常见视频信号传输特性及转换说明

常见视频信号传输特性及转换说明
常见视频信号传输特性及转换说明

常见视频信号传输特性及转换说明

常见视频信号传输特性及转换说明

时间:2005-4-21 11:46:15 来源:InfoAV China 作者:张德荣阅读4063次

1. 分量视频(Component Signal)

摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。

- RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。

- RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。

- RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。

RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下:

- 传输介质:3-5根带屏蔽的同轴电缆

- 传输阻抗:75?- 常用接头:3-5×BNC接头

- 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场

同步(V)信号线,公共地=屏蔽网线(见附图VP-03)

2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。

插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享4.2MHz(NTSC)或5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下:

- 传输介质:单根带屏蔽的同轴电缆

- 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头

- 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01)

3. 色差信号(Y,R-Y,B-Y)

对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的

带宽。

人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。

将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。

色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

色差信号y,r-y,b-y信号一般通称为y, cr,cb; 习惯上y,cr,cb为数字(pcm)的色差信号,模拟的色差信号则称y,pr,pb,所以我们常在dvd player的内部看到y,cr,cb而在dvd player的外部看到色差输出标示为y,pr,pb或yuv;yuv则是在欧洲电视系统pal 中的色差信号的通称,包含数字及模拟的色差信号都称yuv,所以当您看到yuv时您就要联想到它是pal系统中的y,r-y,b-y信号,它可能是数字(pcm)的yuv,也可能是模拟的yuv

4. 数字视频(SDI)

数字视频也有多种不同的格式,而且应用在不同的范围,这里指的是“串行数字视频”(Signal-Digital Interface),一般简写为SDI接口。

伽马校正后RGB信号在线性矩阵中变换为一个亮度分量Y和两个色度Pb、Pr。由于人眼视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此亮度信号Y以较高的带宽(SDTV为5.5MHz)通过传输系统。亮度信号经过低通滤波后抽样频率为13.5MHz,在A/D 转换器中产生了10 bit的13.5MB/s码流;两路色度信号经过同样的过程后,在A/D转换器中产生了两路10 bit的6.75MB/s码流,三个视频通道经复用形成27MB/s的10 bit并行数据码流(Y,Cb,Cr)。

27MB/s的10 bit并行数据码流送到移位寄存器(串化器),加入时钟和加扰,按照电视规范形成了270Mb/s的串行数据

码流(SDI)。

5. 视频格式的转换

视频的不同格式决定了信号在亮度、色度、对比度、锐度、清晰度、最高分辨率等各个方面的表现。从上述对

各种视频格式的分析可以知道,视频高清晰度质量的级别大致可以进行如右的排序(由高往低):

其中,目前最高级别的当选DVI数字视频信号,但存在只能短距离传输的缺点(有效距离约5米),SDI数字视频具备可以编辑和更长距离传输的优点,RGBHV与VGA其实属于统一档次的信号,只是由于信号的组成分量不同而有两种称呼,S-Video比起Video(复合视频的简称)在亮度利用率上有明显的提升,并有效消除了色彩蠕动现象,射频格式是最低级的信号,仅在监控和公共电视的范围应用。

工程应用中经常会面临很多信号格式的转换过程,这些不同格式的信号转换需要遵循那些规则?最终会产生什么效果的影响?一般认为:

低级别格式向高级别格式转换有比较明显的质量提升,比如早期的倍频扫描器或四倍频扫描器,还有目前流行的智能视频调节器,都是Video-RGBHV(复合视频-分量视频)的转换处理,对于提高信号的质量有很明显的改善。因为这些产品均使用了多比特数字技术,确保信号质量(清晰度、亮度、信噪比)可以进行高度还原。

DVI数字视频通常会转换成SDI或RGBHV,转换后原始信号的清晰度有所损失,但使DVI信号实现了长距离传输;VGA信号转换成RGBHV实际效果并没有得到提升,因为二者同等级别,但解决了VGA信号的同步通用匹配问题,而且能够进行更长距离的传输。

高级别格式向低级别格式(比如VGA转Video)转换的过程,无论对原始信号的任何方面,包括亮度、色度、色彩、对比度、锐度、清晰度、最高分辨率都会造成严重的损失,这种转换没有任何的意义,但早期具备一定的使用价值,比如:把电脑的VGA信号转换成Video进行磁带录像、电视机电视墙显示,或者在视像会议中用于“抓图”传输。

