后由平移、旋转的定义考查这一基本图形变换到另一个基本图形的运动方式是平移还是旋转,以及运动的距离或角度是多少,并由性质进行检验判断的正确性.

旋转CAD视图的方法(不改变坐标系)

操作方法: 命令:UCS<回车> ……:N<回车> ……:3<回车> ……:捕捉红线上一点(与水平夹角线上的一点) ……:捕捉红线上另一点(与水平夹角线上的另一点) ……:<回车> 结束命令 为了便于以后找回这个UCS,把它保存,操作方法: 命令:UCS<回车> ……:S<回车> ……:001<回车> 然后用PLAN命令调整平面视图,操作方法: 命令: PLAN<回车> 输入选项[当前UCS(C)/UCS(U)/世界(W)]<当前UCS>:C<回车> 则效果如图2所示。 如果要回到原始的图1的视图,则是: 命令:PLAN<回车> ……:W<回车> 通过修改UCS旋转视图的步骤 1.确保处于布局选项卡上。 2.双击要旋转其对象的视口。 3.请确保当前UCS与旋转平面平行(UCS图标应显示正常)。如果UCS与旋转平面不平行,请依次单击“工具”菜单“新建UCS”“视图”。如果UCS与旋转平面不平行,请在命令提示下输入ucs。

4.依次单击“工具”菜单→“新建UCS”→“Z”。在命令提示下,输入ucs。要顺时针旋转视图90度,请输入90。要逆时针旋转视图90度,请输入-90。 5.依次单击“视图”菜单→“三维视图”→“平面视图”→“当前UCS”。在命令提示下,输入plan。 整个视图在视口中旋转。可能需要重新指定视口的比例。 使用MVSETUP旋转布局视图的步骤 AutoCAD布局空间旋转图形 在布局中,双击视口进入模拟空间后: (这个是前提,也可以点击CAD界面下边中间的“图纸”按钮切换到“模型”) 第一种方法: 输入“ucs”命令,回车 输入“Z”,回车输入角度“45”(需要的角度,例如45,或者你想要旋转的角度值),回车 输入“plan”命令回车回车这样就ok了 第二种方法: 使用MVSETUP命令旋转视图: 在命令提示下,输入mvsetup;输入a(对齐);输入r旋转视图;选择要旋转视图的视口;指定旋转基点;指定旋转角度;整个视图在视口中旋转。OK,这就好了。 关于视口的其它一些小技巧: 可先在模型空间就输入“UCS”命令,选“N”新建一个或多个倾斜的用户坐标系,再选“3”后指定X和Y轴;再次输入“UCS”命令选“S”保存并命名新建的坐标系。然后进入布局中的视口,输入“DDUCS” 选择某个坐标系为当前坐标系,然后进入视口中输“PLAN”命令摆正这个当前坐标系。 (这样可在视口中实现倾斜图纸的摆正打印,而且不会影响模型空间的坐标系,且不同视口可有不同的坐标系。) 方法三

平面直角坐标系下的图形变换

平面直角坐标系下的图形变换 王建华 图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。 在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的 关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活 平移: 上下平移横坐标不变,纵坐标改变 左右平移横坐标改变,纵坐标不变 对称: 关于x轴对称横坐标不变,纵坐标改变 关于y轴对称横坐标不变,纵坐标不变 关于中心对称横坐标、纵坐标都互为相反数 旋转:改变图形的位置,不改变图形的大小和形状 旋转角旋转半径弧长公式L=nπR/180 一、平移 例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化? 解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2). 向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2). 比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度. 友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。 析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B 反思:①根据平移的坐标变化规律: ★左右平移时:向左平移h个单位) , ( ) , (b h a b a- → 向右平移h个单位) , ( ) , (b h a b a+ → ★上下平移时:向上平移h个单位) , ( ) , (h b a b a+ → 向下平移h个单位) , ( ) , (h b a b a- → 二、旋转 例3.如图2,已知△ABC,画出△ABC关于坐标原点 0旋转180°后所得△A′B′C′,并写出三角形各顶点的 坐标,旋转后与旋转前对应点的坐标有什么变化? 解析:△ABC三个顶点的坐标分别是: A(-2,4),B(-4,2),C(-1,1). △A′B′C′三个顶点的坐标分别是: 图2 图1 B/ 图 2 图1

