亮剑 石墨烯的物理性质

亮剑 石墨烯的物理性质
亮剑 石墨烯的物理性质

二石墨烯其物理性质

1、石墨烯材料的结构

1-1、石墨烯的结构

石墨烯是一种从石墨材料中剥离出的碳原子紧密堆积成单层二维

蜂窝状晶格结构的炭材料。石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学才能描绘。

碳原子中的四个绕核电子轨道分布在一个平面上。碳分子是几个碳原子在平面上的连接和展开,所以,碳分子与碳原子的薄度相似,只是平面更大了一些而已。碳原子或碳分子中的绕核电子只是在碳原子核的径方向面上存在着和运动着,就像土星中的光环,土星的两极方向是没有光环的,即,碳原子核两极的轴方向上是没有绕核电子的。

单层石墨由交替的单双键构成,类似于有机中的多烯烃,故得名。其实这是一种习惯命名。烯是烃的一种,烃指的是碳氢化合物,而石墨烯明显不含氢元素。但我们可以看到,苯,C6H6,在经典价键理论中可以被命名为1,3,5-环己三烯,两个苯环共边形成了萘(卫生球),C10H8,三个苯环共边形成了蒽和菲,C14H10,分子中氢元素的含量在不断下降,当这种形式无限扩展时,整个分子都由这种共边的苯环构成,边缘的氢分子几乎可以忽略,也就形成了石墨烯的结构。换句话说,石墨烯是由基本的烃的无限延伸的产物,所以也称之为烯。理想的石墨烯结构如图1A所示,具有正六边形蜂窝晶形结构的碳原子间以σ键相连,每一个碳原子由一个π轨道及一个核外电子共同

组成了一个离域的大π键。石墨就是由图1A所示的单层石墨烯堆积形成的层状材料,层与层间考范德华作用力连接。

2004年石墨烯在实验室被制备出来之前,相关研究认为石墨烯只能是一个理论上的材料,不能够单独稳定地存在,但2004年K.S.Novoselov等通过机械剥离法将高定向热解石墨层层剥离最终得到能稳定存在的单层石墨烯。对此,J.C.Meyer等通过实验模型,并利用透射电镜对石墨烯结构进行了进一步的研究,揭示出了自由分散的石墨烯具有带波纹状结构的单层结构,波纹状层状高度落差为0.7-1.0nm左右,而横截面长度为8-10nm左右,如图1B所示。由于石墨烯的皱褶波纹结构大大降低了它的表面能,因而能够稳定存在。2004年前相关理论的缺欠,就在没有考虑到石墨烯的褶皱波纹结构。石墨烯是当今世界已发现的最薄的材料,这种石墨晶体薄膜的厚度只有0.335纳米(一个原子的直径,10的-10次方),把20万片薄膜叠加到一起,也只有一根头发丝那么厚。但这个厚度数据来源于石墨的层间距,并不严格。因为单层石墨烯的厚度不仅受其褶皱波纹结构的影响,还与测量时放置石墨烯的基体材料有关。例如,原子力显微镜测量单层石墨烯的厚度为0.6-1.0nm。

A)理想结构

B)实际结构

图1石墨烯的结构

1-2、氧化石墨烯的结构

石墨烯由于强大的范德华力具有疏水性和易团聚的特点,限制了其广泛应用。氧化石墨烯的出现正好解决了上述问题,氧化石墨烯( Graphene Oxide,GO) 是石墨烯的一种衍生物,是由氧化石墨发生剥离而形成的单层或多层氧化石墨,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性和机械性能,在水和大多数极性有机溶剂中具有很好的分散稳定性。

一般认为,氧化石墨烯具有典型的准二维空间结构,其片层上有大量的羟基和羧基酸性活性基团,其离子交换容量大(比黏土类矿物大得多), 长链脂肪烃、过渡金属离子、亲水性分子和聚合物等易于通过层间氢键、离子键和共价键等作用插入层间,形成层间化合物。干燥样品的层间距约0 .59nm ~0.67nm之间,相对湿度45 %、75 %和100 %下达到平衡的GO层间距分别为0.8 nm、0.9 nm 和1 .15nm,比公认的原始石墨层间距0.34nm大,显然有利于插层反应的进行。通过元素分析发现,化学式为C8O2-X[OH]2X[0

氧化石墨烯是石墨烯的氧化形式,如图2所示。在其碳原子晶体中出现大量的如-OH、-COOH、环氧基、羰基等含氧功能团。氧化石墨烯的结构可以看作是石墨烯片层结合含氧功能团形成的,这些含氧功能团主要为-COOH、-OH、环氧基,-COOH一般位于石墨烯层的边缘。氧化石墨烯一般可通过将石墨氧化随后超声分散而得到。随着氧化程度的增加,一般认为-COOH含量增加,且环氧基与-OH之比增加。