6. 高级别向低级别视频格式的转换缺点

6.1. 固有的扫描抖动

标准视频信号由一组扫描线组成,并不是所有这些线都可见。在NTSC制式中,可见的线有483条,而在PAL和SECAM制式中有576条。线数少的电视视频图像,在显示非常小的文字或其它复杂的细节方面受到限制。相比之下,计算机显示设备的扫描线数可从低分辨率(≤480条) 到高分辩率(≥1280条)。现在,许多新的计算机显示卡可让用户在几种不同显示分辨率中选择。显然分辨率越高,文字与图像的细节就显象得越完美。

电视信号是隔行扫描的,意味着每一屏“画面”实际上是由两个半帧构成的,即两个分别由奇数线与偶数线组成的场。首先奇数线被扫描,然后消隐,接着偶数线被扫描在原奇数线之间。依次显示又隐去的奇数场和偶数场使具有一定形状的图像易产生明显的抖动,特别是那些细的水平线。

如图:

左图:第一场(奇数线帧)奇数线按从上到下、从左至右扫描

右图:第二场(偶数线帧)偶数线在奇数线之间的位置上,从上到下、从左到右扫描

相反,计算机信号的产生使用的是非隔行扫描的信号,也称为“逐行扫描”方式。所有扫描线以从上到下,从左到右的顺序一次扫完,不分奇偶帧。这样就消除了电视系统中由于隔行扫描而带来的图像抖动问题。

6.2. 信号格式兼容性

NTSC、PAL和SECAM是几种常见的标准电视视频信号格式,它们规定了显示图像的线数、色彩信息的定义和扫描线的速度(即刷新频率)。另外还有许多与这些格式不同的格式,如:复合视频、S-Video和D1(数字)视频,但是所有这些格式都有很多共同点。例如:它们都是隔行扫描的,扫描线数为483(NTSC)或576 (PAL和SECAM),都有固定不变的刷新频率。NTSC制的两个隔行的场组成

一帧,每秒钟出现30次(30Hz),对PAL和SECAM制式来说,每秒钟出现25次(25Hz)。

与电视视频不同,计算机视频信号并没有一个必须遵守的单一标准,可选择的分辨率与刷新频率范围很广,刷新频率一般在60Hz到85Hz之间。尽管计算机不采用隔行扫描的方式显示图像,但一些显卡提供了隔行扫描显示的功能。任意情况下,计算机视频信号向监视器传递色度与亮度信息的方式是相同的,所有VGA、SVGA和Mac计算机的视频格式都将红、绿、蓝信息作为单独的信号(分量)进行传递。因此,这使计算机可以显示很宽的颜色范围而不失真,而最一般的电视视频格式是将红、绿、蓝信息组合为一个单独信号(色度)向监视器传递。

高级别格式向低级别格式转换的过程一般通过扫描转换器实现。这种技术观念听起来很简单,就算使人认同了设计的理念,在技术上还是有很多需要考虑的因素:

- 扫描转换器的计算机输入兼容性

- 兼容计算机的最高分辨率是多少

- 是否需要“同步锁相”

- 扫描转换器的彩色抽样率

- 扫描转换器的编码器的质量如何

- 输出何种格式的视频信号

- 有无内置的测试图案

熟悉计算机分辨率的人都知道视频线数不符合标准的分辨率。因此将上述信号输入到投影机或显示设备时会带来不兼容的问题,表现为:

- 画面像素点缺损,大部分细节无法重现

- 图像被拉伸或扭曲,仅仅能重现信息的轮郭

- 投影机或显示设备对输入图像进行强制兼容处理,这种附加的处理经常会使图像质量下降(人为因素,类似梯型校正功能)。

另一个局限是由扫描转换器产生的垂直刷新频率,由扫描转换器输出信号的垂直刷新频率最高为60Hz或50Hz,具体取决于输出信号是NTSC还是PAL/SECAM制式,而许多投影机都可以输入和显示更高的刷新频率,提供一个较好的图像质量。而当使用扫描转换器时,会使投影机在较低的刷新频率下所显示的图像受到限制。

