机器视觉之镜头基础知识

机器视觉之镜头基础知识
机器视觉之镜头基础知识

镜头基础知识

光学镜头的主要参数

焦距

主点到焦点的距离称为光学系统的焦距,这是镜头的重要参数之一,它决定了像与实际物体之间的比例。在物距一定的情况下,要得到大比例的像,则要求选用长焦距的镜头。

如图2所示,自物方主点H到物方焦点F的距离称为物方焦距或前焦距f;类似地,自像方主点H '到物方焦点F '的距离称为物方焦距或前焦距f '。其定义具有方向性,如果主点到焦点的方向与光线的方向一致,则焦距为正;反之则为负。图2中所示的情况,像方焦距f '>0,物方焦距f '<0。如果系统两侧的介质相同,则f '=-f。

相对孔径与光圈数F数

相对孔径为入瞳直径与焦距的比值D/f ' ,它主要影响像面的照度,照相镜头像面的照度与相对孔径的平方成正比。为了满足景物较暗时摄影的需要,或者为了对高速运动物体摄影,要求采用很短的曝光时间,它们都要求提高像面的照度,因此就需要采用大的相对孔径。

镜头通常采用光圈数F来表示通光孔径的大小,光圈数F数为相对孔径的倒数,即F=f ' / D

视场角(FOV:Field of view)与像面尺寸

镜头的视场角决定了被拍摄景物的范围。由于摄影系统一般是对远处景物成像,所以其像面通常位于焦平面附近,因此像面大小与视场角2W ' 的关系可表示为公式y ' =f ' tanW '

公式中y ' 应该是像面区域的半径。

目前,工业相机通常使用CCD或者CMOS传感器作为像面接收器,有面阵和线阵两种,其工作区域的形状分别为矩形或线形,传感器的工作区域必须包含在镜头所确定的像面圆形区域之内。在镜头的参数中,也经常使用传感器的大小来表示视场大小。

面阵传感器是由许多像素单元组成的一个矩形阵列,每个像素单元都是一个方形传感器。面阵传感器的大小通

线阵传感器也是由许多像素单元组成,与面阵传感器不同的是,这些像素单元排成一个单列。线阵传感器的大小则是以像素单元的数量和大小来表示的。线阵传感器的规格有1K、2K、4K、8K、12K等,像素单元有5μm、7μm、10μm、14μm等。

对于同一个传感器,长焦距的镜头只能有较小的视场角,能对远处景物拍摄得比较大的像,适宜于远距离摄影,故常称之为望远镜头;而短焦距的镜头则有较大的视场角,能将近处较大范围内的景物摄入像面,故又称之为广角镜头,视场角更大的又称为鱼眼镜头;介于二者之间,焦距属于中等,约等于幅面对角线长度的镜头,称之为标准镜头。

工作波长

光学镜头都是针对一定波长范围内的光波工作,自物面发出的光波,在此波长范围内的,能够通过镜头在像面上成一清晰像,而且能量衰减较小;而在此范围外的光波,则难以校正像差,成像质量差,分辨率低,而且能量衰减很大,甚至被光学介质材料所吸收,完全不能通过镜头。

光就其本质来说就是电磁波,按照波长通常将其划分成不同的光谱波段,如下表所示:

符号 波长(nm) 紫外 (UV) 100~380

真空紫外 VUV 100~200 远紫外 FUV 200~280 中紫外 Middle UV 280~315 近紫外 Near UV 315~380 可见 (VIS) 380~780

紫 Violet 380~424 蓝 Blue 424~486 蓝绿 Blue green 486~517 绿 Green 517~527 黄绿 Yellow green 527~575 黄 Yellow 575~585 橙 Orange 585~647 红 Red 647~780 红外

(IR)780nm~1mm

近红外 NIR 780nm-3mm 中红外 MIR 3mm-50mm 远红外

FIR

50mm-1mm

分辨率

分辨率是评价镜头质量的一个重要参数,定义为在像面除镜头在单位毫米内能够分辨开的黑白相间的条纹对数,如图4所示,

图4 分辨率条纹

分辨率为1/2d ,其中,d 为线宽。分辨率的单位为为lp/mm (线对/毫米)。 在理想成像镜头的焦平面上能分辨开来的二条纹之间的相应间距

其倒数即为理想镜头的分辨率

公式中,λ为中心波长,单位为毫米。可见,理想镜头的分辨率完全由相对孔径所决定,相对孔径越大,

F/#越小,分辨率就越高。按此公式决定的只是视场中心的分辨率,在视场边缘,由于成像光束的孔径角比轴上点小,因此分辨率有所降低。

实际的摄影镜头,由于有比较大的剩余像差,其分辨率要比理想镜头的分辨率低得多。因此,通常使用调制传递函数(MTF:Modulation Transfer Function)来表征镜头的实际分别率。调制传递函数MTF定义为在一定空间频率时像面对比度与物面对比度之比,这里空间频率以单位毫米内的线对数来表示,其单位为lp/mm。对于一个镜头,不同的空间频率处的MTF是不同的,一般来说,随着空间频率的增大,MTF越来越小,直至为零,MTF为零时的空间频率称为镜头的截止频率。一些镜头厂家为了表示方便,通常也以镜头的截止频率来替代MTF,用以表示镜头的分辨率。

在实际工业应用中,系统使用面阵或线阵传感器作为成像器件,因此系统的分辨率通常也会受到成像传感器中像元分辨率的限制。像元分辨率定义为单位毫米内像素单元数的一半,即

其中p为像素单元的尺寸大小,例如一个CCD的像元尺寸大小为5×5微米,则像元分辨率则为:

传感器的像元分辨率限制了系统的最高分辨率,即使镜头的分辨率再高,系统也不可能分辨高于像元分辨率的细节。然而在实际使用中,由于景深的存在,为了使镜头偏离对准面仍然能够成像清晰,因此,在选择镜头时,通常要求镜头分辨率要略高于像元分辨率,这样才能使系统的分辨率达到传感器所限制的最高分辨率。