图2 氧化石墨烯的结构

2石墨烯的电学性能

2-1、石墨烯是目前已知导电性能最出色的材料。

电子在石墨烯片层内的传输过程中,受到的阻力和干扰很小,利用其传输的平面半导体技术操作技术,石墨烯的迁移率可达到2×105cm2/(V.s),约为硅中电子迁移率的100倍;石墨烯还表现出了异常的量子Hall效应;Klein隧穿效应:在室温下,载流子在石墨烯中的传输显示出了微米尺度内弹道式的一流隧穿特性;同时石墨烯还是一种禁带宽度几乎为零的半金属/半导体材料,具有半金属特性;通过改变栅极电压的方法可以改变石墨烯的载流子类型:电子/空穴;石墨烯是纳米电路的理想材料,其电阻率为10-6Ω*cm,比铜或银更低,是目前已知材料中室温下具有最低电阻的材料;对任何气体完全不渗透,具有很高的密封性能,可以维持很高的电流密度(比铜高一百万倍)。碳原子有四个价电子,每个碳原子贡献一个未成键的π电

子,这些π电子在与平面成垂直的方向上形成π轨道。π电子在晶体中可自由移动,赋予石墨良好的导电性。如图3。

图3 用坐标表示的石墨烯晶体结构

2-2、石墨烯电学性能的讨论

(1)石墨烯特殊电子结构对电子迁移率的影响

石墨烯是一种禁带宽度几乎为零的半金属/半导体材料,具有半金属特性。在二维六边形Brillouin角的六个角附近的低能区域,其E-K关系是线性的(见图4),从而形成了有效质量为零的Dirac-费米子,具有类似光子的特性。电子在片层内的传输过程中,由于原子间作用力十分强,即使周围碳原子发生挤撞,引入缺陷或外来原子,受到的阻力和干扰小,不容易发生散射。且利用其传输的平面半导体操作技术,石墨烯的传导性会得到加强。

石墨烯的高速电迁移率归因于它特殊的量子隧道系统。Klein

隧道效应可以使相对论粒子有一定的概率穿越比自身能量高的

势垒。而在石墨烯中,Klein隧道效应发挥到极致,石墨烯所

有的粒子都发生了Klein隧道效应,通过率达百分之百,这就

是石墨烯极高载流速率的原因。

(2)电子迁移率不随温度变化

石墨烯在电子迁移率上另一个优异性质是它的迁移率大小几

乎不随温度的变化而变化。电子在传递过程中受晶格振动的散

射作用,导致电子迁移率降低,而晶格振动的强度与温度成正

比,即温度越高,电子迁移率越低。然而石墨烯的晶格振动对

电子散射很少,几乎不受温度影响变化。

(3)电子传输中的自冷系统

持续保持低温操作对于高效能的电极来说非常重要。石墨烯就有制冷的Peltier(塞贝克)效应,也叫热电极效应。在室

温条件下,在金属触点该效应是很明显的。石墨烯设备中,该

作用超过了焦耳热和传输阻力,表现出了非典型的自冷机制。(4)载流子特性

上文提到石墨烯对任何气体具有完全的致密性(不渗透性),因此它可以维持很高的载流子密度(比铜高一万倍)。另外,

在电场的操作下,可以控制石墨烯的载流子浓度,所以其导电

性可控。通过改变栅极电压的方法,可以转变石墨烯的载流子

类型。电场的势垒可以用来控制电子运动的方向。

石墨烯每个单独的电荷载体都是一个传导通道,并假设弹道

输运,则有利于量子点的传导G0=2E2/h(其中,E是基本电荷,

h是普朗克常数)。很多化学上潜在的不平衡(即源极-漏极偏

置)可以增加活性通道的数目和最终的总电导率的量化增量。

图4 石墨烯的电子能带结构

3光学性质

3-1、石墨烯的精细结构常数α

在凝聚态物理世界里有一些现象只由基本常数决定,与其本身的物理参数无关。石墨烯的透光率仅由精细结构常数α决定,α=e2/hc≈1/137。单层石墨烯在白光下仅吸收πα=2.3%部分的入射白光。每增加一层石墨烯,对光的吸收增加2.3%,同时吸收与入射光波长无关,这是由于石墨烯在迪拉克电子和空穴能带相交电子结构的结果。该性质可用于辨别石墨烯的层数,也可用于制造生产各种波段的激光振荡器。

图5入射白光在空气、单层石墨烯、双层石墨烯时的透光率

3-2、烯的非线性光学特性

可饱和吸收体的光学非线性特性与光载流子密度直接相关。使用描述二维量子陷的简单二能级可饱和吸收体模型来描述石墨烯的非线性可饱和吸收:

其中α*(N)为吸收系数,α*S为可饱和吸收系数,α*SN为非饱和吸收系数,N为光感生电子空穴密度,Ns为可饱和强度,其大小为吸收降至初始值一半时N的大小。在强度为I的连续光或是脉冲光激发下,光载流子密度可以简单的由下式描述:

其中t为载流子复合时间,ω为光频率。式子说明达到同样的载流子强度N时,载流子复合时间越长需要获得的连续光强越小。

图6 石墨烯薄膜的总吸收与层数的关系

痛过使用能量为0.75eV-0.85eV的声子,得到上示的石墨烯薄膜的吸收与石墨烯层数的关系。该结果与比尔-朗伯定律相一致,即单层石墨烯具有大小为πα的固定吸收大小。

图7 不通层数石墨烯薄膜的非线性吸收实验数据及拟合结果

图7为通过使用1550nm的激光得到的多层石墨烯的非线性可饱和吸收特性。随着入射光强的增加,得到可饱和吸收清晰的变化。用公式(2-2)代替公式(2-1)中的N,得到可以用来拟合上述实验结果的公式:

式中Is为可饱和强度,定义为在一个稳定状态中,使吸收率降到未饱和一半时所需光强。当石墨烯层数从3±1变化至10±1时,可饱和强度从0.71MW/cm2变化至0.61MW/cm2。与此同时,由于石墨烯层数增加而导致的散射增强,使得石墨烯非可饱和损失的变大,这使得调制深度从66.5%减小到6.2%,如图4所示。

图8 调制深度与可饱和载流子密度与石墨烯层数的关系

石墨烯的可饱和强度要比单臂碳纳米管和半导体可饱和吸收镜的调制深度高2-3倍。原子层石墨烯之所以会具有相对大一些的调制深

度是因为其本身的非可饱和损失要小一些,这是由石墨烯二维结构决定的固有优点。由于金属催化剂和管束之间散射作用,单臂碳纳米管的非可饱和损失比石墨烯要高些。图8所示的为可饱和载流子密度与石墨烯层数的关系,可以看出在调制深度基本一致的情况下,9-11层石墨烯的可饱和载流子密度是传统单臂碳纳米管的3倍,说明石墨烯具有产生低噪声激光脉冲的潜质。

4热导性质

石墨烯具有极高导热系数, 近年来被提倡用于散热等方面, 在散热片中嵌入石墨烯或数层石墨烯可使得其局部热点温度大幅下降。美国加州大学一项研究显示 , 石墨烯的导热性能优于碳纳米管。中国科学院山西煤炭化学研究所高导热石墨烯/炭纤维柔性复合薄膜,其厚度在10~200 μm之间可控,室温面向热导率高达977 W/m?K,拉伸强度超过15 MPa。普通碳纳米管的导热系数可达3000W/mK以上, 各种金属中导热系数相对较高的有银、铜、金、铝, 而单层石墨烯的导热系数可达5300W/mK, 甚至有研究表明其导热系数高达6600W/mK。优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的散热材料。与纯石墨烯相比, 还原剥离氧化石墨得到热导率相对较低(0.14 ~ 2.87 W/mK)的石墨烯(RGOx)。其导热系数与氧化石墨被氧化程度密切相关, 原因是RGOx薄片即使经过热还原处理后仍然具有氧化性。导热率可能与其中残余的化学官能团、破坏的碳六元环等缺陷有关化学结构被氧化导致晶格缺陷的产生, 阻止了热传导作用。

石墨烯的理论比表面积可达2630m2/g,室温热导率约为5300 w/(m·k),高于碳纳米管和金刚石,是室温下铜的热导率的10倍多。对于一些电子设备,频率越高,热量也越高,如果导热性达不到要求,频率提升就会受到限制,填充的信号也就有限。导热率高决定了石墨烯适合于高频电路。

5相关力学性质

石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。在试验过程中,他们选取了一些直径在10—20微米的石墨烯微粒作为研究对象。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。

研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

5-1、石墨烯的不平整性和稳定性

关于准二维晶体的存在,科学界一直存在争议。早在1934年,Peierls就提出准二维晶体材料在室温环境下会迅速分解或拆解。根据Mermin-Wagner理论,长的波长起伏会使长程有序的二维晶体受到破坏。另外,根据弹性理论,二维薄膜在有限温度(>0K)下表现出不稳定性,尤其会发生弯曲现象。因此科学家们一直认为严格的二维晶体结构由于热力学不稳定性而难以独立稳定地存在单层石墨烯的成功制备[[i,so]震惊了物理界,使科学家们对“完美二维晶体结构无法在非绝对零度下稳定存在”这一基本论述提了质疑。Novoselov等[i,so]利用机械剥离法(mechanicalcleavage)首次成功获得了真正意义上的二维石墨烯片,而且可在外界环境中稳定地存在,为二维体系的实验研究提供了广阔空间。

