热敏电阻

热敏电阻
热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。

正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大4~10个数量级,即产生所谓PTC效应。

目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。

负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。

PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。

NTC负温度系数热敏电阻专业术语

零功率电阻值(Ω)

指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

电阻值和温度变化的关系式为:

:在温度T(K)时的NTC 热敏电阻阻值。

:在额定温度(K)时的NTC 热敏电阻阻值。

T:规定温度(K)。

B:NTC 热敏电阻的材料常数,又叫热敏指数。

exp:以自然数e为底的指数(e = …。)

.该关系式是经验公式,只在额定温度或额定电阻阻值的有限范围内才具有一定的精确度,因为材料常数B本身也是温度T的函数。

额定零功率电阻值(Ω)

根据国标规定,额定零功率电阻值是NTC 热敏电阻在基准温度25℃时测得的电阻值,这个电阻值就是NTC热敏电阻的标称电阻值。通常所说NTC热敏电阻多少阻值,亦指该值。

材料常数(热敏指数B值(K)

B 值被定义为:

:温度(K)时的零功率电阻值。

:温度(K)时的零功率电阻值。

,:两个被指定的温度(K)。

对于常用的NTC热敏电阻,B值范围一般在2000K~6000K之间。

零功率电阻温度系数()

在规定温度下,NTC热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。

:温度T(K)时的零功率电阻温度系数。

:温度T(K)时的零功率电阻值。

T:温度(T)。

B:材料常数。

耗散系数(δ)

在规定环境温度下,NTC热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。

δ:NTC热敏电阻耗散系数,(mW/ K)。

:NTC热敏电阻消耗的功率(mW)。

:NTC热敏电阻消耗功率△P 时,电阻体相应的温度变化(K)。

热时间常数(τ)

在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的% 时

所需的时间,热时间常数与NTC热敏电阻的热容量成正比,与其耗散系数成反比。

τ:热时间常数(S)。

C:NTC热敏电阻的热容量。

δ:NTC热敏电阻的耗散系数。

经过时间与热敏电阻温度变化率的关系如下表所示。

额定功率

在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。在此功率下,电阻体自身温度不超过其最高工作温度。

额定功率=耗散系数×(最高使用温度-25)

最大运行功率

这是使用热敏电阻进行温度检测或温度补偿时,自身发热产生的温度上升容许值所对应功率。容许温度上升t°C时,最大运行功率可由下式计算。

最大运行功率=t×耗散系数

最高工作温度

在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。即:

环境温度。

测量功率

热敏电阻在规定的环境温度下,阻体受测量电流加热引起的阻值变化相对于总的测量误差来说可以忽略不计时所消耗的功率。

一般要求阻值变化大于%,则这时的测量功率为:

电阻温度特性

热敏电阻的电阻-温度特性可近似地用式1表示。

(式一)

R:温度T(K)时的电阻值

:温度(K)时的电阻值

B:B值

*T(K)= t(oC)+

但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。

此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。

(式2)

上式中,C、D、E为常数。

另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。

常数C、D、E的计算

常数C、D、E可由4点的(温度、电阻值)数据(T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过下面的公式计算。

首先根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

B 值相同,阻值不同的R-T 特性曲线示意图

相同阻

值,不

同B值

的NTC

热敏电

阻R-T

特性曲

线示意

敏电阻的电阻温度曲线虽然是非线性的,但经过对数变换后就可以得到近似线性的电阻温度曲线,因此可以用来进行温度测量、控制等。

常数C、D、E的计算

常数C、D、E可由4点的(温度、电阻值)数据(T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过下面的公式计算。

首先根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

电阻值计算例

试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。

步骤

(1) 根据电阻-温度特性表,求常数C、D、E。

To=25+ T1=10+ T2=20+ T3=30+

(2) 代入BT=CT2+DT+E+50,求BT。

(3) 将数值代入R=5exp {(BTI/T-I/},求R。

*T : 10+~30+

电阻-温度特性图1

电阻温度系数

所谓电阻温度系数(α),是指在任意温度下温度变化1°C(K)时的零负载电阻变化率。

这里α前的负号(-),表示当温度上升时零负载电阻降低。

温度测量、控制用NTC热敏电阻器

外形结构

环氧封装系列NTC热敏电阻

玻璃封装系列NTC热敏电阻

应用设计

电子温度计、电子万年历、电子钟温度显示、电子礼品;