6.3. 损失投影机的固有分辨率

LCD和DLP投影机或PDP显示设备是经常与扫描转换器或者视频调节器连用的设备,这些设备都用像素来显示图像,所有象素点的数目被称作固有分辨率。

尽管许多投影机可以显示那些分辨率低于固有分辨率的图像,但在固有分辨率下所显示的图像的质量最高。比如:固有分辨率为1024×768的投影机可以显示分辨率为800×600的画面,但其效果没有显示分辨率为1024×768的图像好,因为分辨率为1024×768图像中的每一个点都对应于固有分辨率为1024×768的投影机的每一个像素点,使颜色的显示非常清晰,没有象显示分辨率为800×600的图像那样需要进行颜色补偿而造成图像清晰度下降。

张德荣

主任/高级工程师

武警水电指挥部司令部通讯站

电话:010-5868 9999

【资料补充】

DFP - Digital Flat Panel Group(HPCN 20 或 MDR20)

20 pins 的DFP(MDR20)连接头。单通道最大165MHz,纯数字。单它的解析度限制在1280X1024

DFP Group是由PC大厂Compaq为首的数位界面规格联盟,其中最有名的厂商为ATI。而ATI也是第一家生产具有DFP 界面显示卡的公司。VESA曾经过渡性地采用DFP当标准。如果你拿DFP与VESA的P&D相比,你将很难发现它们的不同。DFP基本上是修改过的P&D,它们的电器规格实际上都一样,

除了少了类比信号、USB及IEEE1394等界面,所以是一个较便宜的解决方案。它唯一的缺点是它的信号解析度被限制在SXGA(1280X1024)。虽然在市面上已经可以找到具有DFP界面的显示卡,如ATI2的 Range Pro LV、巫毒(Voodo)的3500及Number Nine的 SR9,但DFP的未来已经可预料到。DFP

所受限的SXGA解析度将宣告它是个存活不久的规格

P&D -Plug-and-Display (P&D)(EVC 30+5)

难处理及昂贵的P&D接头EVC具有30 pins。右边的四个脚位具有可程式的功能

视讯电子标准协会(VESA)多多少少会把无法及时统一工业上的显示器界面需求的这个责任归罪于多个组织及它们所制定的技术规格。许多公司开始破坏VESA所制定的授权制度而且它们组成利益共同的小组织去制定属于它们自己的规格。虽然VESA早在1997年就发表它的第一版Plug-and-Display (P&D) Standard(随插即显示标准,P&D)但它的规格却没有考虑到那时候工业上真正的情形。例如,它的数位连接器想要实现一个具有多用途的连接器,但是没有厂商想去处理这样麻烦的元件。虽然它可以经由P&D同时传输类比及数位信号,

加上整合的界面如 USB 及IEEE1394/Firewire 使得它在实际上是不能使用的。没有显示卡厂商愿意投资这样昂贵的连接头。

Scart接口

主要是欧洲人在用,凡是出货到欧洲的电视,如果不是想死在库房的话,一般都会带有这种接口。SCART接口传输CVBS信号、隔行RGB信号,通常厂家都把SCART用来传输RGB信号。由于三原色信号分开传输,因此在色度方面表现比S-Video更好。SCART现在只有传输480I/576I隔行信号的标准。

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

常用视频信号接口与处理方法总结

常用视频信号接口与处理方法总结 刘学满2010-4-13 视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号) 单端/ 差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压范围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此 需要 注意以下几个事项: 1)阻抗匹配:通常为75Ω ,包括发送端,接收端以及传输路径上的阻抗。

2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来 看,分隔成小的地平面后,实际上会造成环流( AD9883资料中有叙述) 。因此大部分 情况下,还是用同一个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必 要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/ 缓冲器之后的延时也相差不 多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D 是否支持交流耦合方式输入 2)A/D 内部是否有信号增益调整功能 3)是否支持差分输入 4)A/D 内部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式( 24bit RGB ,YCbCr)

6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D 转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D 芯片有关offset 和gain 的寄存器,经过此番调 整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL 在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A 输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规范要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit 兼容,要注意最高2 位和最低2 位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C 信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656 或者BT601 格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601 格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I 2C寄存器配置不同。6.缓冲器/放大器/ 选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/ 放大/ 选择/ 分配等处理。 在这些电路设计时,着重需要考虑的问题: 1)输入信号的电压辐值,芯片供电范围是否能满足要求,是否需要加75Ω电阻。 2)期望信号放大多少倍输出。