几何图形与平面图形

课题 4.1.1几何图形与平面图形 一、学习目标 1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程; 2、能由实物形状想象出几何图形,由几何图形想象出实物形状; 3、能识别一些简单几何体,正确区分平面图形与立体图形。 学习重点:识别简单的几何体 学习难点:从具体事物中抽象出几何图形 二、自主探究 1、几何图形 (1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界; (2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题: 从整体上看,它的形状是 从不同侧面看,你看到的图形是 看棱得到的是 看顶点的到的是 。 我们见过的长方体、圆柱、圆锥、球、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。 2、立体图形 说一说下面这些几何图形有什么共同特点? 有些几何图形的各部分不都在同一平面内,它们是 .(如: ) 请再举出一些立体图形的例子. 想一想 生活中还有哪些物体的形状类似于这些立体图形呢? 3、平面图形 (1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点

说一说下面这些几何图形又有什么共同特点? 平面图形的概念 线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是 。 请再举出一些平面图形的例子。 思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系? 三、课堂练习 课本119页练习 四、要点归纳 1、 2、平面图形与立体图形的关系: 立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内; 立体图形中某些部分是平面图形。 五、拓展训练 1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球. 其中属于立体图形的是( ) A. ①②③; B. ③④⑤; C. ① ③⑤; D. ③④⑤⑥ 【总结反思】 现实物体 几何图形 平面图形 立体图形 看外形

几何建模章节坐标系介绍

摘自《ANSYS工程结构数值分析》 2.1坐标系类型 总体坐标系、局部坐标系、节点坐标系、单元坐标系、显示坐标系、结果坐标系 1总体坐标系 0表示直角坐标系,1表示柱坐标系,2表示球坐标系,但总体坐标系均用X、Y、Z表示。 2局部坐标系 直角坐标系、柱坐标系、球坐标系、环坐标系,局部坐标系的编号必须大于等于11 整体坐标和局部坐标主要用于几何建模 3节点坐标系 定义节点自由度的方向,每个节点都有自己的节点坐标系,ANSYS缺省的节点坐标系方向平行于总体直角坐标系,而与建立节点时所用坐标系无关。当施加不同于总体坐标系方向的约束或荷载时,需要旋转节点坐标系到需要的方向,然后在施加约束或荷载。在post26中,节点结果(节点位移、节点荷载和支座反力等),都是用节点坐标系方向表示;在post1中,节点结果数据均用结果坐标系表示。 4单元坐标系每个单元都有自己的单元坐标系,用于定义单元各向异性材料性质的方向、面荷载方向和单元结果(如应力应变等)的方向。 5显示坐标系 显示坐标系用来定义结合元素被列表或显示的坐标系。缺省时,几何元素列表总数显示为总体直角坐标系,而不论他们是在何种坐标系下创建的。 显示坐标系的改变会影响到图形显示和列表,无论是结合图素还是有限元模型都将受到影响。但是边界条件符号、向量箭头和单元坐标系的三角符号都不会转换到显示坐标系下,显示坐标系的方向是X轴水平向右,Y轴垂直向上,Z轴垂直屏幕向外。当DSYS>0时将不会显示线和面的方向。 6结果坐标系 结果坐标系用于节点结果和单元结果的列表和显示。求解结果如节点位移、单元应力或应变,以节点坐标或单元坐标系保存在文件中,在显示或列表时,均按当前激活的结果坐标系输出。缺省时,结果坐标系与总体直角坐标系平行。 2.1.2坐标系的定义与激活 ANSYS缺省情况下总是激活总体直角坐标系,用户每定义一个局部坐标系则该坐标系被激活。如果要激活一个总体坐标系或以前定义的局部坐标系,则要通过菜单或命令 1激活总体和局部坐标 命令csys,kcn Kcn为坐标系号码,0为直角坐标系(缺省),1为柱坐标系,2为球坐标系,4为以工作平面为坐标系,5为柱坐标系(Y轴为转轴),大于等于11为局部坐标系。由于工作平面可不断移动和旋转,因此,当采用csys,4时也相当于不断定义了局部直角坐标系,在很多情况下应用非常方便。自己查了ansys手册,KCN好像没有3的情形。 2定义局部坐标系 (1)根据总体坐标系定义局部坐标系 LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2 KCN为局部坐标系编号,必须大于10 KCS为坐标系类型,0,1,2,3(3是环坐标系) XC, YC, ZC为新坐标系原点在总体直角坐标系中的坐标 THXY, THYZ, THZX为新坐标系绕ZXY轴的旋转角度