冷暖设备、加热恒温电器;

汽车电子温度测控电路;

温度传感器、温度仪表;

医疗电子设备、电子盥洗设备;

手机电池及充电电器。

应用电路原理图

电桥电路

NTC热敏电阻作为平衡电桥中的一部分,在稳态时,电桥两臂的输出是维持稳定的。但是当温度变化时,NTC热敏电阻阻值发生响应的变化,从而破坏了电桥两臂之间的平衡,两臂的输出发生了变化,这个变化量即是由温度变化产生。通过这样一个原理,温度变化的信号得以量化,通过配套电路的配合,最终实现温度变化信号的采集。

恒流源电路

NTC热敏电阻配以恒流源,当温度没有变化时,电路输出是稳定的;当温度发生变化时,NTC热敏电阻阻值也发生相应的变化,从而引起电路输出发生相应的变化。此变化信号可被其它电路作为温度变化信号来采集。

半导体集成温度传感器

LMl34电流型半导体集成温度传感器

LMl34电流型半导体集成温度传感器有3个端头,第三个端头是器件电流的设定端,可在设定端与负端两引线之间并接一只电阻Rset来设定,的表达式为:

式中的T为温度。当Rset=-227时,温度系数正好是1μA/℃。如串入的负载=10kΩ,那么可获得10mV/℃的温度电压信号

LMl34的工作温度范围是-55℃~125℃,它的工作电压最大不超过40V,最小工作电压0.8V,输出电流范围0.001mA~10mA,输出电流温度系数为μA/μA/K。

AD590电流型半导体集成温度传感器

AD590是一个两端电流型半导体集成温度传感器(封装引脚一般有3条,第三条引脚接管壳),它具有1μA/K的温度系数,并且按开氏温度定标,即摄氏零度时它的电流是273μA。AD590的测温范围是-55℃~150℃,在测量范围内只有%

非线性。AD590的工作电压范围是4V30V。

NTC热敏电阻使用注意事项

请勿在过高的功率下使用NTC热敏电阻。

由于自身发热导致电阻值下降时,可能会引起温度检测精度降低、设备功能故障,故使用时请参考散热系数,注意NTC热敏电阻的外加功率及电压。

请勿在使用温度范围以外使用

请勿施加超出使用温度范围上下限的急剧温度变化

将NTC热敏电阻作为装置的主控制元件单独使用时,为防止事故发生,请务必采取设置“安全电路”、“同时使用具有同等功能的NTC热敏电阻”等周全的安全措施。

在有噪音的环境中使用时,请采取设置保护电路及屏蔽NTC热敏电阻(包括导线)的措施。

在高湿环境下使用护套型NTC热敏电阻时,应采取仅护套头部暴露于环境(水中、湿气中)、而护套开口部不会直接接触到水及蒸气的设计。

请勿施加过度的振动、冲击及压力。

请勿在腐蚀性气体的环境(、、、)以及会接触到电解质、盐水、酸、碱、有机溶剂的场所中使用。

请勿过度拉伸及弯曲导线。

请勿在绝缘部和电极间施加过大的电压。否则,可能会产生绝缘不良现象。

配线时应确保导线端部(含连接器)不会渗入“水”、“蒸气”、“电解质”等,否则会造成接触不良。

金属腐蚀可能会造成设备功能故障,故在选择材质时,应确保金属护套型及螺钉紧固型NTC热敏电阻与安装的金属件之间不会产生接触电位差。

热敏电阻材料与应用

热敏电阻材料与应用 一、传感器定义和分类 1、传感器的定义 国家标准 GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: (1)、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器。(2)、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。 (3)、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和“0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 3、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 4、传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 5、传感器的线性度 通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 6、传感器的灵敏度 灵敏度是指传感器在稳态工作情况下输出量变化△ y 对输入量变化△ x 的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度 S 是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化 1mm 时,输出电压变化为 200mV ,则其灵敏度应表示为 200mV/mm 。 当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高

热敏电阻_热敏电阻工作原理

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值(Ω) 指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