畸变

对于理想光学系统,在一对共轭的物像平面上,放大率是常数。但是对于实际的光学系统,仅当视场较小时具有这一性质,而当视场较大或很大时,像的放大率就要随着视场而异,这样就会使像相对于物体失去相似性。这种使像变形的成像缺陷称为畸变。

畸变定义为实际像高y ' 与理想像高y0 ' 之差y ' -y0 ' ,而在实际应用中经常将其与理想像高y0 ' 之比的百分数来表示畸变称为相对畸变,即

有畸变的光学系统,若对等间距的同心圆物面成像,其像将是非等间距的同心圆。当系统具有正畸变时,实际像高y ' 随视场的增大比理想像高y0 ' 增大得快,即放大倍率随视场的增大而增大,则同心圆的间距自内向外逐渐增大;反之,当为负畸变时,圆的间距自内向外逐渐减小。若物面为如图5(a)所示的正方形网格,那么,由正畸变的光学系统所成的像呈枕形,如图5(b);由负畸变光学系统所成的像呈桶形,如图5(c)。图中虚线所示是理想像。

图5 畸变

畸变在光学系统中只引起像的变形,对像的清晰度并无影响。因此,对于一般的光学系统,只要感觉不出它所成像的变形,这种成像缺陷就无妨碍。但是对于某些要利用像来测定物体大小尺寸的应用,畸变的影响就非常重要了,它直接影响测量精度,必须予以严格校正。

景深

当把物镜调焦到某一摄影对象时,在该对象的前后能在像面上呈清晰像的范围,称为景深。如图6所示,景深就是Δ1+Δ2。像平面A’为传感器靶面所在平面,其共轭平面A为对准平面。能在靶面上呈清晰像的最远平面,即物点B1所在的平面,称为远景,能在靶面上呈清晰像的最近平面,即物点B2所在的平面,称为近景。物点B1、B2分别成像于靶面前后,投影到靶面上成为弥散斑,当弥散斑小到一定程度时可认为是清晰的像。

图6 景深

景深的计算公式为:

式中,Δ1和Δ2分别为远景深度和近景深度,p、p1和p2分别为调焦平面、远景平面和近景平面到物镜的距离,f '为物镜的焦距,F为物镜的光圈数,δ为像面上可允许的弥散圆直径,在CCD或CMOS上其最小值为像元尺寸。

可见,景深与物镜的焦距、光圈大小和摄影距离有关。光圈越小(F数越大),或摄影距离越大,景深就越大,但远景深度要比近景深度大。若在同一距离用同一光圈值摄影时,焦距短的镜头,具有大的景深;反之,长焦距镜头的景深就小。

工作距离

在选择镜头时,为了确定系统的空间尺寸,往往需要了解镜头工作时的物距、像距以及镜头的两个主面之间的距离等参数。然而,物距、像距均是相对与镜头光学系统的主面位置而言的,而镜头的主面却难以直接确定,因此物距、像距等参数也难以直接测量得到。于是,镜头厂家提出了工作距离这一参数,同时也给出了在该工作距离处镜头的放大倍率,以方便使用者确认系统的空间尺寸。

然而,目前对于工作距离的定义还没有形成统一意见,主要有两种定义。第一种定义是指被摄物体到相机底片的距离;另一种定义是指被摄物体到镜头前端面的距离。目前,大部分相机镜头厂家均采用第一种定义,因此,在没有特殊说明的情况下,手册中给出的工作距离既是第一种定义。

相机接口

在光学系统中,最后一个光学镜片表面的顶点到像面的距离称为后截距(BFL:Back Focal Length),对于不同的光学系统,其后截距都是不一样的。因此在安装镜头时,需要调节镜头到相机的相对位置,使相机底片到镜头最后一面顶点的距离满足后截距的要求,即使底片位于镜头的像平面上。

相机接口即为相机和镜头的连接方式,同时也保证了相机和镜头的相对位置。早期的相机一般采用螺纹接口。随着相机的不断发展,接口需要传递更多的数据信息,螺纹接口已不能满足相机的要求了。1959年,尼康、佳能、美能达这三大日本相机厂家各自推出了各自的相机接口,随后宾得、莱卡、奥林巴斯等其它厂家也相继推出的自己的相机接口。

随着技术不断进步,相机功能不断完善,各个厂家的相机接口也几经变换。目前,常用的一些接口类型如下表

在上表中,法兰后截距(Flange Back Focal Length)是指相机接口的定位面到底片的距离,它保证了镜头的像面与相机的底片重合。这样,不仅为相同接口的相机和镜头的连接提供了非常方便的方式,而且也为不同接口之间的相互转换提供了依据。

光学系统的一些计算公式

在选择镜头时,通常需要了解一些预先给出的条件,如物距或工作距离、放大倍率等,根据这些条件,可以大致近似推算出系统的一些主要参数,并以此作为选择镜头的参考。根据上述的高斯公式和放大率公式,我们可

以推出下面几个常用公式

物距

像距

焦距

物高

像高

镜头选择

在摄影光学系统中,镜头是重要的一个部件,它直接决定整个系统的参数和性能。因此选择一个合适的镜头,是系统设计过程中至关重要的一步工作。在选择过程中,需要充分考虑如下几个方面的因素:

目标尺寸和测量精度

传感器尺寸和像素尺寸

放大倍率

光阑大小

工作距离

系统尺寸

工作波长

景深

畸变

摄像机接口

传感器类型,如彩色还是黑白、是否带红外滤镜

对于电机驱动镜头,需要考虑驱动信号类型

是否有红外滤波要求

环境要求,如温度、震动、防尘等

摄影镜头的基本光学性能由焦距、相对孔径和视场角这三个参数表征。因此,在选择镜头时,首先需要确定这三个参数,然后考虑分辨率、景深、畸变、接口等其他因素。

选择镜头的基本步骤可以参考以下几条:

