1kw纯正弦波逆变电源的评测

1kw纯正弦波逆变电源的评测
1kw纯正弦波逆变电源的评测

1kw纯正弦波逆变电源的评测

这个机器,BT是12V,也可以是24V,12V时的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。

因为电流较大,所以用了三对6平方的软线直接焊在功率板上:

吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。

上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个

200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。

上图是DC-DC升压电路的驱动板,用的是KA3525。这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。

这是SPWM驱动板的PCB,本方案用的是张工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。因为上面的小变压器在打样,还没有回来,所以这块板子还没有装好。本方案中的SPWM驱动也是灵活的,既可以用单片机,也可以用纯硬件,只要驱动板的接口设计得一致,都可以插到本方案的功率

板上,甚至也可以做成方波逆变器。

这次DC-DC功率部分的大管子,没有用2907,而是用了RU190N08,上图中的电流应该是190A,错打了180A。因为这管子比2907稍便宜点,所以我准备试一试。

H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。

这是TO220封装的快恢复二极管,15A1200V,也是张工提供的,价格不贵。我觉得它安装在散热板上,散热效果肯定比普通塑封管要强。

这次的变压器用的是二个EC49磁芯绕制的,每个功率500W,余量应该比较大的,初级并联,次级串联。用二个变压器的理由是:1,有利于功率的输出,2.变比小了,可能头

痛的尖峰问题会少一些。

对前级进行上电,空载电流近1A,查到是变压器的原因,后来换了磁芯,空载降到360MA(每个变压器180MH,基本可以接受),可见磁芯的重要性,而现在要买到几付好的磁性实在太难了。所幸的是D极波形很好,这次的变压器应该做得还可以了,参数是:初级3+3,用0.2*29的铜带,次级44T,用0.74线二根。下一步准备为前级加载,因为一台逆变器,能不能输出预定的功率,前级质量是决定因素。只因那个大功率的开关电源还有一点小问题要解决,所以,加载可能还要过几天。

个LED,用150K2W电阻降压,这个指示电路要消耗近1W功率,约增加90MA的电流。

对前级进行加载实验,前级为开环,也没有装储能电感,分二步:

第一步:加载约630W,负载是一个200R、1KW的大电阻,这时工作电流为54.5A。连续工作一小时,散热板和190N08大功率管及变压器只有微温,D极波形还比较好,尖峰刚露,不明显,这时母线高压为356V。

第二步:进一步加大负载,又挂上了二个串联的200W灯泡,这时工作电流77.9A左右,此时,实际输出功率在900W以上了,母线高压降至347V,D极波形有一路能看到明显的上冲尖峰。工作半小时,散热板温度为45度,4个190N08管壳温度:3个为46度,有一个为51度,变压器也有点热。但快速二极管一点也不热。

如果要逆变输出1000W,前级起码要能输出1100W左右,从今天情况来看,温升好象快了些,温度主要集中在大功率MOS管和变压器。因为这样的结构,换管子很麻烦,本来想把190N08换成2907,做一个对比实验。变压器热,我还是认为磁芯质量不过关,因为在900W时,每个变压器单边绕组的电流不到20A,我用的是0.2X29MM的铜带,有5.8个平方MM,电流密度只有3A多一些,初级绕组是不应该发热的;次级有0.74X2,900W 时流过的电流不到3A,也不应该热。看来磁芯实在太重要了。

明天准备用风机对散热板进行主动性散热,加载到1050W以上。

继续加大负载,再用二个150W灯泡串联接上去,因为考虑到大电流时线路的压降,把电源电压调高了0.2V,为12.4V,但到线路板还是只有12.1V(我的电源线是用二根10平方并联的)。开机后,工作电流达到98.7A,母线电压为345V,母线电流为3.151A,此时,实际输出功率为1087W。D极波形上的尖峰有点加高,达到45Vpp(因为我在设计PCB时,没有考虑用吸收回路,再加上尖峰也没有达到管子的耐压值,所以也就不去理它了)。此时,功耗达到了1194W,前级的实际效率只有91%了。变压器温升很明显了,因为我在散热板下面放了一个小风扇,所以,管子的温度一直在40度以下,我只让它工作了约20分种。