热敏电阻

一、温度监测 (一)了解热敏电阻测量和控制温度的工作原理; (二)测定温度—电流(电压)关系曲线。 二、材料 热敏电阻(NCT100K)(1个);测量线路板(1块);微安表(50)(1个);坐标纸(1张);水银导电计(1支);直流电源(4—6V) (1个);恒温自动控制器 (1套) ;导线 (若干)。 三、原理 (一)热敏电阻 测量温度一般使用的温度计,除了常用的水银或酒精制成的温度计外,还有用其他材料制成的温度计。如热电偶、光测高温计、定容气体温度计等。热敏电阻温度计也是一种常用的测温仪器,它是利用半导体制成感温元件,它的电阻称为热敏电阻。其阻值随温度升高而减小,具有负的温度系数。电阻变化的范围比一般具有正温度系数的金属电阻大。例如,当温度变化1℃时,热敏电阻的阻值变化范围可达3%—6%。而且阻值可以很大,体积可以很小,灵敏度高,热惯性小,价格又低,这些特点使它在生产与科研中有了广泛的应用。

T0-热敏电阻的温度特性可用下式近似表示:

从用途上分,NTC热敏电阻可以分为温度感知型NTC和功率型NTC RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 摄氏温度t(c)和绝对温度T(K):T(K)=t(c)+273.15 RT=10000*exp3700*(1/T-1/298.15) 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。 第四节温度感知型NTC应用电路

10KNTC热敏电阻对照表

10K NTC温度阻值对照表 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt -40 235.83075593 2 25.795966881 44 5. 1.4580779678 -39 221.67240981 3 24.673611964 45 4.9 1.4204703156 -38 208.47382602 423.6 ? 7428627464 88 1.3840329328 -37 196.16305694 5 22.594945784 47 4.5885344983 89 1.3487237721 -36 184.67403487 6 21.632463086 48 4. 44 ? 314502486 -35 173.94605364 7 20. 717416866 49 4.2974265762 91 1.2813303512 -34 163.92329912 8 19.847177965 50 4. 16 ?2491701959 -33 154.55442376 9 19. 4. 1.2179863314 -32 145.79216068 10 18.231399185 52 3.9 1.1877444861 -31 137.59297352 11 17.481363273 53 3.7785460774 95 1.1584117439 -30 129.91673843 12 16.767123414 54 3.66 ? 1299564843 -29 122.72645506 13 16. 3. 5472659437 97 1.1023483265 -28 115.9879839 14 15.438447903 56 3.4379794071 98 1.075558075 -27 109.66980711 15 14.820498836 57 3.3326915609 99 1.0495576687 -26 103.74281093 16 14.231304683 58 3.2312350849 100 1.024******* 0.9998195293 -25 98. 13.669355966 59 3. 01 2

PTC热敏电阻器命名及应用

a CHARACTERISTICS HOW TO ORDER PTC THERMISTOR FEATURES High ageing cofficient Superior withstanding voltage oxidation-resistance. Current-Time Curve Resistance-Temperature Curve. 12 3 4 5 6 10g ( ) 2345 6 T( ) PTC THERMISTOR

MZ2 MZ2TYPE THERMISTOR FEATURES Compact for telecommunicalion and AC circuit. APPLICATION ENVIROMENTAL CONDITIONS 1060 4075%(402) 86106KPa Environmental temperature:1060 Relative humidity:4075%(402) Atmosphere pressure:86106KPa (a)(b)

THE PARAMETER OF TELECIMMUNICATION FACOLITIES APPLICATION CIRCUIT MZ21MZ2210/1000s 1KV 25A; MZ2310/310s 1.5KV 37.5A. () ()a b ()Rt:PTC Rv: Varistor MZ2TYPE THERMISTOR MZ2

THE PARAMETER OF TRANSFORMER APPLICATION CIRCUIT Operating temperature range 1060 (1) (A)(b) (2) Rt Rt