根据目标尺寸和测量精度,可以确定传感器尺寸和像素尺寸、放大倍率以及镜头的传递函数,这可能会有好几个选择,因此需要选择一个最为合适的组合;

根据系统尺寸和工作距离,结合放大倍率,可以大概估算出镜头的焦距,焦距、传感器尺寸确定以后,视场角也就可以计算出来了;

根据现场的照明条件确定光圈大小和工作波长;

确定畸变、景深、相机接口等其他要求。

至此,基本可以确定一款或几款合适的镜头,然后再根据其它一些非技术要求选择一个最为合适的以供使用。

机器视觉检测系统简述及系统构成

机器视觉检测系统简述及系统构成 1机器视觉检测的一般模式 机器视觉检测的目标千差万别,检测的方式也不尽相同。农产品如苹果、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的工业相机装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出结果处理并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2典型的机器视觉检测系统 3光源

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

摄像头基础知识培训

深圳市银之杰科技股份有限公司 摄像头基础知识培训 一.摄像头种类 (3) 二.USB摄像头工作原理 (3) 三.摄像头零件解构 (4) 1、图像传感器SENSOR (4) 2、数字信号处理芯片DSP (5) 3、镜头(LENS) (5) 4、USB线 (7) 四.摄像头驱动 (9) 五.摄像头的一些名词分辩率 (9) 1、分辨率 (9) 2、感光面积 (10) 3、灯光条纹(属于软件问题) (10) 4、景深 (12) 5、清晰度 (13) 6、坏点(属于硬件问题) (13) 7、色彩还原 (14)

8、FOV (14) 9、帧率 (15) 10、视频格式 (16) 11、失真(畸变) (17) 12、白平衡 (18) 13、曝光 (19) 14、带宽 (20) 15、DPI (21) 16、拍照方式 (22) 17、错误码 (23)

一.摄像头种类 摄像头是一种光电转换设备,种类主要包括USB 摄像头(USB 接口),手机摄像头(DVP&MIPI 接口),模拟摄像头(AV 接口,主要用于监控,车载等),网络摄像头(RJ45&无线接口,主要用于监控)等。 USB 摄像头手机摄像头模拟摄像头网络摄像头 二.USB 摄像头工作原理 摄像头的工作原理大致为: 景物通过镜头(LENS)生成的光学图像投射到图像传感器(SENSOR)表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过USB 接口传输到电脑中处理,通过显示器就可以看到图像了。

三.摄像头零件解构 1、图像传感器SENSOR 在摄像头的三大结构组件中,我认为最重要的就是图像传感器了,因为感光器对成像质量起着决定性的作用,如果图像传感器效果不怎么好,无论后端的DSP和电脑端应用软件再强大,也不可能让图像效果有大的提升,而一个效果好的图像传感器采集到的图像甚至可以不需要后端处理。 感光芯片可以分为两类: CCD(charge couple device):电荷耦合器件 CMOS(complementary metal oxide semiconductor):互补金属氧化物半导体 CCD的价格比较高,多用在网络摄像头,车载摄像头等监控设备上,还有就是数码相机,而CMOS摄像头则是非常主流(性能,包括价格)的大众级产品,从理论上说,CCD 传感器在灵敏度、分辨率、噪声控制等方面都优于CMOS传感器,而CMOS传感器则具有低成本、低功耗、以及高整合度的特点。 简单地讲,就是CCD摄像头成像质量会更好,图像明锐通透、细节丰富,色彩还原度好,曝光准确。 之前的CMOS都是属于前照式,但随着科技的发展,现在的CMOS也发展出了背照式CMOS,背照式CMOS的制作工艺和前照式不同,能增大感光量,提高拍摄灵敏度,显著提高低光照条件下的拍摄效果,像现在我们的手机和数码相机800万及以上的摄像头,都已经采用了背照式。

机器视觉检测的基础知识[大全]

机器视觉检测的基础知识~相机 容来源网络,由“机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展. 相机都有哪些种类?我们常说的CCD就是相机么?除了2D平面相机,是否还有其他种类的相机,原理又是什么?下面这篇文章给您一一道来。 一,相机就是CCD么? 通常,我们把所有相机都叫作CCD,CCD已经成了相机的代名词。正在使用被叫做CCD的很可能就是CMOS。其实CCD和CMOS都称为感光元件,都是将光学图像转换为电子信号的半导体元件。他们在检测光时都采用光电二极管,但是在信号的读取和制造方法上存在不同。两者的区别如下: 二,像素。 所谓像素,是指图像的最小构成单位。电脑中的图像,是通过像素(或者称为PIXEL)这一规则排列的点的集合进行表现的。每一个点都拥有色调和阶调等色彩信息,由此就可以描绘出彩色的图像。 ▼例如:液晶显示器上会显示「分辨率:1280×1024」等。这表示横向的像素数为1280,纵向的像素数为1024。这样的显示器的像素总数即为1280×1024=1,310,720。由于像素数越多,则越可以表现出图像的细节,因此也可以说「清晰度更高」。

三,像素直径。 所谓像素直径,是指每个CCD元件的大小,通常使用μm作为单位。严谨的说,这个大小中包含了受光元件与信号传送通路。(=像素间距,即某个像素的中心到邻近一个像素的中心的距离。)。也就是说,像素直径与像素间距的值是一样的。如果像素直径较小,则图像将通过较小的像素进行描绘,因此可以获得更加精细的图像。可以通过像素直径和有效像素数,求出CCD元件的受光部的大小。 假设某个 CCD 元件的条件如下所示: ·有效像素数…768 × 484 ·像素直径…8.4 μm× 9.8μm 则受光部的大小为 ·横向768 × 8.4μm= 6.4512 mm ·纵向484 × 9.8μm= 4.7432 mm 四,CCD的大小。 ▼CCD感光元件的大小,一般分为采用英寸单位表示和采用APS-C大小等规格表示这2种方式。采用英寸表示时,该尺寸并不是拍摄的实际尺寸,而是相当于摄像管的对角长度。例如,1/2英寸的CCD表示「拥有相当于1/2英寸的摄像管的拍摄围」。为什么如此计算呢,这是由于当初制造CCD的目的就是用来代替电视机录像机的摄像管的。当时,由于想要继续使用镜头等光学用品的需求比较强烈,由此就诞生了这种奇怪的规格。主要的英寸规格的尺寸如下表所示。

摄像机和镜头的基本知识..