小结:前级的实验并没有结束,我还想用纳米晶磁环做一次实验,但年内肯定是没有时间了,过了年再试了。看来BT在12V时,要提高功率和效率,瓶颈主要是:1.变压器,包括磁芯质量,绕制数据及工艺等;2.大功率MOS管,内阻一定要小;3.布线及结构,我PCB 反面大电流路径都有15-20MM宽的铜箔,填锡达2MM,还加焊了几根4平方的铜线,结构方面主要是散热一定要顺畅,加小风扇是很好的办法。

今天的工作本来想把RU190N08和2907做一个对比测试,测试这二种管子在不同输出功率时的效率情况,于是,先调整了各种测试仪表,先把已经装在板子上的RU190N08做了测试,测试结果如下,看来黄工的这几个管子还是算挣气,一路测下来,效率情况良好。

接下来就是花了一个多小时换管子,装上了4个全新的IRFP2907,本是兴冲冲开机,希望是一个很好的结果,但万万没有想到的是------失败!

在挂上1号负载时(二个150W灯泡串联),工作电流达41.5A,输入功率达523.3W,输出功率为283.4W,效率仅为:54%。这可是做梦都没有想到的结果,2907管子很快发热。

在百思不解的情况下,查看D极波形,居然出现了长长的尖峰:

一般情况下,出现这样的波形,肯定是怀疑变压器漏感太大,但我这二个变压器在用RU190N08时,工作得很好,在挂1号负载时,根本看不到尖峰。

我再测G极波形,发现驱动方波全部变成了梯形波,这才恍然大悟,原来是2907的驱动功率不足所致。看来2907的结电容远远大于RU190N08,用3525直接推动4个2907有点困难。为了证实我的想法,我把栅极电阻从原先的20R换成了10R,再开机,这时,在同样负载下,电流下降为28.3A(用RU190N08时只有21.9A),欠激是肯定的了,因为我的驱动板上没有装图腾柱输出,现在只好等重新做了驱动板再试了。

(驱动功率不足,D极会出现长长的尖峰,这可是第一次遇到,长见识了啊!)

上图是栅极波形,这时电阻已经换成10R,在用20R时情况还要糟很多。

上图是从3525的11、14脚上测到的波形,已经有点变形。画了一块带图腾柱输出的DC-DC驱动板

带图腾柱输出的DC-DC驱动板的PCB终于来了,今天装了一块进行试机。

因为加了图腾柱输出,所以2907欠激的情况大为改善,但空载电流却比用190N08时要大很多,不去管它了,继续实验下去。

下面的表格是2907和190N80的工作情况对比

下图是用2907时的空载波形:

下图是用2907时,前级输出1100W时的波形照片:

从上图可以看出,空载和满载时的波形差不多。

正弦波逆变电源设计

等级: 湖南工程学院 课程设计 课程名称电力电子技术 课题名称 SG3525正弦波逆变电源设计 专业 班级 学号 姓名 指导教师 2013年12 月16 日

湖南工程学院 课程设计任务书 课程名称单片机原理及应用 课题智能密码锁设计 专业班级 学生姓名 学号 指导老师 审批 任务书下达日期2013 年12 月16 日 设计完成日期2013 年12 月27 日

设计内容与设计要求 一.设计内容: 1.电路功能: 1)逆变就是将直流变为交流。由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经 过驱动电路驱动逆变电路进行逆变,再经过高频变压器与滤波电 路输出-50Hz的正弦波。 2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。控制电路主要环节:正弦信号发生电路、脉宽调制PWM、 电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 2. 系统总体方案确定 3. 主电路设计与分析 1)确定主电路方案 2)主电路元器件的计算及选型 3)主电路保护环节设计 4. 控制电路设计与分析 1)检测电路设计 2)功能单元电路设计 3)触发电路设计 4)控制电路参数确定 二.设计要求: 1.要求输出正弦波的幅度可调。 2.用SG3525产生脉冲。 3.设计思路清晰,给出整体设计框图; 4.单元电路设计,给出具体设计思路和电路; 5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。 6.绘制总电路图 7.写出设计报告;