然而,石墨烯在自然状态下是否为完美的平面结构还函待进一步证实,诸多学者对此进行了研究.Meyer[si-sa]和Ishigami等将石墨烯嵌入三维空间(附着在微型支架或置于Si0:衬底上),通过透射电子显微镜观察并辅以数值模拟,研究表明,石墨烯并不完全平整,产生了面外起伏褶皱,如图9(a)所示。Fasolino等采用蒙特卡罗模拟方法研究了石墨烯的平整度问题,发现由于热涨落,石墨烯中自发地存在大约8 nm的波纹状褶皱,如图9(b)所示。产生这些褶皱的原因可能与碳原子在二维石墨烯中所处的环境有一定的关系,Carlsson 对此进行了讨论.。烯中的碳原子在薄膜上下没有近邻原子,碳原子容易在法向方向失稳而没有恢复力.正是这些纳米级别的三维褶皱巧妙地使二维石墨烯晶体结构稳定地存在。褶皱的产生与碳碳键的柔性

也存在有一定的关系。理论上,碳碳键长为0.142nm,实际自由状态下,石墨烯薄膜中的碳碳键长介于0.130-0.154 nm分布。

另外,石墨烯的边界表现出不稳定性,边界的结构和形貌对石墨烯的性质会产生重要影响。Shenoy等基于有限元分析和原子模拟,研究发现,扶手椅型和锯齿型石墨烯的边界均会产生压应力,边界压力的存在会导致石墨烯薄膜边界产生翘曲现象,,同时发现锯齿边的起伏幅度大于扶手椅边的起伏幅度。Reddv等通过能量最小化研究石墨烯平衡态的构型发现,初始为矩形的4条边在平衡态时也会发生弯曲现象韩同伟等(ss-ss}基于AIREBO势函数利用分子动力学方法模拟了自由态石墨烯的弛豫性能也发现边界会产生相似的翘曲现象,同时发现多层石墨烯的边界翘曲程度明显比单层石墨烯的。Gass等采用扫描透射电镜对无支撑石墨烯的原子晶格进行了实验观测并辅以数值分析,究探究表明,无支撑石墨烯的边界会重组产生卷曲现象,形成直径最小的纳米管。石墨烯边界产生翘曲或卷曲的原因可能在于孤立的石墨烯边缘存在大量的悬键,由于悬键的存在,使得石墨烯边缘处的能量较高,从而致使其发生变形以减小边界处的能量。

图9石墨烯中的存在的褶皱现象

5-2、石墨烯力学性能的温度相关性和应变率相关性

石墨烯极其优异的力学性能与碳原子之间的化学键和电子结构有着紧密的联系,内全部由a键构成的石墨烯,所有碳原子被束缚在同一个平面内,使其具有超高的强度、刚度和韧性以及独特的变形机制。另一方面,根据统计热力学理论,温度的高低决定了碳原子热振动的剧烈程度。因此温度的改变必然会引起石墨烯力学行为的变化。科学家采用蒙特卡罗方法研究了石墨烯弹性性能和热力学特性的温度相关性,模拟结果显示,石墨烯的泊松比随温度的升高而减小,最后趋近于0.1。当温度低于900K时,石墨烯的剪切模量和绝热杨氏模量随温度的升高而增大,而高于900K时,剪切模量和绝热杨氏模量随温度的升高而减小。韩同伟等利用分子动力学方法,研究了扶手椅型和锯齿型石墨烯拉伸力学性能的温度相关性。研究表明,两种不同手性石墨烯的杨氏模量、抗拉强度、拉伸极限应变均随温度的升高而显著减小,如图10所示。系统温度越高,系统的总动能就越大,从热力学观点来看,系统内部原子的热运动越激烈,故随着温度的升高,原子更活跃,原子在其平衡位置产生振动的幅度越大。在外载作用下,高温时原子之间的相互吸引力相对减小,原子更容易脱离固有的平衡位置而失稳。通过对石墨烯在不同温度下的原子变形构型研究发现,温度对石墨烯的变形机制有一定的影响。在高温时缺陷除了在边缘处形成外,有时还会形成于薄膜内部某处。而且,在高温时有时会有几个缺陷同时存。温度愈高,造成缺陷的机会愈多,从而导致抗拉强度和拉伸极限应变减小。

图10 石墨烯力学性能随温度的变化趋势

宏观材料的强度随应变率的增大而提高,在纳米尺度下铜、镍等金属纳米材料的力学性能也表现出明显的应变率敏感性。不同材料的应变率敏感性有所差异。模拟锯齿型和扶手椅型石墨烯在不同应变率下的拉伸力能实验结果发现,石墨烯的力学性能表现出强烈的应变率相关性。

图11 石墨烯力学性能随应变率的变化趋势

参考文献:

1、湖南工学大学学报第30卷第3期“石墨烯的材料结构、性质及

表征解析”

2、北京化工大学氧化石墨烯表面功能化修饰

3、薛迎辉“石墨烯电极材料结构设计及其在二次电池中的应用”

4、石墨烯的电学研究——电学性质机理及其电学应用

5、天津大学精密仪器与光电子工程学院王晓龙“石墨烯的非线性

光学特性及其在光纤激光器中的应用”

6、韩同伟、贺鹏飞、骆英、张小燕“石墨烯力学性能研究进展”