热敏电阻的工作原理

热敏电阻的工作原理 热敏电阻是一种敏感元件,根据温度系数的不同可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。热敏电阻的典型特征是温度敏感性,在不同温度下电阻值不同。正温系数热敏电阻器(PTC)在较高温度下阻值较高,负温系数热敏电阻器在较高温度下阻值较低。它们属于半导体器件。 但需要指出的是,热敏电阻不属于进出口关税项目85.41中的半导体器件。 热敏电阻的主要特点是: 热敏电阻 热敏电阻 ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃; ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; ④使用方便,电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂的形状,可大批量生产; ⑥稳定性好、过载能力强。 2工作原理

热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。 1、ptc效应是一种材料具有ptc(positive temperature coefficient)效应,即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有ptc效应。在这些材料中,ptc效应表现为电阻随温度增加而线性增加,这就是通常所说的线性ptc效应。 2、非线性ptc效应经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性ptc效应,相当多种类型的导电聚合体会呈现出这种效应,如高分子ptc热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。 3、高分子ptc热敏电阻用于过流保护高分子ptc热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性,因而极为适合用作过流保护器件。热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用。 当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(ts,见图1)时,电阻瞬间会剧增,回路中的电流迅速减小到安全值.为热敏电阻对交流电路保护过程中电流的变化示意图。热敏电阻动作后,电路中

热敏电阻器如何检测

热敏电阻器如何检测 1.热敏电阻器的特性及作用 热敏电阻通常是由对温度极为敏感、热惰性很小的锰、钴、镍的氧化物烧成半导体陶瓷材料制成的一种非线性电阻,其阻值会随着温度的变化而变化。 热敏电阻按温度系数分为负温度系数(NTC)、正温度系数(PTC)和临界温度系数 三类。正温度系数电阻的阻值随温度升高而增大,负温度系数电阻的阻值随温 度升高而减小,临界温度系数电阻的阻值在临界温度附近时基本为零。 热敏电阻器大多为直热式,即热源是由电阻器本身通过电流时发热而获取的。此外还有旁热式,需外加热源。常见的热敏电阻器有圆形、垫圈形、管形等, 其外形见图6 (a)。 目前应用最广泛的是负温度系数热敏电阻器(NTC),它又可分为测温型、稳 压型、普通型。其种类很多且形状各异,常见的有管状、圆片形等。国产MTC 产品有MF51~MF57 (用于温度检测)、MF11~MF17 (用于温度补偿、温度控制)、MF21~ MF22 (用于电路稳压)、MF31 (用于微波功率测量)等系列。 正温度系数敏电阻器(PTC)的应用范围越来越广,除用于温度控制和温度测 量电路外,还大量应用于彩色电视机的消磁电路及电冰箱、电驱蚊器、电熨斗 等家用电器电路中。国产PTC 产品有MZ41~MZ42(用于吹风机、驱蚊器、卷发器等)、MZ01~MZ04 (用于电冰箱的压缩机启动电路)、MZ71~MZ75 (用于彩色电视机的消磁电路)、MZ61~MZ63 (用于电动机过热保护)、MZ2A~MZ2D (用于限流电路)等系列。 2.热敏电阻器的检测方法 热敏电阻标称阻值是在温度为25 C 的条件下,用专用仪器测得的。在业余条件下,也可用万用表电阻挡进行检测,但万用表检测时由于工作电流较大而形

负温度系数R25=3.4513k B值4200热敏电阻RT公式计算表

深圳市富温传感技术有限公司 人性科技感知温度 TEMPERATURE VS RESISTANCE TABLE Resistance 3.4513k Ohms at 114deg. C Resistance Tolerance + / - 1.5% B Value 4200K at 25/50 deg. C B Value Tolerance + / - 1 % Temp. (deg. C) Rmax (k Ohms) Rnor (k Ohms) Rmin (k Ohms) -20 1139.4650 1060.1345 986.1052 -19 1071.2083 997.2393 928.1697 -18 1007.4491 938.4533 873.9857 -17 947.8674 883.4849 823.2905 -16 892.1640 832.0642 775.8380 -15 840.0659 783.9421 731.4037 -14 791.3177 738.8882 689.7772 -13 745.6863 696.6897 650.7659 -12 702.9547 657.1495 614.1911 -11 662.9216 620.0852 579.8860 -10 625.4028 585.3280 547.6982 -9 590.2252 552.7214 517.4842 -8 557.2304 522.1205 489.1126 -7 526.2707 493.3907 462.4607 -6 497.2096 466.4075 437.4150 -5 469.9200 441.0550 413.8696 -4 444.2845 417.2257 391.7267 -3 420.1935 394.8199 370.8949 -2 397.5460 373.7448 351.2897 -1 376.2471 353.9141 332.8317 0 356.2099 335.2477 315.4483 1 337.3523 317.6710 299.0705 2 319.5989 301.1145 283.6353 3 302.8792 285.5136 269.0831 4 287.1273 270.8080 255.3588 5 272.2822 256.941 6 242.4108 6 258.2868 243.8621 230.1913 7 245.0881 231.5207 218.6553