主要设计条件 1.设计依据主要参数 1)输入输出电压:输入(DC)+15V、10V(AC) 2)输出电流:1A 3)电压调整率:≤1% 4)负载调整率:≤1% 5)效率:≥0.8 2. 可提供实验与仿真条件 说明书格式 1.课程设计封面; 2.任务书; 3.说明书目录; 4.设计总体思路,基本原理和框图(总电路图); 5.单元电路设计(各单元电路图); 6.故障分析与电路改进、实验及仿真等。 7.总结与体会; 8.附录(完整的总电路图); 9.参考文献; 11、课程设计成绩评分表 进度安排 第一周星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星期三:主电路设计 星期四:控制电路设计 星期五:控制电路设计; 第二周星期一: 控制电路设计 星期二:电路原理及波形分析、实验调试及仿真等 星期四~五:写设计报告,打印相关图纸; 星期五下午:答辩及资料整理

纯正弦波逆变器哪个好_纯正弦波逆变器排行榜

纯正弦波逆变器哪个好_纯正弦波逆变器排行榜 纯正弦波逆变器哪个好纯正弦波的逆变器好,困为谐波分量少,功率因数更高。 纯正弦波的逆变器 连续输出功率:1000W 峰值输出功率:2000W 直流输入:12V 交流输入电压:100-120V/60Hzor220V-240V/60Hz 主要优点:其输出波形为纯正弦波,较修正正弦波而言,这种波形稳定,不失真,不易变形,带载能力强,接近于市电的供电能力。 带感性负载如微波炉和电机,具有使负载工作更快,并有效减少设备产生的噪音。提供持续稳定的交流电,保证设备持续正常工作。 纯正弦波和修正弦波逆变器有什么区别纯正弦波的才能称为正弦波,所谓修正正弦波更接近于方波。纯正弦波逆变器可以驱动常见的任何可以接入市电的设备,而修正正弦波对负载有很多限制,比如带电阻类负载(白炽灯、电炉(电磁炉除外)等负载)是没问题的,但电容类负载(比如充电的LED手电筒)在脉冲的边沿会出现冲击电流,导致电容类负载在修正正弦波供电时极易损坏,电感类负载(使用电动机的电器)工作也会出现异常。这个我以前做过专门的测试,下面照片中示波器的图像就是逆变器的输出波形,由于输出电压较高,已经在示波器探头上使用电阻进行100:1的分压。 下面图片中这个就是纯正弦波逆变器的输出波形: 下面这个图片中的示波器图像是修正正弦波逆变器输出的所谓“修正正弦波”: 1、西门子:世界上最大的机电类/电气工程与电子公司之一,世界500强企业; 2、西蒙Simon:高新技术企业,,拥有国内产品专利近百项,其产品畅销国内外; 3、罗格朗-TCL:电气行业的领导品牌,十大品牌,TCL-罗格朗国际电工; 4、奇胜Clipsal:全球著名品牌,亚洲最大的电工产品品牌之一;

正弦波逆变器设计说明

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

正弦波逆变器的课程设计

目录 目录 (1) 第一章绪论 (2) 1.1 正余弦波逆变器的概念 (2) 1.2 正余弦波逆变器的发展历史 (2) 1.2.1 概述 (2) 1.2.2 正余弦波逆变器器件概述 (3) 第二章正弦波逆变器中的开关器件及其基本工作原理 (4) 2.1 可关断晶体管(GTO) (4) 2.2 电力晶体管(GTR) (5) 2.3 功率场效应晶体管(Power MOSFET) (6) 2.4 绝缘栅双极晶体管(IGBT) (7) 2.5 小结 (8) 第三章正弦波逆变器设计总体思路.... (9) 3.1 总体框架图 (9) 3.2 局部电路 (9) 3.21 电压型逆变器 (9) 3.22 电流型逆变器 (10) 3.3 正弦脉宽调制逆变器 (11) 3.31 PWM逆变电路及其工作原理 (11) 3.32 总控制电路 (13) 3.33控制局部电路 (15) 第四章SPWM逆变器的应用 (16) 4.1 SPWM逆变器的概况 (16) 4.2 SPWM逆变器的应用场合 (16) 总结 (17) 参考文献 (17)