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨的物理和化学性能

石墨::是碳的一种同素异形体,是原子晶体、金属晶体和分子晶体之间的一种过渡型晶体。在晶体中同层碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相联,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。在同一平面的碳原子还各剩下一个p轨道,它们互相重叠,形成离域的π键电子在晶格中能自由移动,可以被激发,所以石墨有金属光泽,能导电、传热。由于层与层间距离大,结合力小,质软并有滑腻感。灰黑,不透明固体,密度2.25g/cm3,熔点3652℃,沸点4827℃,硬度1。化学性质稳定,耐腐蚀,同酸、碱等药剂不易发生反应。687℃在氧气中燃烧生成二氧化碳。可被强氧化剂如浓硝酸、高锰酸钾等氧化。可用作抗磨剂、润滑剂,高纯度石墨用作原子反应堆中的中子减速剂,还可用于制造坩埚、电极、电刷、干电池、石墨纤维、换热器、冷却器、电弧炉、弧光灯、铅笔的笔芯等。 物理性质: 不溶于水和有机溶剂;是碳质元素结晶矿物,它的结晶格架为六边形层状结构。每一网层间的距离为3.40Å,同一网层中碳原子的间距为1.42Å。属六方晶系,具完整的层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。 化学性质: 常温下单质碳的化学性质比较稳定,不溶于稀酸、稀碱;不同高温下与氧反应燃烧,生成二氧化碳或一氧化碳;在卤素中只有氟能与单质碳直接反应;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反应,生成金属碳化物。碳具有还原性,在高温下可以冶炼金属。 石墨有分层。同一层有很多个六面体组成,不同层由另一种非共价键组成所以石墨也稳定,因为同一横面很稳定。但石墨很滑,因为它的纵面很不稳。 石墨是一种“层状结构”的“过渡型晶体”:层内碳原子以共价键结合形成正六边形网状结构,层与层之间距离较大,相当于分子间力的作用.石墨附着力很强,并且有导电性。

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯透明导电薄膜应用

石墨烯透明导电薄膜应用 摘要:简要概述了石墨烯透明导电薄膜的结构与性质、几种常见的石墨烯透明导电薄膜的制备方法以及杭州驰飞超声波设备有限公司(以下简称“驰飞超声波”)探索的新型石墨烯透明导电薄膜制备方法,对石墨烯透明导电薄膜的研究现状进行评述,并展望了新型石墨烯透明导电薄膜制备方法在石墨烯领域的应用前景与发展趋势。 关键词:驰飞超声波;超声波纳米制备装置;石墨烯;透明导电薄膜 透明导电薄膜应用十分广泛,主要应用在便携式电子器件、显示器、柔性电子器件、电致变色视窗、太阳能电池以及薄膜晶体管等。目前研究和应用最广泛的是金属氧化物透明导电薄膜(TCO),但随着光电器件转向微型化、轻便化、高集成和高灵敏发展,TCO在蓝光和近红光区域内吸收系数大、成本高、易碎性、离子扩散以及稀有金属资源限制等缺点成为其发展的瓶颈。 而石墨烯具有传统材料不可比拟的优点:第一,石墨烯有完美的杂化结构,大的共轭体系使其电子传输能力很强,而且合成石墨烯的原料可以是天然石墨,层状石墨烯的提纯相比碳纳米管成本低很多;第二,石墨烯中的电子和空穴相互分离,电子在石墨烯中的传输阻力很小,迁移率能达到光速的1/300,能大大提高运行处理速度,另外,石墨烯具有高热导性能,可以很快在柔性基底应用中,高化学稳定性和强机械性能方面比传统TCO材料更有优势。因此石墨烯不论从化学稳定性、柔韧性、导电性、透明性、导热性还是从原料成本方面考虑都被认为是最有前途的透明导电薄膜的材料之一。 从发现稳定存在的石墨烯到现在,石墨烯在制备方面取得了长足的进步,目前的研究热点已经从获得石墨烯发展到可控地制备石墨烯,如控制石墨烯的形状、尺寸、层数、元素掺杂和聚集形态等。以发展出的制备石墨烯透明导电薄膜的方法很多,主要包括氧化石墨法、剥离石墨法、化学气相沉积法和复合材料法等。但是这四种方法都存在问题,例如不适合大

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

石墨烯简介

石墨烯简介 摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。 关键词:石墨烯结构性质制备应用 目录 第一部分:石墨烯的结构 第二部分:石墨烯的性质 第三部分:石墨烯的制备方法 第四部分:石墨烯的应用及其前景第五部分:结语