1. 相机基础知识 按感光器件类型可分为2大类,CCD器件和CMOS器件 CCD CMOS 设计单一感光器,集中统一放大每个感光器连接放大器 灵敏度同样面积下,感光开口小灵敏度底 成本线路品质影响程度高,成本高CMOS整合集成,成本低 解析度连接复杂度低,解析度高新技术解析度高 噪点比单一放大,噪声低放大器多,特性不一致,噪点高功耗比需外加电压,功耗高直接放大,功耗低 按用处分类可分为视觉相机和安防监控相机两大类 机器视觉安防监控 触发采集模 式 含有触发采集接口无触发采集接口分辨率从高到低都有, 很丰富一般较低 程序接口有完善的程序开发库, 尤其对图像捕捉功能支持很 齐全 一般只有连续视频捕捉功能 价格贵很便宜 数据传输接口各种类型都有: USB, 千兆以太网, Cameralink, 1394 目前以模拟接口为主, 数字接口 较少 按感光单元排列方法分为线阵扫描相机和面阵扫描相机 线阵相机面阵相机 结构特点结构简单, 在同等分辨率下的成本较低结构复杂,在同等条件下成本高

应用场合匀速运动的物体,如工业流水线可以使静止的, 也可以是运动的 分辨率512, 2K, 4K/行640x480, 800x600, 1024x768, ...2048x1536或者更高 光源光源只需要一窄条,这个画面比较均匀, 能在低照度下工作 整个面的光源较难做到均匀,照度要求高 彩色相机 形式 三线CCD,或者棱镜分光彩色滤光膜, bayer算法按彩色形成方式:

2: 镜头基础知识 镜头外形 机器视觉常用定焦镜头,并且都是手动调整光圈,一般不允许自动调整光圈,镜头上有调焦和调光圈两个环,为了防止误碰动 ,工业镜头的两个环都有锁定螺丝。 注意调焦环不是用来调整焦距,而是调整像距,保证清晰图像落在焦平面上 常用镜头参数:焦距 焦距是镜头最常用的参数,我们包装检测系列产品中使用的镜头有 3.5mm,4mm,6mm,8mm,12mm等多种规格(1/3”CCD的标准镜头为8mm)。 除杂系列产品一般都使用28mm的广角镜头(线扫描相机的标准镜头大概是40mm左右)。 焦距越小的镜头越不好做,价格越高,边缘变形等问题越大,所以尽量选用标准镜头,性价比最高

机器视觉之工业镜头的概念及分类

工业镜头的概念及分类 工业镜头的概念及分类 工业镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。镜头是机器视觉系统中的重要组件,对成像质量有着关键性的作用,它对成像质量的几个最主要指标都有影响,包括:分辨率、对比度、景深及各种像差。镜头不仅种类繁多,而且质量差异也非常大,但一般用户在进行系统设计时往往对镜头的选择重视不够,导致不能得到理想的图像,甚至导致系统开发失败。本文的目的是通过对各种常见镜头的分类及主要参数介绍,总结各种因素之间的相互关系,使读者掌握机器视觉系统中镜头的选用技巧。 根据有效像场的大小划分 把摄影镜头安装在一很大的伸缩暗箱前端,并在该暗箱后端安装一块很大的磨砂玻璃。当将镜头光圈开至最大,并对准无限远景物调焦时,在磨砂玻璃上呈现出的影像均位于一圆形面积内,而圆形外则漆黑,无影像。此有影像的圆形面积称为该镜头的最大像场。在这个最大像场范围的中心部位,有一能使无限远处的景物结成清晰影像的区域,这个区域称为清晰像场。照相机或摄影机的靶面一般都位于清晰像场之内,这一限定范围称为有效像场。由于视觉系统中所用的摄像机的靶面尺寸有各种型号,所以在选择镜头时一定要注意镜头的有效像场应该大于或等于摄像机的靶面尺寸,否则成像的边角部分会模糊甚至没有影像。 根据焦距分类 根据焦距能否调节,可分为定焦距镜头和变焦距镜头两大类。依据焦距的长短,定焦距镜头又可分为鱼眼镜头、短焦镜头、标准镜头、长焦镜头四大类。需要注意的是焦距的长短划分并不是以焦距的绝对值为首要标准,而是以像角的大小为主要区分依据,所以当靶面的大小不等时,其标准镜头的焦距大小也不同。变焦镜头上都有变焦环,调节该环可以使镜头的焦距值在预定范围内灵活改变。变焦距镜头最长焦距值和最短焦距值的比值称为该镜头的变焦倍率。变焦镜头有可分为手动变焦和电动变焦两大类。 变焦镜头由于具有可连续改变焦距值的特点,在需要经常改变摄影视场的情况下非常方便使用,所以在摄影领域应用非常广泛。但由于变焦距镜头的透镜片数多、结构复杂,所以最大相对孔径不能做得太大,致使图像亮度较低、图像质量变差,同时在设计中也很难针对各种焦距、各种调焦距离做像差校正,所以其成像质量无法和同档次的定焦距镜头相比。 实际中常用的镜头的焦距是从4毫米到300毫米的范围内有很多的等级,如何选择合适焦距的镜头是在机器视觉系统设计时要考虑的一个主要问题。光学镜头的成像规律可以根据两个基本成像公式牛顿公式和高斯公式来推导,对于机器视觉系统的常见设计模型,我们一般是根据成像的放大率和物距这两个条件来选择合适焦距的镜头的,在此给出一组实用的计算公式: 放大率:m=h’/h=L’/L 物距:L = f(1+1/m) 像距:L’= f(1+m) 焦距:f = L/(1+1/m) 物高:h = h’/m = h’(L-f)/f 像高:h’ = mh = h(L’-f)/f 特殊用途的镜头