热敏电阻常识

热敏电阻的工作原理是根据这种特殊的电阻在不同温度下所具有的阻值不同而来测量环境温度的。 半导体热敏电阻的主要特性 解:半导体热敏电阻是利用半导体材料的热敏特性工作的半导体电阻。它是用对温度变化极为敏感的半导体材料制作成的,其电阻值随温度变化而发生极为明显的变化。 热敏电阻是非线性电阻,它的非线性特性基本上表现在电阻与温度的关系不是直线关系,而是指数关系,电压、电流的变化不服从欧姆定律。 按电阻温度系数不同,热敏电阻分为正温度系数热敏电阻和负温度系数热敏电阻两种。在工作温度范围内,正温度系数热敏电阻的阻值随温度升高而急剧增大,负温度系数热敏电阻的阻值随温度升高而急剧减小。敏感电阻: 敏感电阻是指器件特性对温度,电压,湿度,光照,气体,磁场,压 力等作用敏感的电阻器。敏感电阻的符号是在普通电阻的符号中加一斜线,并在 旁标注敏感电阻的类型,如:t. v等。 命名方法: 根据电子工业部的规定,敏感电阻的命名由4部分组成: 第一部分:M敏感元件 第二部分:类别:Z正温度系数热敏电阻F负温度系数热敏电阻Y压敏电阻S湿 敏电阻Q气敏电阻G光敏电阻C磁敏电阻L力敏电阻 第三部分:用途和特征(热敏)1普通用2稳压用3微波测量用 4旁热式5测温用 6控温用7消磁用8线性用 9恒温用0特殊用 (压敏)W稳压用G高压保护用P高频用N高能用K高可靠用L 防雷用H灭弧用Z 消噪用B补偿用C 消磁用光敏1,2,3紫外线4,5,6可见光7,8,9红外线 第四部分:序号 热敏电阻: 是一种阻值随温度变化的元件,阻值随温度增加而上升的为正温度系 数热敏电阻,简称PTC 反之称为负温度系数热敏电阻NTC 热敏电阻主要参数的定义: 标称阻值:指在环境温度为25C时电阻的阻值。

NTC热敏电阻RT对照表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0 1.7944 -11.5 59.3908 29.0 8.4063 69.5 1.7636 -11.0 57.8038 29.5 8.2281 70.0 1.7334 -10.5 56.2639 30.0 8.0541 70.5 1.7037 -10.0 54.7694 30.5 7.8842 71.0 1.6747 -9.5 53.3189 31.0 7.7184 71.5 1.6462 -9.0 51.9111 31.5 7.5565 72.0 1.6183 -8.5 50.5445 32.0 7.3985 72.5 1.5910 -8.0 49.2178 32.5 7.2442 73.0 1.5641 -7.5 47.9298 33.0 7.0935 73.5 1.5378 -7.0 46.6792 33.5 6.9463 74.0 1.5120 -6.5 45.4649 34.0 6.8026 74.5 1.4867 -6.0 44.2856 34.5 6.6622 75.0 1.4619 -5.5 43.1403 35.0 6.5251 75.5 1.4375 -5.0 42.0279 35.5 6.3912 76.0 1.4136 -4.5 40.9474 36.0 6.2604 76.5 1.3902 -4.0 39.8978 36.5 6.1326 77.0 1.3672 -3.5 38.8780 37.0 6.0077 77.5 1.3447 -3.0 37.8873 37.5 5.8858 78.0 1.3225 -2.5 36.9246 38.0 5.7666 78.5 1.3008 -2.0 35.9892 38.5 5.6501 79.0 1.2795 -1.5 35.0801 39.0 5.5363 79.5 1.2586 -1.0 34.1965 39.5 5.4251 80.0 1.2381 -0.5 33.3378 40.0 5.3164 80.5 1.2180 0.0 32.5030 40.5 5.2102 81.0 1.1983