第一章绪论 1.1正弦波逆变器的概念 所谓逆变器,是指整流器的逆向变换装置。其作用是通过半导体功率开关器件(例如GTO,GTR,功率MOSFET 和IGBT等)的开通和关断作用,把直流电能换成交流电能,它是一种电能变换装置逆变器。 特别是弦波逆变器,其主要用途是用于交流传动,静止变频和UPS电源。逆变器的负载多半是感性负载。为了提高逆变效率,存储在负载电感中的无功能量应能反馈回电源。因此要求逆变器最好是一个功率可以双向流动的变换器,即它既可以把直流电能传输到交流负载侧,也可以把交流负载中的无功电能反馈回直流电源。 1.2弦波逆变器的发展历史 1.21 概述 逆变器的原理早在1931年就在文献中提到过。1948年,美国西屋电气公司用汞弧整流器制成了3000HZ 的感应加热用逆变器。 1947年,第一只晶体管诞生,固态电力电子学随之诞生。1956年,第一只晶体管问世,这标志着电力电子学的诞生,并开始进入传统发展时代。在这个时代,逆变器继整流器之后开始发展。首先出现的是SCR电压型逆变器。1961年,B.D.Bedford提出了改进型SCR强迫换向逆变器,为SCR逆变器的发展奠定了基础。1960年以后,人们注意到改善逆变器波形的重要性,并开始进行研究。1962年,A.Kernick提出了“谐波中和消除法”,即后来常用的“多重叠加法”,这标志着正弦波逆变器的诞生。1963年,F.G.Turnbull提出了“消除特定谐波法”,为后来的优化PWM法奠定了基础,以实现特定的优化目标,如谐波最小,效率最优,转矩脉动最小等。 20世纪70年代后期,可关断晶闸管GTO、电力晶体管GTR及其模块相继实用化。80年代以来,电力电子技术与微电子技术相结合,产生了各种高频化的全控器件,并得到了迅速发展,如功率场效应管Power MOSFET、绝缘门极晶体管IGT或IGBT、静电感应晶体管SIT、静电感应晶闸管SITH、场控晶闸管

正弦波逆变器驱动芯片介绍

光伏逆变器600W正弦波逆变器制作详解 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信息,提这样那样的问题,很多都是象我这样的初学者。为此,我又花了近一个月的时间,制作了这台600W的正弦波逆变器,该机有如下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB 厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基

础,我老寿包你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。 该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到

【精品合集】正弦波逆变电源设计

1. TL494正弦波逆变电源设计 (1) 1. TL494正弦波逆变电源设计 (10) 一种基于单片机的正弦波输出逆变电源的设计 (25) 1. TL494正弦波逆变电源设计 1.1 概述: TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是: 1)逆变就是将直流变为交流。由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。 2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。 3)功率变换电路中的高频开关器件采用IGBT或MOSFET。 4)系统具有完善的保护 这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。 1.2 系统总体方案的确定: 通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。 第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。 这样就完全确定了系统总体电路的方案。 如图1.2.1框图:

纯正弦波单相逆变电源主控芯片 U3988剖析

U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控 芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构。为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便。 U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz)时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成。整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示: 图二是U3988的引脚图。 VDD是芯片的电源引脚,接单一+5V;GND是地; OSC1、OSC2是时钟引脚,接20MHz晶振; OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死

区控制电路才能送到逆变桥; OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作; AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测; BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V; AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V; ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑; AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变; CHARG引脚是充电控制输出,高电平有效; LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压; LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁; PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入,该引脚在逆变和市电状态都可以响应外部的保护请求; BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程 作者:科创论坛尤小翠 注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果 做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积 小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输 出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案. 一、高频前级(原理分析) 在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。一个好的前级是多么的重要,是确保足够功率输出的保证。 这就是前级电路图啦~ 电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).

当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出. 注:本图根据老矿石的作品修改 二、全硬件纯正弦后级(原理分析) 老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。我把它们融合了一下,得到了自己的电路。 这是后级的框图 本电路优点: 1.电路极简单,可能为世界上最简单的分立SPWM电路 2.单电源宽电压供电(10V-30V) 3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电. 4.隔离输出,受外围电路干扰少 本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了. 看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器. 再看驱动板电路图(红圈里的内容是修改过的部分):