机器视觉入门知识详解

机器视觉入门知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 啤酒厂采用的填充液位检测系统为例来进行说明: 当每个啤酒瓶移动经过检测传感器时,检测传感器将会触发视觉系统发出频闪光,拍下啤酒瓶的照片。采集到啤酒瓶的图像并将图像保存到内存后,视觉软件将会处理或分析该图像,并根据啤酒瓶的实际填充液位发出通过-未通过响应。如果视觉系统检测到一个啤酒瓶未填充到位,即未通过检测,视觉系统将会向转向器发出信号,将该啤酒瓶从生产线上剔除。操作员可以在显示屏上查看被剔除的啤酒 瓶和持续的流程统计数据。

机器人视觉引导玩偶定位应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 视觉检测在电子元件的应用:

摄像机基础知识

是什么它什么材料做成主要作用是什么它有哪几种规格 CCD是电荷藕合器件。它使用一种高感光度的半导体材料制成,能把光线转变成电荷,然后通过模数转换器芯片将电信号转换成数字信号,传到显示设备上进行显示所采集的图像。有1MM,2/3MM,1/2MM.,1/3MM,1/4MM规格。 2. CCD摄像机与以往的摄像管摄像机比较时,具有下列优点: (1) 体积小,重量轻。 (2) 低残像。 (3) 磁场不会影响到画面。 (4) 抗震动、抗撞击。 (5) 寿命长。 3.普通的枪式红外摄像机主要由哪些部分组成 CCD、镜头,红外灯板,外壳,连接线等 4. CCD靶面有哪规格具体规格尺寸是多少 1)。1英寸、2/3英寸、1/2寸、1/3英寸、1/4英寸 2)。1英寸——靶面尺寸为宽*高,对角线16mm。 2/3英寸——靶面尺寸为宽*高,对角线11mm。 1/2英寸——靶面尺寸为宽*高,对角线8mm。 1/3英寸——靶面尺寸为宽*高,对角线6mm。 1/4英寸——靶面尺寸为宽*高,对角线4mm。 扫描的制式一般有哪两种中国采用哪种制式 1)。PAL制。NTSC制。2)。中国采用隔行扫描(PAL)制式,标准为625行,50场。

6. 按照度划分,CCD可分为哪几种最低照度分别是多少 普通型 正常工作所需照度1~3LUX 月光型 正常工作所需照度左右 星光型 正常工作所需照度以下 红外型 采用红外灯照明,在没有光线的情况下也可以成像 7. CCD的工作原理是什么 被摄物体反射光线传播到镜头,经镜头聚焦到CCD芯片上,CCD根据光的强弱积聚相应的电荷,经周期性放电,产生表示一幅幅画面的电信号,经过滤波、放大处理,通过摄像头的输出端子输出一个标准的复合视频信号。 8. CCD摄影机与摄像管摄影机比较时,具有下列优点: (1) 体积小,重量轻。 (2) 低残像。 (3) 磁场不会影响到画面。 (4) 抗震动、抗撞击。 (5) 寿命长。 9.什么是照度它的用什么单位表示 照度是衡量摄像机在什么光照强度的情况下,可以输出正常图像信号的一个指标。一般是给出“正常照度”和“最低照度”两个指标。照度一般用“勒克斯”(Lux)表示。

(完整版)机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。 答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。 机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。 机器视觉系统一般由哪几部分组成?试详细论述之。 答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。 图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS)采集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。 试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 一维连续函数的傅里叶变换为: 一维离散傅里叶变换为: 二维连续函数的傅里叶变换为: 二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图

分镜头格式及镜头语言基本知识

电视节目分镜头脚本格式 片名: 说明: 镜号:每个镜头按顺序的编号 景别:一般分为全景、中景、近景、特写和显微等 技巧:包括镜头的运用—推、拉、摇、移、跟等,镜头的组合—淡出谈入、 切换、叠化等。 画面:详细写出画面里场景的内容和变化,简单的构图等。 解说:按照分镜头画面的内容,以文字稿本的解说为依据,把它写得更加具 体、形象。 音乐;使用什么音乐,应标明起始位置。 音响:也称为效果,它是用来创造画面身临其境的真实感,如现场的环境声、 雷声、雨声、动物叫声等。 长度:每个镜头的拍摄时间,以秒为单位。 例:片名:《三让一树花常开》 二、专题片素材文稿报送格式 片名: 镜号 景别 技巧 画面内容 解说词 音乐 音响 长度(秒) 镜号 景别 技巧 画面内容 解说词 音乐 音响 长度(秒) 1 全—大全 拉、俯 座落在大山深处的桂花小学。镜头由学校全景拉成大全景,叠出片名,化出 宜宾县桂花小学座落在距县城50公里的观音镇沙沟大山里,这是一座村小。 15” 镜号 长度 画面内容 解说词 音效 备注

说明: 镜号:每个镜头按编辑顺序的编号 长度:该镜头的起、止时间 画面:详细写出画面里的场景的内容和变化,简单的构图等 解说:与该镜头对应的解说词,时间长度应与画面时间长度一致,如有采访,应在对应画面中打印出采访对象的姓名、职务、身份及采访内容字幕,并在“解说词”栏详细说明 音效:包括音乐和音响 例:片名:《大山的女儿》 镜号长度 画面 内容 解说词 音 效 备 注 15 10’27” — 13’40” 学校 升旗 仪式 五星红旗第一次从民族小学的操场上 升起,没有乐曲,杨老师用仅有的一台风琴 伴奏,仰望冉冉升起的五星红旗,杨老师眼 里噙满泪花…… 现 场声 风 琴声 35 18’30” — 19’40” 采访村 民(王蓉母 亲)叠印字幕 (采访对象:王蓉妈妈陶永秀:“王蓉 能够当上老师,多亏了杨老师的帮助,我们 全家非常感谢杨老师,永远记住杨老师。”) 环 境声 三、消息类新闻文稿报送格式 1、文稿用A4纸5号字打印成20×20的稿纸,一式三份,加盖公章。 2、画面质量要求清晰、稳定,多条新闻之间一定要用彩条或其他方法分隔开来。 中文文库: 电视节目制作技术:/zjx/zjx10/COURSE.HTMl 镜头语言的基本知识 一、电影、电视的景别 景别,根据景距、视角的不同,一般分为:

机器视觉算法基础(DOC)

机器视觉 基于visual C++ 的数字图像处理

摘要 机器视觉就是用机器代替人眼来做测量和判断。它通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来获取信息。本文主要介绍的是数字图像处理中的一些简单应用,通过对图像进行滤波、增强、灰度变换、提取特征等处理来获取图像的信息,达到使图像更清晰或提取有用信息的目的。 关键字:机器视觉、灰度图处理、滤波、边缘提取、连通区域

目录 摘要 (2) 目录 (3) 1 概述 (4) 2技术路线 (4) 3实现方法 (5) 3.1灰度图转换 (5) 3.2 直方图均衡化 (6) 3.3均值滤波和中值滤波 (6) 3.4灰度变换 (7) 3.5拉普拉斯算子 (8) 4 轮廓提取 (9) 5 数米粒数目 (15) 6 存在的问题 ................................................................................................ 错误!未定义书签。 7 总结 ............................................................................................................ 错误!未定义书签。 8 致谢 ............................................................................................................ 错误!未定义书签。参考文献 . (17)

CCD摄像头的基本知识

CCD(电荷耦合器)摄像头基本知识 现在科学级的摄像头比前几年更尖端,应用领域也更广了。在生物科学领域,从显微镜、分光光度计到胶文件、化学放光探测系统,都用到了CCD的摄像头。但是很多研究工作者对CCD的指标仍云里雾里。下面对CCD的一些常见指标进行表述。 常见的CCD一般指:CCD摄像头和插在电脑的采集卡 区别数字摄像头与模拟摄像头 所有CCD芯片都属于模拟的设备。当图像进入计算机是数字的。如果信号在摄像头、采集卡两部分完成数字化的,这个CCD被认为是模拟CCD。数字摄像头事实上是由内置于摄像头的数字化设备完成数字化过程,这样可以减少图像噪音。与模拟摄像头相比,数字摄像头提高了摄像头的信噪比、增加摄像头的动态范围、最大化图像灰度范围。科学级的绝大多数的CCD芯片都是由Koda k、Sony、SIT制造。 评价CCD的基本指标 信噪比SNR真实体现摄像头的检测能力。所有的CCD摄像头的厂家为提高摄像头的性能,都尽力使信号(可达到满井电子的数目)最大同时尽可能减少噪音。 SNR=满井电子/噪音电子=动态范围=最大灰阶=2bit数 在相同满井电子的CCD,降低CCD噪音,就能提高CCD的监测能力,热或者暗电流对于CCD都是噪音,噪音在Cool CCD基本都可以被深度致冷的Peltier消除。在曝光超过5- 10秒,CCD芯片就会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像。-20度的摄像头可以拍摄不超过5分钟的图像,- 40度的摄像头拍摄时间可以超过1小时。 像素面积

这个指标是在芯片的一个重要指标。像素面积越大、对光越灵敏。因为像素点面积有更多电子,能产生更多信号。在1/2”、2/3”、1”的芯片上,像素点越大,像素越少。会影响空间分辨率。大像素点增加灵敏度、小的像素点增加分辨率。 要提高影像质量就必须增加CCD的像素,因此在CCD尺寸一定的情况下,增加像素就意味着要缩小了像素中的光电二极管。我们知道单位像素的面积越小,其感光性能越低,信噪比越低,动态范围越窄,因此这种方法不能无限制地增大分辨率,所以,如果不增加CCD面积而一味地提高分辨率,只会引起图像质量的恶化。但如果在增加CCD像素的同时想维持现有的图像质量,就必须在至少维持单位像素面积不减小的基础上增大CCD 的总面积。而目前更大尺寸CCD加工制造比较困难,成品率也比较低,因此成本也一直降不下来,这一矛盾对于CCD而言是难以克服的相同数目的像素,排列越密集,像素之间就越容易出现电流干扰,容易出现“噪点”等干扰成像质量的现象出现。所以尺寸越大越好,当然成本也会随之提高——并且不是成比例提高,而是以几何级数向上提 16 Bit摄像头 典型的真16bit的摄像头(能检测65536级灰度)都有很大的像素点(16- 30um)。然而这些摄像头非常贵,同时图像数据很大,传输速度很慢。在基因组和蛋白组研究中,16bit的摄像头在捕获DNA和蛋白图像上不太实用,一般用于深度太空的专业天文学研究。真实的16bit的CCD,24um*24um的像素点,1”大小只能有50万像素点。 扫描速度 8bit- CCD可以达到30帧,基本可以认为是同步的。不论模拟或数字的CCD,超过15帧可以接受。