热敏电阻的工作原理

热敏电阻的工作原理 可以说热敏电阻是热电阻的一种 所以说,原理都是温度引起电阻变化 但是现在热电阻一般都被工业化了,基本是指PT100,CU50等常用热电阻 他两的区别是:一般热电阻都是指金属热电阻(PT100)等,热敏电阻都是指半导体热电阻 由于半导体热电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化,而且电阻值可在0.1~100kΩ间任意选择。所以称为热敏电阻 但是热敏电阻阻值随温度变化的曲线呈非线性,而且每个相同型号的线性度也不一样,并且测温范围比较小。所以工业上一般用金属热电阻~也就是我们平常所说的热电阻 而热敏电阻一般用在电路板里,比如像你所说的可以类似于一个保险丝。由于其阻值随温度变化大,可以作为保护器使用。当然这只是一方面,它的用途也很多,如热电偶的冷端温度补偿就是靠热敏电阻来补偿 另外,由于其阻值与温度的关系非线性严重。。。所以元件的一致性很差,并不能像热电阻一样有标准信号 热敏电阻器是指阻值随温度的改变而发生显著变化的敏感元件,它可以将热(温度)直接转换为电量。在工作温度范围内,其阻值随温度升高而増加的热敏电阻器,称为正溫度系数热敏电阻器;反之称为负

温度系数热敏电阻器。 热敏电阻器早在三十年代就出现了,但因稳定性差,工艺繁杂,产品未能广泛应用。1940年以后,发现某些过渡金属氧化物按一定比例混合,经过成型、烧结以后,能获得具有很大负温度系数的半导休。用这种半导体制成的热敏电阻器,性能相当稳定,可在空气中直接使用。目前各国生产的负温度系数热敏电阻器,绝大部分是用这种合成氧化物半导体制成的。 金属材料具有正电阻温度系数,被用来制作正温度系数热敏电阻器,如铂电阻器。1954年以后出现了以钛酸钡为主要材料做成的正温度系数热敏电阻器,在有限的温度区间。 六十年代初研制了在某个温区内电阻值急剧减小的负温特性热敏电阻(CTR)^同时以氧化钒为主体的玻璃热敏电阻及锗和硅热敏电阻在一些国家也进行了生产。自1967年以后,国外又幵始硏制薄嗅热敏电阻器。

什么是热敏电阻及其主要类型和参数(精)

什么是热敏电阻及其主要类型和参数? 热敏电阻器(thermistor)——型号MZ、MF: 是一种对温度反应较敏感、阻值会随着温度的变化而变化的非线性电阻器,通常由单晶、多晶半导体材料制成。 文字符号:“RT”或“R” 热敏电阻器的种类: A.按结构及形状分类——圆片形(片状)、圆柱形(柱形)、圆圈形(垫圈形)等多种热敏电阻器。 B.按温度变化的灵敏度分类——高灵敏度型(突变型)、低灵敏度型(缓变型)热敏电阻器。C.按受热方式分类——直热式热敏电阻器、旁热式热敏电阻器。 D.按温变(温度变化)特性分类——正温度系数(PTC)、负正温度系数(NTC)热敏电阻器。 热敏电阻器的主要参数:除标称阻值、额定功率和允许偏差等基本指标外,还有如下指标:1)测量功率:指在规定的环境温度下,电阻体受测量电源加热而引起阻值变化不超过0.1%时所消耗的功率。 2)材料常数:是反应热敏电阻器热灵敏度的指标。通常,该值越大,热敏电阻器的灵敏度和电阻率越高。 3)电阻温度系数:表示热敏电阻器在零功率条件下,其温度每变化1℃所引起电阻值的相对变化量。 4)热时间常数:指热敏电阻器的热惰性。即在无功功率状态下,当环境温度突变时,电阻体温度由初值变化到最终温度之差的63.2%所需的时间。 5)耗散系数:指热敏电阻器的温度每增加1℃所耗散的功率。 6)开关温度:指热敏电阻器的零功率电阻值为最低电阻值两倍时所对应的温度。 7)最高工作温度:指热敏电阻器在规定的标准条件下,长期连续工作时所允许承受的最高温度。 8)标称电压:指稳压用热敏电阻器在规定的温度下,与标称工作电流所对应的电压值。 9)工作电流:指稳压用热敏电阻器在在正常工作状态下的规定电流值。 10)稳压范围:指稳压用热敏电阻器在规定的环境温度范围内稳定电压的范围值。 11)最大电压:指在规定的环境温度下,热敏电阻器正常工作时所允许连续施加的最高电压值。 12)绝缘电阻:指在规定的环境条件下,热敏电阻器的电阻体与绝缘外壳之间的电阻值。 ●正温度系数热敏电阻器(PTC—positive temperature coefficient thermistor)