一款高效率正弦波逆变器电路设计-Read

一款高效率正弦波逆变器电路设计 现有的逆变器,有方波输出和正弦波输出的。方波输出的逆变器效率高,但对于都是为正弦波电源设计的电器来说,使用总是不放心,虽然可以适用于许多电器,但部分电器就不适用,或用起来电器的指标会变化。正弦波输出的逆变器就没有这方面的缺点,却存在效率低的缺点。为此笔者设计了一款高效率正弦波逆变器,其电路如图1。 该电路用12V电池供电。先用一片倍压模块倍压为运放供电。可选取ICL7660或MAX1044。运放1产生50Hz正弦波作为基准信号。运放2作为反相器。运放3和运放4作为迟滞比较器。其实运放3和开关管1构成的是比例开关电源。运放4和开关管2也同样。它的开关频率不稳定。在运放1输出信号为正相时,运放3和开关管工作。这时运放2输出的是负相。这时运放4的正输入端的电位(恒为0)总比负输入端的电位高,所以运放4输出恒为1,开关管关闭。在运放1输出为负相时,则相反。这就实现了两开关管交替工作。 下面论述一下开关管是怎么工作的。当基准信号比检测信号,也即是运放3或4的负输入端的信号比正输入端的信号高一微小值时,比较器输出0,开关管开,随之检测信号迅速提高,当检测信号比基准信号高一微小值时,比较器输出1,开关管关。这里要注意的是,在电路翻转时比较器有个正反馈过程,这是迟滞比较器的特点。比如说在基准信号比检测信号低的前提下,随着它们的差值不断地靠近,在它们相等的瞬间,基准信号马上比检测信号高出一定值。这个“一定值”影响开关频率。它越大频率越低。这里选它为0.1~0.2V。 C3,C4的作用是为了让频率较高的开关续流电流通过,而对频率较低的50Hz信号产生较大的阻抗。C5由公式:50= 算出。L一般为70H,制作时最好测一下。这样C为0.15μ左右。 R4与R3的比值要严格等于0.5,大了波形失真明显,小了不能起振,但是宁可大一些,不可小。开关管的最大电流为:I==25A 。 这里较详细的讨论一下L1,L2的选值。把负载电等效回变压器的输入端,其电路为图2。R=, C=NC ,考虑到开关频率比50Hz大得多,在开关从开到关的过 程,可以把变压器的电压看成是不变的。则电源通过L输出 的能量为:W=∫Uccdt=t,忽略一切不理想损耗,此能量应等 于负载消耗能量。上式的平均功率为:P=t 我们希望在Ucc-U接近于某一小值时,电池能以较高的 开关频率并符合要求地向变压器供电。这个“某一小值”这里取0.5V,频率取5kHz。当Ucc-U<0.5V,开关管将较长时间开着(这是相对来说的)。如果需要这个电源的最大输出功率为150W,那么负载电阻为322.7?,折算到变压器输入端为:0.48?。 ∴负载此时的瞬时功率为:P=U*U/R=11.5*11.5/0.48=276W ∴P=×=276 ∴L=2.2μH 可以看出L值很小,对开关管不利,并且输出有削峰。制作时可以增加L值,但最大输出功率会减少。解决这一问题的最好方法是,用16V电源供电,还用8.5V变压器(峰值为12V),和峰值为12V的基准信号,但这时的电路需要改动,这里就不讨论了。

正弦波逆变器SPWM设计参考

正弦波逆变器SPWM设计参考 //最近在搞SPWM逆变,贡献一个小程序,FYI //用18F452调的,只有SPWM波形部分,反馈没加进来,如果需要改 幅度,该R_rate的值就好了,范围(1~195) //晶震10M+PLL锁到 40M,RC2输出SPWM波形,RC0为50HZ方波,作为半桥驱动时的交越信号。 void main() { asm(“NOP”); TRISC=0X00; //设置I/O口方向 TRISD=0X00; //设置I/O口方向 PORTC=0X00; PORTD=0X00; //=============LCD init====================== // lcd_init(); //=============timer0 init=================== T0CON=0x82; //8分频 ;0xCx is 8bit timer TMR0L=0x79; TMR0H=0XFE; GIE=0X1; //开放全 局中断 TMR0IE=1; //使能timer0 interrupt //==============PWM init===================== PR2=124; //设置PWM频率20K CCPR1L=0; //设置占空比高8位,init时为0 CCP1CON=0x0F; //CCP select PWM mode T2CON=0X05; //设置TIMER2预分频比并使能T2 //==============MAIN LOOP==================== while(1) { } } //===============中断函数============================= void interrupt ISR(void) { if((TMR0IF)(TMR0IE)) { TMR0L=0x79; TMR0H=0XFE; TMR0IF=0;//清除中断标志 update_duty();//用3.2K的定 时频率按照正弦规律改变脉宽,改64次正好为50HZ的调制正弦波 } } //下面这部分摘自另一个文件, unsigned char R_sin=0; //这个变量从0~31变 化。 unsigned char R_rate=190;//幅度 void update_duty(void) { unsigned int i=0; if(R_sin==0) RC0=!RC0; //创造交越信号 i=((float) (sin_tab[R_sin]))*R_rate/100; R_sin++; if(R_sin==32) R_sin=0;