机器视觉系统中镜头的选用技巧

热点论坛 Column 专栏 29 2006年2月刊 自动化博览 Selection Technique of Lens in Machine Vision System 1 概述 光学镜头一般称为摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。镜头是机器视觉系统中的重要组件,对成像质量有着关键性的作用,它对成像质量的几个最主要指标都有影响,包括:分辨率、对比度、景深及各种像差。镜头不仅种类繁多,而且质量差异也非常大,但一般用户在进行系统设计时往往对镜头的选择重视不够,导致不能得到理想的图像,甚至导致系统开发失败。本文的目的是通过对各种常见镜头的分类及主要参数介绍,总结各种因素之间的相互关系,使读者掌握机器视觉系统中镜头的选用技巧。 2 机器视觉系统中常用镜头的分类 (1) 根据有效像场的大小划分 把摄影镜头安装在一很大的伸缩暗箱前端,并在该暗箱后端安装一块很大的磨砂玻璃,当将镜头光圈开至最大,并对准无限远景物调焦时,在磨砂玻璃上呈现出的影像均位于一圆形面积内,而圆形外则漆黑、无影像。此有影像的圆形面积称为该镜头的最大像场。在这个最大像场范围的中心部位,有一能使无限远处的景物结成清晰影像的区域,这个区域称为清晰像场。照相机或摄影机的靶面一般都位于清晰像场之内,这一限定范围称为有效像场。由于视觉系统中所用的摄像机的靶面尺寸有各种型号,所以在选择镜头时一定要注意镜头的有效像场应该大于或等于摄像机的靶面尺寸,否则成像的边角部分会模糊甚至没有影像。 根据有效像场的大小分类见表1。 表1 分类 (2) 根据焦距分类 根据焦距能否调节,可分为定焦距镜头和变焦距镜头两大类。依据焦距的长短,定焦距镜头又可分为鱼眼镜头、短焦镜头、标准镜头、长焦镜头、超长焦五大类。需要注意的是焦距的长短划分并不是以焦距的绝对值为首要标准,而是以像角的大小为主要区分依据,所以当靶面的大小不等时,其标准镜头的焦距大小也不同。变焦镜头上都有变焦环,调节该环可以使镜头的焦距值在预定范围内灵活改变。变焦距镜头最长焦距值和最短焦距值的比值称为该镜头的变焦倍率。变焦镜头有可分为手动变焦和电动变焦两大类。 变焦镜头由于具有可连续改变焦距值的特点,在需要经常改变摄影视场的情况下非常方便使用,所以在摄影领域应用非常广泛。但由于变焦距镜头的透镜片数多、结构复杂,所以最大相对孔径不能做得太大,致使图像亮度较低、图像质量变差,同时在设计中也很难针对各种焦距、各种调焦距离做像差校正,所以其成像质量无法和同档次的定焦距镜头相比。 实际中常用的镜头的焦距是从4毫米到1000毫米的范围内有很多的等级,如何选择合适焦距的镜头是在机器视觉系统设计时要考虑的一个主要问题。光学镜头的成像规律可以根据两个基本成像公式即牛顿公式和高斯公式来推导,对于机器视觉系统的常见设计模型,一般是根据成像的放大率和物距这两个条件来选择合适焦距的镜头的,在此给出一组实用的计算公式: ? 放大率:m=h’/h=L’/L ;? 物距:L = f(1+1/m); 有效像场尺寸 3.2mm ×2.4mm (对角线4mm ) 4.8mm ×3.6mm (对角线6mm )6.4mm ×4.8mm (对角线8mm )8.8mm ×6.6mm (对角线11mm )12.8mm ×9.6mm (对角线16mm )21.95mm ×16mm (对角线27.16mm )10.05mm ×7.42mm (对角线12.49mm )36mm ×24mm 40mm ×40mm 80mm ×60mm 82mm ×56mm 240mm ×180mm 电视摄像镜头电影摄影镜头照相镜头 镜头类型 1/4英寸摄像镜头 1/3英寸摄像镜头1/2英寸摄像镜头2/3英寸摄像镜头1英寸摄像镜头 35mm 电影摄影镜头 16mm 电影摄影镜头135型摄影镜头127型摄影镜头120型摄影镜头中型摄影镜头大型摄影镜头 机器视觉系统 中镜头的选用技巧 王亚鹏(1972-) 男,河北安平人,现就职于中国大恒(集团)有限公司北京图像视觉技术分公司任副总工程师、开发部经理,研究方向为机器视觉、模式识别。 (中国大恒(集团)有限公司北京图像视觉技术分公司,北京 100080) 王亚鹏 机器视觉

摄像机基础知识

产品条目 放置产品型号表 监控知识 1、安防行业包括哪几个系统?应用的领域有哪些? 安防行业主要包括:闭路电视监控、消防、报警、巡更、门禁等。 主要应用于大厦、银行、交通、小区、工厂、学校等。 2、从事安防系统的建设与设备生产需要哪些资质? 生产资质、安防设计、施工资质 3、摄像机的主要竞争品牌有哪些? 主要有:艾立克、三星、松下、索尼、明景、景阳、PELCO 4、矩阵的竞争品牌有哪些 主要有:PELCO、英飞拓、AD/AB、红苹果、智敏 5、硬盘录像机简称什么? DVR 全称:Digital Video Recoder 6、视频服务器简称什么? DVS 全称:Digital Video Server 7、网络摄像机简称什么? IPC 全称:IP Camera 8、DVS与IPC的竞争对手有哪些? 海康、大华、朗驰、安讯士(axis)、黄河、恒亿等 9、DVR的竞争对手有哪些? 海康、大华、红苹果、汉邦、大立 10、监视器的竞争对手有哪些? 迈威(myway)、TCL、创维、石头 11、模拟监控系统主要由哪四个部分组成? 摄像部分、传输部分、存储部分、控制部分 12、摄像部分有哪些设备组成? 摄像机、镜头、护罩、支架、云台等 13、摄像部分有哪些辅助设备? 雨刮、雨刷、加热、风扇、遮阳罩 14、如果摄像机安装在完全没有光线的环境,又不希望安装可见光源,有什么办法解 决? 采用红外摄像机,红外光线属于不可见光,红外摄像机所发射出来的红外光照射到监控目标之后可以反射回给摄像机,同时,红外摄像机的CCD可以感应反射回来的红外线,从而形成黑白图像。红外摄像机可以工作在无任何可见光的场所。 15、枪机需要监控不同方向需要什么辅助设备? 安装云台与解码器即可控制枪机转动实现不同方向的监控