各种视频信号接口及定义

各种视频信号接口及定义 1.复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。 由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz(NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。 复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 2.S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S 视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 3.隔行色差信号(Y、Cr、Cb) 隔行色差信号含义与逐行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 4.RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。5.RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 6.RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

数字视频技术基础复习题

数字视频技术考复习题 一、填空题 1、MPEG-1视频流采取分层式数据结构,包括视频序列、、图像、 像条、、块共六层。 2、已知HDB3码为-1000-1+1000+l-l+l-100-1+l,原信息代码 为。 3、以在上一帧图像中找到相似的块,这两个宏块之间的位移,称为。 4、数字复接过程中,按各支路信号的交织情况来分,可以分为复 接、复接和复接。 5、视频基本码流(ES)层次结构由视频序列层、、、像条层、 宏块层和。 6、当前宏块与它匹配的宏块之间的差值称为。 7、模拟彩色电视信号,世界存在三种制式,它们分别是制、制 和制。 8、PAL制式彩色电视信号中,为了节省频带宽度,一般将色度信号调制在 -----MHZ的频率上,再安插在信号中。 9、在NTSC制式电视信号中,色度矢量的幅度代表,初 相位代表。 10、标准清晰度电视演播室标准规定,亮度信号每行的取样点 数,取样频率为MH Z。 11、基带传输时,接收波形满足取样值无串扰的充要条件是:仅在本码元的取 样时刻上有,而在其他码元的取样时刻,本码元的值为。 12、准同步复接中一般采用正码速调节,其方式为当缓存器即将读空时,禁止 读时钟输出,使缓存器读出一位,在输出码流中插入一个,可以把码速调高。 13、某一信道传输二进制时,速率为a,如果利用这一信道传输8进制时, 传输速率将是。 14、MPEG-2结构可分为和层,针对不同的环 境,MPEG-2规定了两种系统编码句法,分时是流和流。 15、H.264标准算法在概念上分为2个层次,分别是层和层。 16、H.264除了有I、P、B帧之外,还有2个切换帧,分别是帧 和帧。 17、SDH帧结构由和两大部分组成,他们的字长分别 ()和。 18、在一个STM-1中,可包容的基群个数为。

视频监控中的常见几种视频传输方式介绍

视频监控中的常见几种视频传输方式介绍 目前,在安防监控行业中用来传输图象信号的方式有很多,但主要传输介质是同轴电缆、双绞线和光纤,对应的传输设备分别是同轴视频放大器、双绞线视频传输设备和光端机。同轴电缆是较早使用,也是最传统的视频传输方式。后来,由于远距离和大范围图象监控的需要以及人们对监控图象质量的要求提高,监控网络中开始大量使用光纤来传输图象信号。虽然双绞线被使用到图象监控网络中是近来的事,但双绞线的视频平衡传输技术是很早就出现了。它也是视频传输技术的一个分支。下面详细介绍下常见视频传输方式: 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩

高清、标清数字视频系统的同步

高清、标清数字视频系统的同步 出处:《传播与制作》作者:程宏张京春日期:2011-5-17 所属期刊:201104 同步是高清、标清和模拟视频系统中最基本也是最严格的技术环节。视频系统中的各种设备,如摄像机、VTR、服务器和切换器等,均应处于同步状态。同步信号是系统的锁相基准信号,它保证了信号切换时画面不出现滚动、跳动以及A/D、D/A转换颜色不失真等现象。对于演播、播出系统来说,整个系统的统一同步是必不可少的。在视频系统设计、安装、调试、维护中,工程技术人员除了要重视视频、音频等技术环节,还需要重视同步这一技术环节,科学合理地配置同步和相关设备。 一. 高清、标清系统中同步信号的种类和选择 1.模拟黑场同步信号 模拟黑场同步信号(BLACK BURST 简称BB),称它为黑场色同步是因为该信号的正程图像对应的信号电平是黑电平(对于PAL制黑电平为0mV;对于北美NTSC制为7.5IRE)。 图1