第一部分:石墨烯的结构 严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。也正因为这种褶皱的存在,才使得二维晶体结构能够存在。 图1-1石墨烯的结构构型 第二部分:石墨烯的性质 石墨烯在力学、电学、光学、热学等方面具有优异特性。 力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械 力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。 电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材 料。曼彻斯特大学的研究小组在室温下测量了单层石墨烯分子的电子迁移率,发现即使在含有杂质的石墨烯中,电荷的迁移率仍可达10000cm2/(v·s)。2008年,海姆研究小组又证明.电子在石墨烯中的迁移率可以达到前所未有的 200000cm2/(v·s)。不久之后,哥伦比亚大学的博洛京(K.Bolotin)将这个数值再次提高到250 000cm2/(v·s)。而目前晶体管的主要材料——单晶硅的电子迁移率只有1400cm2/(v·s),高纯度石墨烯的电子迁移率超过单晶硅150倍以上。此外,石墨烯的电子迁移率几乎不随温度变化而变化。 光学特性石墨烯几乎是完全透明的,只吸收大约2.3%的可见光,光透率高达97.7%。石墨烯层的光吸收与层数成比例.数层石墨烯(FLG)样品中的每一层都可以看做二维电子气,受临近层的扰动极小,其在光学上等效为几乎互不作用的单层石墨烯(SLG)的叠加。单层石墨烯在300~2500纳米间的吸收谱平坦,在紫

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨的性质

石墨的性质 2006年4月24日07:42 磨料磨具在线 石墨碳质元素结晶矿物,它结晶格架为六边形层状结构,见图1—1。每一网层间距离为3.40人,同一网层中碳原子间距为1.42A。属六方晶系,具完整层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。 石墨质软,黑灰色;有油腻感,可污染纸张。硬度为1~2,沿垂直方向随杂质增加其硬度可增至3~5。比重为1.9~2.3。在隔绝氧气条件下,其熔点在3000℃以上,最耐温矿物之一。 自然界中纯净石墨没有,其中往往含有Si02、A1203、Fe0、CaO、P2O5、Cu0等杂质。这些杂质常以石英、黄铁矿、碳酸盐等矿物形式出现。此外,还有水、沥青、CO2、H2、CH4、N2等气体部分。因此对石墨分析,除测定固定碳含量外,还必须同时测定挥发分和灰分含量。 石墨工艺特性主要决定于它结晶形态。结晶形态不同石墨矿物,具有不同工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。 1.致密结晶状石墨 致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米。晶体排列杂乱无章,呈致密块状构造。这种:石墨特点品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 2.鳞片石墨 石墨晶体呈鳞片状;这在高强度压力下变质而成,有大鳞片和细鳞片之分。此类石墨矿石特点品位不高,一般在2~3%,或100~25%之间。自然界中可浮性最好矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨可浮性、润滑性、可塑性均比其他类型石墨优越;因此它工业价值最大。 3.隐晶质石墨 隐品质石墨又称非晶质石墨或土状石墨,这种石墨晶体直径一般小于1微米,微晶石墨集合体,只有在电子显微镜下才能见到晶形。此类石墨特点表面呈土状,缺乏光泽,润滑性也差。品位较高。一般60~80%。少数高达90%以上。矿石可选性较差。 石墨由于其特殊结构,而具有如下特殊性质: 1)耐高温型:石墨熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 2)导电、导热性:石墨导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高温度下,石墨成绝热体。 3)润滑性:石墨润滑性能取决于石墨鳞片大小,鳞片越大,摩擦系数越小,润滑性能越好。 4)化学稳定性:石墨在常温下有良好化学稳定性,能耐酸、耐碱和耐有机溶剂腐蚀。 5)可塑性:石墨韧性好,可年成很薄薄片。 6)抗热震性:石墨在常温下使用时能经受住温度剧烈变化而不致破坏,温度突变时,石墨体积变化不大,不会产生裂纹。 天然石墨以块状石墨和鳞片石墨最好,用途最广。我国还没有发现大规模块状石墨矿床,鳞片石墨和隐晶质石墨均有较大矿床,并形成了大规模开采基地。 天然石墨具有许多优良性质,因而广泛应用于国民经济各部门,尤其在冶金、机械、电

石墨烯性能简介

第一章石墨烯性能及相关概念 1石墨烯概念 石墨烯(Graphen?是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有 理想的二维晶体结构,由六边形晶格组成,理论比表面积高达 2.6X 102m2 /g。石墨烯具有优异的导热性能(3X 103W/(m?K))和力学性能(1.06 x 103GPa) 此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电 子迁移率高达1.5x 104cm2/ (V ? s)。石墨烯特殊的结构、突出的导热导电 性能和力学性能,弓I起科学界巨大兴趣,成为材料科学研究热点 石墨烯结构图

2石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2杂化的碳原子紧 密排列而成的蜂窝状晶体结构。石墨烯中碳-碳键长约为0.142nm。每个 晶格内有三个键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的n 键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过sp2杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯薄膜的制备及性能分析_侯朝霞