与函数相联系的图形旋转问题举例

与函数相联系的图形旋转问题举例 作者:刘春杨|来源:东北育才学校初中部浏览次数:1026次 东北育才网校| 2008-12-22 11:01:57 图形的旋转是图形变换的重要内容之一,又是新课程标准明确的重要内容。 其有利于培养学生实践与操作能力,形成空间观念和运动变化意识.本文列举几道与函数相联系的图形旋转问题,来帮助学生进一步体会数形结合思想在解题中的应用。 一、与一次函数相联系的图形旋转问题 A.三角形作旋转 例1(06沈阳).如图1-①,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4。 (1)求点C的坐标; (2)如图1-②,将△ACB绕点C按顺时针方向旋转30°到△A’CB’的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A’B’C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线) (3)在(2)的基础上,将△A’CB’绕点C按顺时针方向继续旋转,当△COE的面积为时,求直线CE的函数表达式。 分析:(1)要求点C的坐标只需求出OC长即可;(2)根据旋转性质:旋转前后图形大小、形状不变可以获得其他3对 全等三角形;(3)问题关键是“其中A’C交直线OA于点E”,所以“当△COE的面积为 时”要注意多解。 解:(1)在中,,.

点的坐标为. (2),,. (3)如图1-③,过点作于点. ,. ∵在中,,,. ∵点的坐标为.直线的. 同理,如图1-④所示,点的坐标为. 设直线. 例2(08金华)如图2,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P 是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD. (1)求直线AB的解析式; (2)当点P运动到点(,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使△OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

《立体图形与平面图形》练习题

4.1 多姿多彩的图形(1) 几何图形 长方形的是()1.如图所示,水平放置的下列几何体,从正面看到的视图不是 .. 2.下列几何体中,直棱柱的个数是() A.5 B.4 C.3 D.2 3.直四棱柱、长方体和正方体之间的包含关系是() A B C D 4.若一个棱柱有10个顶点,则下列说法正确的是() A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.这个棱柱是一个十棱柱 5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是() A B C D 6.举出两个俯视图为圆的实物例子: 、. 7.写出下列立体图形的名称(从左到右依次写出): . 8.如果直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为 cm. 9.分别画出图中的物体的三个视图: 10.如图①②③④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表: (2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系; (3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数. 参考答案 1.答案: B 解析:B答案中圆锥的主视图是三角形. 2.答案: C 解析:直棱柱的侧面应是矩形,符合这个条件的有第一个,第五个和第六个.故选C.

3.答案:A 解析:正方体是特殊的长方体,长方体又是特殊的直四棱柱,故选A.4.答案:B 解析:一个棱柱有10个顶点,则它是五棱柱,五棱柱有5个侧面,有5条侧棱,底面是五边形.故选B. 5.答案:A 解析:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A. 6.圆柱,球,圆锥. 7.从左到右依次为:圆柱、长方体、四棱锥、圆锥. 8.直六棱柱的其中一条侧棱长为4cm,那么它的所有侧棱长度之和为6×4=24cm.故答案为24. 9.三个视图如下: 10.解:(1)结和图形我们可以得出: 图①有4个顶点、6条边、这些边围成3个区域; 图②有7个顶点、9条边、这些边围成3个区域; 图③有8个顶点、12条边、这些边围成5个区域; 10个顶点、15条边、这些边围成6区域.

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

相关文档
最新文档