热敏电阻工作原理

二、NTC热敏电阻 NTC(Negative Temperature Coeff1Cient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数,电阻值可近似表示为: 式中RT、RT0分别为温度T、T0时的电阻值,Bn为材料常数.陶瓷晶粒本身由于温度变化而使电阻率发生变化,这是由半导体特性决定的. NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了N1C热敏电阻器.NTC热敏电阻器广泛用于测温、控温、温度补偿等方面. 它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.RT为NTC热敏电阻器;R2和R3是电桥平衡电阻;R1为起始电阻;R4为满刻度电阻,校验表头,也称校验电阻;R7、R8和W为分压电阻,为电桥提供一个稳定的直流电源.R6与表头(微安表)串联,起修正表头刻度和限制流经表头的电流的作用.R5与表头并联,起保护作用.在不平衡电桥臂(即R1、RT)接入一只热敏元件RT作温度传感探头.由于热敏电阻器的阻值随温度的变化而变化,因而使接在电桥对角线间的表头指示也相应变化.这就是热敏电阻器温度计的工作原理. 热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量. 三、CTR热敏电阻 临界温度热敏电阻CTR(Crit1Cal Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数.构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻.骤变温度随添加锗、钨、钼等的氧化物而变.这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的.若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还

PTC热敏电阻和NTC热敏电阻技术.

PTC热敏电阻和NTC热敏电阻技术 MZ12A型PTC热敏电阻器主要用于电子镇流器(节能灯、电子变压器、万用表、智能电度表)等的过流过热保护 PTC热敏电阻:有下面几个性能! 灯丝预热用PTC热敏电阻器 1.应用范围: 用于各种荧光灯电子镇流器、电子节能灯中,不必改动线路,将适当的热敏电阻器直接中跨接在灯管的谐振电容器两端,可以变电子镇流器、电子节能灯的硬启动为预热启动,使灯丝的预热时间达0.4~2秒可延长灯管寿命三倍以上。 2.特点: 利用材料PTC特性制作而成,产品体积小、耐电压高、寿命长、正常工作时功耗小。3.应用原理: 应用PTC热敏电阻器实现预热启动原理如右图所示:刚接通开关时,Rt处于常温态,其阻值远远低于C2阻值,电流通过C1,Rt自热温度超过居里点温度Tc跃入高阻态,其阻值远远高于C2阻值,电流通过C1、C2形成回路导致LC谐振,产生高压点亮灯管。 保险丝型PTC热敏电阻器 1.应用范围: MZ12A型PTC热敏电阻器主要用于电子镇流器(节能灯、电子变压器、万用表、智能电度表)等的过流过热保护,直接串联在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。 2.特点:

·无触点的电路及元器件保护·自动限制过电流·故障排除后自动恢复·工作时无噪音无火花·工作可靠、使用方便 3.应用原理: 将PTC热敏电阻器串联在电源回路中,当电路处于正常状态时,流过PTC的电流小于额定电流,PTC处于常态,阻值很小,不会影响电子镇流器(节能灯、变压器、万用表)等被保护电路的正常工作。当电路电流大大超过额定电流时,PTC陡然发热,阻值骤增至高阻态,从而限制或阻断电流,保护电路不受损坏。电流电流回复正常后,PTC亦自动回复至低阻态,电路恢复正常工作。 在电子镇流器(节能灯、变压器、万用表)等过流保护应用领域,南京时恒凭借其科研和工艺等方面的优势,率先推出了以高耐压(V≥300VAC)为特色的MZ12型产品。 零功耗的预热启动 1.应用范围: MZ11B系列PTC热敏电阻器主要用于高性能镇流器和节能灯零温升、零功耗的预热启动。 2.应用原理: MZ11B系列PTC热敏电阻器实际上是一种PTC热敏电阻Rt串联压敏电阻Rv的复合元件。通电时,电压高于Rv压敏电压,Rv处于导通状态,其预热启动过程基本上是由Rt来独立完成的。灯管启动点亮处于正常工作状态后,电压迅速降低到Rv压敏电压下,Rv则处于断开状态,使零功耗、零温升得以实现。 MZ11B系列之选型与MZ11A系列基本类似,所不同的是Rv压敏电压应略高于灯管电压。 功率型NTC热敏电阻器

常见热敏电阻规格.

max ±).05 ± ±.5 -1L2+2D D56.550.6/0.455/2.5325月17 日8口 D78.550.65325月17 日 8口D910.55.50.8/0.67.5/5月 3 日255 月17 日8口D1112.55.50.8/0.67.5/5月 3 日255 月17 日8口D1314.560.87.5525月17 日8口D1516.560.810/7.5525月17 日8口D2021.57110/7.5/25// 口D2526.5 8 1 10 / /

最大稳态 最大电流时耗散系数电流(A) 近似电阻值(Q (mW/S NTC 5D-5510.353620NTC 10D-5100.70.771620NTC 60D-5 60 0.5 1.878 6 18 □外形尺寸表 说明:若非特别指出,常用外形为U型,即:引出线为打弯成型的长引线。 □主要技术参数 □应用范围 适用于转换电源、开关电源、UPS 电源、各类电加热器、电子节能灯、电子镇流器、各种电子装置电源电路的保护以及彩色显示像管、白炽灯及其它照明灯具的灯丝保护。□产品标志说明 O反应速度快。 O材料常数(B值)大,残余电阻小。O寿命长,可靠性高。O系列全,工作 范围宽。功率型NTC 热敏电阻器

为了避免电子电路中在开机的瞬间产生的浪涌电流, 在电源电路中串接一个功 率型NTC 热敏电阻器, 能有效地抑制开机时的浪涌电流, 并且在完成抑制浪涌电流作用以后, 由于通过其电流的持续作用, 功率型NTC 热敏电阻器的电阻值将下降到非常小的程度, 它消耗的功率可以忽略不计, 不会对正常的工作电流造成影响, 所以, 在电源回路中使用功率型NTC 热敏电阻器, 是抑制开机时的浪涌, 以保护电子设备免遭破坏的最为简便而有效的措施。 备注 a 、□为额定零功率电阻值。 b 、17/5其中17表示打弯成型的长引线,5表示打弯的短引线。 弯引线 bL 1min 型号代号 直引线Lmin □特点 O体积小,功率大,抑制浪涌电流能力强。型号R 25( C热时间常数 (S 工作温度CC NTC 5D-7520.2831030NTC 8D-7810.539928NTC 10D-71010.616927NTC 12D- 71210.816927NTC 16D-7160.71.003927NTC 22D-7220.61.108927NTC 33D- 7330.51.4851028NTC 200D-72000.26.2331128NTC 3D-9340.121135NTC 4D- 9430.191135NTC 5D-9530.211134NTC 6D-9620.3151134NTC 8D-9820.41132NTC 10D-91020.4581132NTC 12D-91210.6521132NTC 16D-91610.8021131NTC 20D- 92010.8641130NTC 22D-92210.951130NTC 30D-93011.0021130NTC 33D- 93311.1241130NTC 50D-95011.2521130NTC 60D-9600.81.5021130NTC 80D- 9800.82.011130NTC 120D-91200.83.0151130NTC 200D-92000.55.0071132NTC 400D- 94000.29.8521132NTC2.55D-112.550.0951343NTC 3D-11350.11343NTC 4D- 11440.151344NTC 5D-11540.1561345NTC 6D-11630.241345NTC 8D- 11830.2551447NTC 10D-111030.2751447NTC

相关文档
最新文档