模拟黑场同步信号应符合国家广播电影电视总局在2000年颁布的中华人民共和国广播电影电视行业标准《GY/T167-2000数字分量演播室的同步基准信号》。该标准规定数字分量演播室系统中用模拟基准信号作为数字标清系统的外同步基准信号,该同步基准信号的有效视频信号部分应是消隐信号,同步脉冲是负极性信号,脉冲幅度300mv,行同步基准点定义为行同步脉冲的下降沿的50%处。模拟黑场同步信号的行同步提供了行时序;场同步提供了场时序。这一同步基准信号已经广泛用于大量的串行数字分量系统中。模拟视频同步信号如图1。 模拟黑场同步信号的同步脉冲幅度标称值为300mV,可选色同步信号峰峰幅度标称值为300mV,同步脉冲极性应为负极性。行同步脉冲前沿(基准沿)的建立时间不应超过210ns,在10%和90%幅度值之间测量。行同步脉冲各前沿的定时在至少一场时间上应在前沿平均定时的±2.5ns范围之内。基准信号应工作在75Ω阻抗下,应符合标准的BNC型。 2.数字BB 数字的同步信号包括高清数字同步信号(HD SDI BLACK)和标清数字同步信号(SD SDI BLACK)。时钟和定时基准信息更加容易提取,适合于全数字系统应用。 数字环境中的同步是通过特定的编码字序列来实现的。这些编码字序列代表着有效视频 随后是000、000两个字,最后是XYZ字。在XYZ字中,包含有场序(F)、场消隐(V)和行消隐(H)信息,参见图2。在数字视频信号中,是利用上述数据来实现同步定时的。在图中可以观察到F、V和H比特的指配使用情况。数字视频信号的行场计数从第一场的第一行开始。数字的同步信号如图2。

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

常用视频信号接口与处理方法总结材料

常用视频信号接口与处理方法总结 学满2010-4-13 一、视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号)、单端/差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此需要注意以下几个事项: 1)阻抗匹配:通常为75Ω,包括发送端,接收端以及传输路径上的阻抗。 2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来看,分隔成小的地平面后,实际上会造成环流(AD9883资料中有叙述)。因此大部分情况下,还是用同一 个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/缓冲器之后的延时也相差不多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D是否支持交流耦合方式输入

2)A/D部是否有信号增益调整功能 3)是否支持差分输入 4)A/D部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式(24bit RGB,YCbCr) 6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D芯片有关offset和gain的寄存器,经过此番调整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit兼容,要注意最高2位和最低2位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656或者BT601格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I2C寄存器配置不同。 6.缓冲器/放大器/选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/放大/选择/分配等处理。 在这些电路设计时,着重需要考虑的问题:

数字视频信号的传输

数字视频信号的传输 刘怀林 数字视音频的大潮已经向我们涌来。数字小岛、数字视音频中心、数字转播车已陆续在我国不少电视台出现。甚至数字播出与发射已不再是纸上谈兵。数字化及计算机化将引起电视技术领域的极大变革。本文将从一个非常小的侧面谈一下这个数字大潮。因为数字视频信号的传输在系统设计与安装中是不可缺少的一环。 目前,设备间、系统间的数字视频信号的传输多使用串行信号。其接口为SDI(Serial Digital Interface)。这是因为该方式较简单易行。传送距离较远。因此本文所谈的数字信号的传输实质上就是串行数字视频信号的传输。 数字视频信号的传输在某种意义上讲与模拟信号相似。分为同轴电缆传送,三同轴传送和光纤传送三种。 但由于两者信号有着本质的不同。所以其处理手法上有着很大的区别。 一、同轴电缆传送 在数字环境中,设备间、系统之间的数字视频信号的传送多采用同轴电缆,其接口为SDI。它由三部分组成。如图1所示。 1、串行数据发送: 串行数据发送电路的主要功能是:将数字视频并行信号变成串行信号,通过扰频(scrambler)和NRZI(NonreturntoZeroInverfed)编码,可限制信号的直流成份,前者还有利于接收端回收时钟信号。图2是其示意图: 我们知道,数字分量并行数据率为27MB/秒,10比特。当变成串行数据时,27MHZ10倍频成为270MHZ时钟。在并──串移位寄存器的输出端就变成了270Mb/s的串行数据。 2、电缆和连接器 目前模拟环境下使用的高质量视频电缆可以运行于数字系统。模拟环境下的视频电缆从直流到10MHZ都呈现很低的阻抗。这在数字领域也是需要的。但由于串行数字信号频率很高,这种电缆传输对数字视频信号将有明显的衰减。由于SDI接收端设有自动电缆均衡,另外串行数字信号对这种衰减不敏感。因此现在使用的优质电缆原则上可用于数字环境。为了更好地传输数字视频信号。电缆厂家已生产出专门为串行数字信号设计的新的低耗泡沫介质电缆。比目前电缆更细、更柔软,并且对数字信号有更好的电特性。如Belden1505A。有关连接器,直至目前,视频电缆采用BNC连接器。阻抗为50欧姆。而同轴电缆阻抗为75欧姆。这种看上去不合理的现象为什么能保持至今呢?其主要原因是在视频信号所涉及的频率率上。这种失配并不产生什么问题。但在数字视频信号频率很高的情况下会不会引起脉冲畸变或比特率误差呢?经测试表明,只要接收端输入阻抗看上去为75欧姆。这种50