第27卷第1期 2015年2月沈阳大学学报(自然科学版) J o u r n a l o f S h e n y a n g U n i v e r s i t y(N a t u r a l S c i e n c e)V o l.27,N o.1 F e b.2015 文章编号:2095-5456(2015)01-0012-06 石墨烯薄膜的制备及性能分析 侯朝霞,周银,李光彬,李思明,王美涵,胡小丹(沈阳大学机械工程学院,辽宁省新型功能材料与化学工艺重点实验室,辽宁沈阳110044) 摘要:采用改进的H u mm e r s法和超声剥离法制备的氧化石墨烯经旋涂和滴涂工艺制备成膜,再经一步还原获得石墨烯薄膜.研究了氧化石墨烯经一步和两步还原制备出石墨烯后再经旋涂成膜的工艺.同时研究了不同分散剂对石墨烯的分散效果,分析了不同还原工艺对石墨烯薄膜方电阻的影响,并采用金相显微镜和扫描电镜观察分析了石墨烯薄膜的微观形貌.结果表明:旋涂法制备的石墨烯薄膜更均匀二透光率更高; D M F对石墨烯具有良好的分散效果;两步还原得到的石墨烯薄膜的导电性能明显优于一步还原. 关键词:石墨烯;薄膜;制备;旋涂;方电阻 中图分类号:T Q127.1+1文献标志码:A 石墨烯是由碳的单原子层构成的二维蜂窝状网格结构[1].同时它也是构成其他碳的同素异形体的基本单元,它可以折叠成零维的富勒烯,卷曲成一维的碳纳米管,堆垛成三维的石墨[2].自2004年被发现以来,石墨烯已被冠以多个美名: 未来之材料 电子高速公路 等.2010年在石墨烯的两位发现者盖姆和诺沃肖洛夫获得诺贝尔物理学奖后,学术界掀起了新一轮的石墨烯研究热潮,重大成果不断涌现. 由于具有优异的导电二透光性和高比表面积,石墨烯在太阳能电池中可以作为透明电极窗口层材料.对于传统透明导电材料, 透明 表明材料的能隙大(E g>3e V),且自由电子少,但 导电 又往往表明自由电子多,类似金属而不透明.只有同时满足这两个条件的材料才能用作透明导电薄膜,这在理论和技术上是一对矛盾.以氧化铟锡(I T O)和掺氟氧化锡(F T O)为代表的薄膜材料虽然能够较好地协调上述矛盾,因其高的电导率和光透射率已被广泛用在太阳能电池的电极材料中[34],但却存在着诸多无法克服的缺点.例如,制备I T O大量使用稀有元素,成本高.I T O的脆性影响其使用寿命二对聚合物中离子扩散过于敏感等.人们急需要寻找一种易得的材料来替代这种稀少的材料,石墨烯具有良好的透光性和导电性,有潜力成为铟锡氧化物(I T O)的替代材料. W a n g等[5]利用热膨胀石墨氧化物为原料进行热还原后得到的石墨烯可制作成透明导电膜,其在染料敏化太阳电池中的应用,取得了非常好的效果.制备出的石墨烯的厚度在10n m左右,电导率为550S四c m-1,在1000~3000n m的波长范围内透光率达70%.B e c e r r i l等[6]把石墨烯氧化物旋涂到石英表面进行热还原后,电导率为100S四c m-1,并且在400~1800n m波长范围内透光率可以达到80%,显示出该材料在太阳能电池领域有很大的应用前景. 虽然目前在石墨烯透明导电薄膜的结构二性能二制备等方面已经取得了很多的成果,但是很明显石墨烯透明导电薄膜实现产业化还需要做更多的研究和努力,以充分发掘石墨烯透明导电薄膜的潜力. 1试验 1.1样品制备 1.1.1原料及试剂 石墨粉(含碳质量分数大于98%,购于天津市瑞金特化学品有限公司),硝酸钠(N a N O3),高锰酸钾(KM n O4),98%硫酸(H2S O4),30%过氧化氢(H2O2),36%盐酸(H C l),均为分析纯.还原剂水合肼(N2H4四H2O)二氢碘酸(H I)二维生素C DOI:10.16103/https://www.360docs.net/doc/f313558447.html,ki.21-1583/n.2015.01.003 网络出版时间:2015-03-23 16:59 网络出版地址:https://www.360docs.net/doc/f313558447.html,/kcms/detail/21.1583.N.20150323.1659.003.html 收稿日期:20141114 基金项目:国家自然科学基金资助项目(51472166);辽宁省优秀人才支持计划项目(U Q2011125).作者简介:侯朝霞(1971),女,山东高密人,沈阳大学教授,博士.