正弦波逆变器和修正波逆变器的区别

1.1逆变器功率器件的选择 目前,国内的光伏发电系统(PhotoVoltaic Sys-tem,简称PVS)主要是以直流系统为主,但最普遍的用电负载是交流负载,这使直流供电的光伏电源很难作为商品普及推广。同时,由于太阳能光伏并网发电可以不要蓄电池,且维护简单,而节省投资是光伏发电的发展趋势。这些都必须采用交流供电方式,因此逆变器在PVS中的应用也就越来越重要了。逆变器是将直流电变换为交流电的电力变换装置,逆变技术在电力电子技术中已较为成熟。例如:UPS电源中的逆变器,变频技术中的逆变技术、特种电源中的逆变技术和功率调节器中的逆变技术等,这些都已经以产品的形式推向市场,并受到社会的广泛认可。 在小容量、低压PVS中,功率器件多使用金属-氧化物-半导体场效应管(MOSFET)。因其在低压时,具有较低的通态压降和较高的开关频率,但随MOSFET电压的升高,其通态电阻增大。因此,在大容量、高压PVS 中,一般使用绝缘栅晶体管(IGBT)作为功率器件;在100kVA以上特大容量的PVS中,一般采用门极可关断晶闸管(GTO)作为功率器件。PVS中的逆变驱动电路主要针对功率开关管的门极驱动。要得到好的PWM脉冲波形,驱动电路的设计很重要。近年来,随着微电子及集成电路技术的发展,陆续推出了许多多功能专用集成芯片,如: HIP4801,TLP520,IR2130,EXB841等,它们给应用电路的设计带来了极大的方便[1,2]。逆变电源中常用的控制电路主要是为驱动电路提供要求的逻辑和波形,如PWM,SPWM控制信号等。目前,较常用的芯片有国外生产的8XC196,MP16,PIC16C73 和国内生产的TMS320F206,TMS320F240 ,SG3525 等。 1.2 PVS 中逆变器的拓扑结构图 在使用蓄电池储能的太阳能PVS 中,蓄电池组的公称电压一般是12V,24V 或48V,因此,逆变电路一般都需进行升压来满足220V 常用交流负载的用电需求。逆变器可按升压原理的不同分为工频和高频两种逆变器,应用中它们的性能差别很大。 (1)工频逆变器 图1示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。 (2)高频逆变器 图2示出采用高频变压器升压的逆变电路。它首先通过高频DC/DC 变换技术,将低压直流电逆变为高频低压交流电;然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电;最后通过工频逆变电路得到220V工频交流电供负载使用。由于高频逆变器采用的是体积小,重量轻的高频磁芯材料,因而大大提高了电路的功率密度,从而使逆变电源的空载损耗很小,逆变效率得到提高。通常,用于中小型PVS 中的高频逆变器,其峰值转换效率能达90% 以上。 比较两种逆变器可知,高频逆变器的体积小,重量轻,效率高,空载负荷低,但不能接满负荷的感性负载,且过载能力差。 1.3 PVS 中逆变器输出波形 (1)方波逆变器 图3a 示出方波逆变器的输出电压波形。虽然方波逆变器具有结构简单,成本低等优点,但也存在效率较低,损耗多,谐波成分大,使用负载受限制等缺点。当负载为大功率电机负载或带有变压器的用电器负载时,因其负载的饱和磁通都是按正弦波的上升速率设计的,而方波的上升速度过快,因而造成其铁心饱和,负载会出现起动困难、铁心过热及发出噪声等问题。而且方波逆变器的效率远低于修正波和正弦波逆变器的效率,一般不到60% 。由于太阳能PVS的发电成本较高,因此在太阳能PVS 电系统的优点是结中,方波逆变器已经很少应用了。 (2)修正波逆变器