视频信号 控制信号的传输距离

信号传输距离 1、常见视频信号,包括复合视频信号、S-视频信号(或称Y/C)、VGA信号、RGBHV信号、超高质量数字信号等。 ⅰ复合视频信号:一般接头为BNC、RCA。(如下图) 75代表抗阻性,后面的3和5代表它的绝缘外径(3mm/5mm)。 SYV中S---同轴射频电缆,Y---聚乙烯,V---聚氯乙烯. SYV75-3传输在300米之内效果好. SYV75-5传输在800米内效果更好. 视频线分 75-3(约100米)传输距离 75-5(约300米)传输距离 75-7(约500--800米)传速距离 75-9(约1000---1500米)传速距离 75-12(约2000----3500米)传速距离 75代表电阻,-3代表线径 ⅱS-视频信号(或称Y/C) 传输距离短15M ⅲVGA信号 频率高 易衰减,传输距离短 易受干扰 3+4/6VGA15-30M ⅳRGBHV信号 75-2RGB30-50M 75-3RGB50-70M ⅴ超高质量数字信号-DVI DVI-D:只能接收数字信号 DVI-I:能同时接收数字信号和模拟信号 传输距离短7-15M ⅵ超高质量数字信号-HDMI 支持5Gbps的数据传输率,最远可传输15米 2、常见控制信号,RS232、RS422、RS485、IR、CR-NET(CREATOR控制信号) ⅰRS232传输速率较低,在异步传输时,波特率为20Kbps,接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生共模干扰,所以抗噪声干扰性弱。传输距离15米~20米。采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪

数字视频信号的长线传输

数字视频信号的长线传输 摘要: 在实时显示彩色数字视频信号时,通常要求数据传输通道传输通道具有很高的带宽和有效的传输距离传输距离。因此在设计和构建这些高速率的数据传输通道时,不但要选择合理的传输形式,而且要对数据的编码、解码、并串转换、驱动、接口等电路进行认真的研究,以达到最佳的配合。介绍的串行传输技术是最近的设计成果,可以广泛地应用于海量数据的有线传输。 关键词: 差分接口并转串/串转并 PLL LVDS-PECL 大屏幕平板显示系统,如LED大屏幕显示系统,广泛地应用于信息发布领域和公用事业。2008年将在北京举办的奥运会,更加推动了这一产业的发展。 大屏幕平板显示系统是典型的数字系统,要求动态、实时、清晰稳定地显示图像信息。与通信系统相比,这种系统更关心实时地把图像数据正确地传输到显示器,将错误的信号忽略掉,所以不要求强大的纠错检错能力和错码重发功能。通常为降低成本、减少时间延迟不宜采用压缩解压缩的方法进行传输。因此这样的传输系统传输系统应具有实时、单向传输的特点,要求建立稳定的传输通道。 系统的信号来源一般是计算机显示卡或数字电视信号。以显示卡为例,如果输出640×480、24bit/pixel、60帧/s标准真彩VGA图像时,其输出点时钟达25.175MHz/s,数据位宽为27bit/pixel(考虑Vs、Hs、de)。这样的海量数据,采用并行传输时,将使传输系统十分笨重,需要大量电缆;而采用串行传输时,将使传输系统简化,必要时可以采用几条高速串行通道来实现。 为构建稳定的串行传输系统,需要对信号进行一些特殊的处理,常用的电路模块有:数据的并串转换(serialize/deserialize)、4B/5B(8B/10B)转换、加解扰(scramble/descramble)、电平转换和驱动、接收端接收端的均衡放大(equlize)、PLL、接收端错码检测等。此外,在工程中还要对码速率、传输距离、传输介质进行合理的选择,以满足不同需要。 1 长线传输的基本框图 图1概括了构成数字视频信号长线传输系统的基本组成。按点时钟(PCLK)输入的并行数据,经过编码、并转串、加扰以差分信号的形式输出。其中编码实现4B/5B、8B/10B等编码转换,消除弱码,有助于直流平衡。加扰(scramble)使能量谱均匀分布,避免在某一频段出现能量峰值,减少铜介质传输的电磁辐射。并转串把并行码字转化为高速串行码流。直流平衡就是在编码过程中保证信道中直流偏移为0,电平转化实现不同逻辑接口间的匹配。驱动则对传输信号的能量进行放大,并根据物理介质的要求进行码型调整。均衡是对信道损失进行补偿并滤除噪声。 可以采用不同的传输介质进行传输,铜介质(同轴,双绞线),光介质(单模,多模光纤)。在采用光传输时,图1中加解扰模快可以略去不用。有效传输距离与码速率、介质、接口、环境有关,所以应按照不同电缆、不同速率、不同长度时的衰耗以及端口的门限估算传输距离。 建立一个稳定的传输系统,一般具有如下的要求: (1)合理的系统方案设计、选择; (2)发射端、接收端建立稳定的PLL同步链路; (3)不同高速逻辑电平的相互配合; (4)正确的传输方式和耦合方式;