摄像-镜头语言的基本知识

镜头语言的基本知识 一、电影、电视的景别 景别,根据景距、视角的不同, 一般分为: 一、根据景距的变化分类 极远景:极端遥远的镜头景观,人物小如蚂蚁。 远景:深远的镜头景观,人物在画面中只占有很小位置。广义的远景基于景距的不同,又可分为大远景、远景、小远景(一说为半远景)三个层次。 大全景:包含整个拍摄主体及周遭大环境的画面,通常用来作影影视作品的环境介绍,因此被叫做最广的镜头。 全景:摄取人物全身或较小场景全貌的影视画面,相当于话剧、歌舞剧场“舞台框”内的景观。在全景中可以看清人物动作和所处的环境。 小全景:演员“顶天立地”,处于比全景小得多,又保持相对完整的规格。 中景:俗称“七分像”,指摄取人物小腿以上部分的镜头,或用来拍摄与此相当的场景的镜头,是表演性场面的常用景别。 半身景:俗称“半身像”,指从腰部到头的景致,也称为“中近景”。 近景:指摄取胸部以上的影视画面,有时也用于表现景物的某一局部。特写:指摄影、摄像机在很近距离内摄取对象。通常以人体肩部以上的头像为取景参照,突出强调人体的某个局部,或相应的物件细节、景物细节等。 大特写:又称“细部特写”,指突出头像的局部,或身体、物体的某一细部,如眉毛、眼睛、枪栓、板机等。 二、摄影、摄像机的运动(拍摄方式) 推:即推拍、推镜头,指被摄体不动,由拍摄机器作向前的运动拍摄,取景范围由大变 小,分快推、慢推、猛推,与变焦距推拍存在本质的区别。 拉:被摄体不动,由拍摄机器作向后的拉摄运动,取景范围由小变大,也可分为慢拉、快拉、猛拉。摇:指摄影、摄像机位置不动,机身依托于三角架上的底盘作上下、左右、旋转等运动,使观众如同站在原地环顾、打量周围的人或事物。移:又称移动拍摄。从广义说,运动拍摄的各种方式都为移动拍摄。但在通常的意义上,移动拍摄专指把摄影、摄像机安放在运载工具上,沿水平面在移动中拍摄对象。移拍与摇拍结合可以形成摇移拍摄方式。 跟:指跟踪拍摄。跟移是一种,还有跟摇、跟推、跟拉、跟升、跟降等,即将跟摄与拉、摇、移、升、降等20多种拍摄方法结合在一起,同时进行。总之,跟拍的手法灵活多样,它使观众的眼睛始终盯牢在被跟摄人体、物体上。升:上升摄影、摄像。降:下降摄影、摄像。 俯:俯拍,常用于宏观地展现环境、场合的整体面貌。仰:仰拍,常带有高大、庄严的意味。 甩:甩镜头,也即扫摇镜头,指从一个被摄体甩向另一个被摄体,表现急剧的变化,作为场景变换的手段时不露剪辑的痕迹。 悬:悬空拍摄,有时还包括空中拍摄。它有广阔的表现力。空:亦称空镜头、景物镜头,指没有剧中角色(不管是人还是相关动物)的纯景物镜头。切:转换镜头的统称。任何一个镜头的剪接,都是一次“切”。 综:指综合拍摄,又称综合镜头。它是将推、拉、摇、移、跟、升、降、俯、仰、旋、甩、悬、空等拍摄方法中的几种结合在一个镜头里进行拍摄。短:指

摄像机的基本知识

电视监控系统CCD摄像机基础知识 随着国民经济的迅速发展和人民生活水平的日益提高,安全防范技术在智能建筑中的地位与作用也与日俱增。闭路电视监控系统作为一种安保技术,在城市交通、高速公路、星级宾馆、智能大厦、银行、政府机关等场所越来越发挥着它的重要作用,包括现在的智能小区亦将CCTV系统作为安保及物业管理的一个重要手段。 闭路电视监控系统一般由摄像部分、传输部分、控制部分以及显示和记录部分组成,其中摄像部分是整个闭路电视监控系统的最前端,其图像信息质量直接决定了整个系统的图像质量,这就对摄像机提出了严格的要求。下面简单介绍一下摄像机的基本知识。 1、什么是CCD摄像机? CCD是Charge Coupled Device(电荷耦合器件)的缩写,它是一种半导体成像器件,因而具有灵敏度高、抗强光、畸变小、体积小、寿命长、抗震动等优点。 2、CCD摄像机的工作方式 被摄物体的图像经过镜头聚焦至CCD芯片上,CCD根据光的强弱积累相应比例的电荷,各个像素积累的电荷在视频时序的控制下,逐点外移,经滤波、放大处理后,形成视频信号输出。视频信号连接到监视器或电视机的视频输入端便可以看到与原始图像相同的视频图像。 3、TV制式 目前,世界上主要使用的电视广播制式有PAL、NTSC、SECAM三种,如我国大部分地区使用PAL制式,日本、韩国等东南地区及美国等欧美国家使用NTSC制式,俄罗斯则使用SECAM制式。 4、水平清晰度和垂直清晰度 垂直清晰度即是图像可以分解出多少水平线条数,最大垂直清晰度由垂直扫描总行数所决定。水平清晰度定义为图像上可以分清的垂直线条数。水平清晰度与图像传感器的像素数和视频系统的频带宽度有直接关系。水平清晰度和垂直清晰度采用统一的度量标准,所以当屏幕上的水平线条间隔和垂直线条间隔相同时,图像的垂直清晰度和水平清晰度数量应该是一样。水平清晰度和垂直清晰度数值越大,清晰度越高。

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4、0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术就是如何工作的、它为什么就是实现流程自动化与质量改进的正确选择等。小编为您准备了这篇机器视觉入门学习资料。 机器视觉就是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统就是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布与亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用:

现场有两个振动盘,振动盘1作用就是把玩偶振动到振动盘2中,振动盘2作用就是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶就是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率与设备的正常运行,提高生产效率。 案例三:啤酒厂采用的填充液位检测系统案例:

相关文档
最新文档