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

6-Si_111_衬底上多层石墨烯薄膜的外延生长

第26卷 第5期 无 机 材 料 学 报 Vol. 26 No. 5 2011年5月 Journal of Inorganic Materials May, 2011 收稿日期: 2010-07-28; 收到修改稿日期: 2010-09-14 基金项目: 国家自然科学基金(50872128) National Natural Sciencal Foundation of China (50872128) 作者简介: 李利民 (1986?), 男, 硕士研究生. E-mail: wolfman@https://www.360docs.net/doc/f313558447.html, 通讯联系人: 徐彭寿, 研究员. E-mail: psxu@https://www.360docs.net/doc/f313558447.html, 文章编号: 1000-324X(2011)05-0472-05 DOI: 10.3724/SP.J.1077.2011.00472 Si(111)衬底上多层石墨烯薄膜的外延生长 李利民, 唐 军, 康朝阳, 潘国强, 闫文盛, 韦世强, 徐彭寿 (中国科学技术大学 国家同步辐射实验室, 合肥 230029) 摘 要: 利用固源分子束外延(SSMBE)技术, 在Si(111)衬底上沉积碳原子外延生长石墨烯薄膜, 通过反射式高能电子衍射(RHEED)、红外吸收谱(FTIR)、拉曼光谱(RAMAN)和X 射线吸收精细结构谱(NEXAFS)等手段对不同衬底温度(400、600、700、800)℃生长的薄膜进行结构表征. RAMAN 和NEXAFS 结果表明: 在800℃下制备的薄膜具有石墨烯的特征, 而 400、600和700℃生长的样品为非晶或多晶碳薄膜. RHEED 和FTIR 结果表明, 沉积温度在600℃以下时C 原子和衬底Si 原子没有成键, 而衬底温度提升到700℃以上, 沉积的C 原子会先和衬底Si 原子反应形成SiC 缓冲层, 且在800℃沉积时缓冲层质量较好. 因此在Si 衬底上制备石墨烯薄膜需要较高的衬底温度和高质量的SiC 缓冲层. 关 键 词: 固源分子束外延; Si(111)衬底; 石墨烯薄膜 中图分类号: O484; O613 文献标识码: A Epitaxial Growth of Multi-layer Graphene on the Substrate of Si(111) LI Li-Min, TANG Jun, KANG Chao-Yang, PAN Guo-Qiang, YAN Wen-Sheng, WEI Shi-Qiang, XU Peng-Shou (National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China) Abstract: Graphene thin films were epitaxial grown on Si(111) substrates by depositing carbon atoms with solid source molecular beam epitaxy (SSMBE). The structural properties of the samples deposited at different substrate temperature (400, 600, 700 and 800℃) were investigated by reflection high energy electron diffraction (RHEED), Fourier transform infrared spectroscope (FTIR), Raman spectroscope (RAMAN) and near-edge X-ray absorption fine-structure (NEXAFS). RAMAN and NEXAFS results indicated that the thin film deposited at 800℃ exhibited the characteristic of graphene, while the thin films deposited at 400℃, 600℃ and 700℃ were attributed to amor-phous or polycrystalline carbon thin films. RHEED and FTIR results indicated that C atoms did not bond with Si atoms at the substrate temperature below 600℃, however, above 700℃, C atoms reacted with Si atoms and formed the SiC buffer layer. Furthermore, the better quality of SiC buffer layer could be obtained at 800℃. Thus, high sub-strate temperature and high-quality SiC buffer layers are essential to the formation of the graphene layers on the Si substrates. Key words: solid source molecular beam epitaxy; Si substrate; graphene thin films 石墨烯是一种由碳原子紧密堆积成的单层二维蜂窝状晶格结构的新材料[1]. 具有许多奇特的物理性质, 如高的载流子迁移率(约为200000 cm 2/(V ·s))、室温下亚微米尺度的弹道传输特性(300K 下可达0.3μm)等, 使其有望成为下一代微电子器件的新材料[1-2]. 自2004年Geim 等第一次成功地利用微机械剥离高取向热解石墨(HOPG)的方法制备出石 墨烯以来, 已经发展了多种制备石墨烯的方法, 如: 利用胶带微机械剥离高取向热解石墨[3]; 利用化学试剂插层剥离膨胀石墨[4]; 在过渡金属Ru 单晶、Ni 多晶等表面高温下渗入碳原子, 然后快速降温偏析出石墨烯的化学气相沉积(CVD)方法[5-6]; 在SiC 衬底上高温退火外延生长石墨烯[7]等等. 这些方法制备的石墨烯通常需要特殊的衬底或需要把

成分元素分析(石墨烯)

石墨烯成分元素分析 关键词:未知物质分析成分鉴定添加剂成分分析石墨烯/碳纤维成分分析高分子材料成分分析纳米材料成分分析 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,它具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。 石墨烯的物理性质 内部结构 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。 力学特性 石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大。由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。 电子效应 ] 石墨烯在室温下的载流子迁移率约为15000cm2/(V·s),这一数值超过了硅材料的10倍,是目前已知载流子迁移率最高的物质锑化铟(InSb)的两倍以上。在某些特定条件下如低温下,石墨烯的载流子迁移率甚至可高达250000cm2/(V·s)。与很多材料不一样,石墨烯的电子迁移率受温度变化的影响较小,50~500K之间的任何温度下,单层石墨烯的电子迁移率都在15000cm2/(V·s)左右。

相关文档
最新文档