常用视频接口S端子

常用视频接口S端子、DVI、色差、D端子、HDMI解释 VGA输入接口:VGA 接口采用非对称分布的15pin 连接方式,其工作原理:是将显存内以数字格式存储的图像( 帧) 信号在RAMDAC 里经过模拟调制成模拟高频信号,然后再输出到等离子成像,这样VGA信号在输入端(LED显示屏内) ,就不必像其它视频信号那样还要经过矩阵解码电路的换算。从前面的视频成像原理可知VGA的视频传输过程是最短的,所以VGA 接口拥有许多的优点,如无串扰无电路合成分离损耗等。 DVI输入接口:DVI接口主要用于与具有数字显示输出功能的计算机显卡相连接,显示计算机的RGB信号。DVI(Digital Visual Interface)数字显示接口,是由1998年9月,在Intel开发者论坛上成立的数字显示工作小组(Digital Display Working Group简称DDWG),所制定的数字显示接口标准。 DVI数字端子比标准VGA端子信号要好,数字接口保证了全部内容采用数字格式传输,保证了主机到监视器的传输过程中数据的完整性(无干扰信号引入),可以得到更清晰的图像。 标准视频输入(RCA)接口:也称A V 接口,通常都是成对的白色的音频接口和黄色的视频接口,它通常采用RCA(俗称莲花头)进行连接,使用时只需要将带莲花头的标准A V 线缆与相应接口连接起来即可。A V接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于A V 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,仍然需要显示设备对其进行亮/ 色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,色度信号和亮度信号也会有很大的机会相互干扰从而影响最终输出的图像质量。 A V还具有一定生命力,但由于它本身Y/C混合这一不可克服的缺点因此无法在一些追求视觉极限的场合中使用。 S视频输入:S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在A V接口的基础上将色度信号C 和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4芯(不含音效) 或者扩展的7芯( 含音效)。带S-Video接口的显卡和视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同A V 接口相比由于它不再进行Y/C混合传输因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口。 视频色差输入接口:目前可以在一些专业级视频工作站/编辑卡专业级视频设备或高档影碟机等家电上看到有YUV YCbCr Y/B-Y/B-Y等标记的接口标识,虽然其标记方法和接头外形各异但都是指的同一种接口色差端口( 也称分量视频接口) 。它通常采用YPbPr 和YCbCr两种标识,前

各种视频传输模式比较分析

各种视频传输模式分析 视频线缆传输可以分为同轴基带传输、双绞线基带传输、射频传输、光缆传输、数字IP(网络)传输等几种方式。 一、视频同轴基带传输: 我国PAL-D视频基带0-6M,复合视频基带一般指视频基带和音频副载波为8M带宽。同轴视频传输是应用最早,用量最大,最容易操作的一种视频传输方式。同轴视频基带传输的技术要点是: 1.同轴电缆的信号传输是以“束缚场”方式传输的,就是说把信号电磁场“束缚”在外屏蔽层内表面和芯线外表面之间的介质空间内,与外界空间没有直接电磁交换或“耦合”关系。所以同轴电缆是具有优异屏蔽性能的传输线;同轴电缆属于超宽带传输线,应用范围一般为 0Hz—2Ghz以上;它又是唯一可以不用传输设备也能直接传输视频信号的线缆; 2.视频基带信号处在0-6M的频谱最低端,所以视频基带传输又是绝对衰减最小的一种传输方式。但也正是因为这一点,频率失真——高低频衰减差异大,便成为视频传输需要面对的主要问题;在视频传输通道幅频特性“-3db”失真度要求内,75-5电缆传输距离约为120—150米;工程应用传输距离在2、3百米以内还比较好,网上论坛里提供的“感官标准”传输距离数据,从3、5百米到1千多米都有,实际是没有标准,也就没有实际参考意义。 3.同轴视频基带传输的主要技术问题是:为实现远距离传输的频率加权放大和抗干扰问题。加权放大器可一定程度地抑制干扰,同时也能有效补偿电缆衰减和频率失真,属于抗干扰传输设备。其前端有源—后端无源抗干扰传输距离(75-5)在1000米左右,前后端都有源为1500-2000米;与加权视频放大器配套的抗干扰传输距离3公里,75-7电缆可以达到5公里。双绝缘双屏蔽抗干扰同轴电缆是与同轴电缆穿镀锌铁管原理一样,施工更方便,成本更低,在常见电磁干扰环境下,可以作为防止干扰入侵,又可方便设计和施工的工程选择; [同轴视频基带传输设备] 我国频率加权视频放大专利技术的出现,有效解决了视频传输的频率失真问题,产品已经比较成熟,在视频传输通道“-3db”失真度要求内,仅用一级末端补偿,75-5电缆传输距离已经提高到了2000米以上,前后双端补偿的视频恢复设备已经突破3公里。传输距离已可以满足多数中近距离工程需要,传输质量已达到高质量工程的要求; [认识、理解和应用上的盲区误区] 1.知道同轴传输有衰减,但不了解、不理解“频率失真才是视频同轴传输最需要重视的主要问题。频率失真改变了视频原信号各种频率成分的正常比例关系,降低了图像色度和清晰度;

视频接口大全

视频接口大全(HDMI、DVI、VGA、RGB、分量、S端子、USB接口) 1.S端子 标准S端子

标准S端子连接线 音频复合视频S端子色差常规连接示意图 S端子(S-Video)是应用最普遍的视频接口之一,是一种视频信号专用输出接口。常见的S端子是一个5芯接口,其中两路传输视频亮度信号,两路传输色度信号,一路为公共屏蔽地线,由于省去了图像信号Y与色度信号C的综合、编码、合成以及电视机机内的输入切换、矩阵解码等步骤,可有效防止亮度、色度信号复合输出的相互串扰,提高图像的清晰度。 一般DVD或VCD、TV、PC都具备S端子输出功能,投影机可通过专用的S端子线与这些设备的相应端子连接进行视频输入。 显卡上配置的9针增强S端子,可转接色差

S端子转接线 欧洲插转色差、S端子和AV

与电脑S端子连接需使用专用线,如VIVO线 2.VGA接口 DVI接口正在取代VGA,图为DVI转VGA的转接头 VGA是Video Graphics Adapter的缩写,信号类型为模拟类型,视频输出端的接口为15针母插座,视频输入连线端的接口为15针公插头。VGA端子含红(R)、黄(G)、篮(B)三基色信号和行(HS)、场(VS)扫描信号。VGA 端子也叫D-Sub接口。VGA接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。VGA接口是显卡上输出信号的主流接口,其可与CRT显示器或具备VGA接口的电视机相连,VGA接口本身可以传输VGA、SVGA、XGA等现在所有格式任何分辨率的模拟RGB+HV信号,其输出的信号已可和任何高清接口相貔美。

相关文档
最新文档