正弦波逆变器电路图及制作过程

正弦波逆变器电路图及制作过程 1000W正弦波逆变器制作过程详解 作者老寿电路图献上! ! 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W, 整体结构是学习了钟工的3000W机器具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC 升压电路的驱动板和S P W M的驱动板直插在功率主板上。

板 因为电流较大,所以用了三对6平方的软线直接焊在功率

上 如图: 在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个E C35的电感上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,P C B 下面直接搭通。

上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 今天把S P W M驱动板插上去了,一开机,保护电路竟然误动作,蜂鸣器嘟嘟做响,后来请教了张工后,改了几个元件的数值,问题就解决了。开机成功了(这次居然没有炸管子),正弦波波形良好,我用了二个200W一个150W的灯泡做负载,电参仪上显示输出功率为617W, 算了一下,这时的效率大约在91.5-92%左右(因为空载电流稍大,有点影响效率,可惜) 本来准备明天继续加大负载到1000W左右,可是发现了一个问题,稳压部分不工作,调电位器没有反应,一查,发现是那个漂亮的取样变压器竟然没有输出,郁闷啊, 因为要换变压器,就必须把整机全部拆下来,二个小时还不一定弄得好,烦啊! 下面是几张照片: 上图是整机工作时的情形

600W正弦波逆变器制作详解.

600W正弦波逆变器制作详解 ---献给象我一样的逆变器初学者 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信息,提这样那样的问题,很多都是象我这样的初学者。为此,我又花了近一个月的时间,制作了这台600W的正弦波逆变器,该机有如下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我老寿包你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB 板。分别是“功率主板”;“SPWM 驱动板”;“DC -DC 驱动板”;

“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。 该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。 H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到钟工的提示帮助,特在此表示感谢。 2. SPWM驱动板 和我的1KW机器一样,SPWM的核心部分采用了张工的TDS2285单片机芯片。关于该芯片的详细介绍,可以看我以前的贴子:https://www.360docs.net/doc/f32607918.html,/topic/563779,这里不详说了。U3,U4组成时序和死区电路,末级输出用了4 个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源。 因为BT电压会在10-15V之间变化,为了可靠驱动H桥,光藕250的图腾输出级工作电压一定要在12-15之间,

纯正弦波逆变器 规格书

3000W 纯 正 弦 波DC-AC 逆 变 器 ■ 特性: ● 纯正弦波输出(THD <3%) ● 瞬间功率高达6000W ● 效率高达90% ● 保护各类:电池高低压保护/输出短路保护/过负载保护/ 过温度保护/输入反接保护/电池低压警报 ● 应用:家电,电动工具,办公和便携式设备,车辆和游艇等。 ● 1年保修 电气规格 型号 BEP3000S 输出 额定功率(Typ.) 3000W 3000W 交流电压 220V 220V 频率 50HZ±0.5HZ 50HZ±0.5HZ 波形 额定电压下, 纯正弦波(THD<3%) 额定电压下, 纯正弦波(THD<3%) 输入 电池电压 12V 24V 电压范围(Typ.) 10V-15V 20V-30V 直流电流(Typ.) 276A 138A 空载损耗 ≤3.8A ≤2A 关机模式电流 ≤10mA ≤10mA 效率(Typ.) ≥90% ≥90% 电池类型 铅酸电池 铅酸电池 电池 输入 保护 保险片 40A*8 20A*8 电池低压警报 10.5V±0.5V 20V±1V 电池低压保护 9.5V±0.5V 19V±1V 电池高压保护 15.5V±0.5V 30V±1V 电池反接保护 通过内部保险片 通过内部保险片 输出 保护 过温度 75℃±5℃ 75℃±5℃ 亮红色指示灯,有报警声,无输出 亮红色指示灯,有报警声,无输出 输出短路 亮红色指示灯,取消短路后自动恢复正常 亮红色指示灯,取消短路后自动恢复正常 过负载(Typ.) ≥ 3000W ≥3000W 亮红色指示灯,自锁, 降低负载重启恢复正常输出 亮红色指示灯,自锁, 降低负载重启恢复正常输出 USB 输出电压 5V 输出电流 500mA 环境 工作温度 0-40℃@100%负载 工作湿度 20-90%RH ,无冷藏 储存温度、湿度 -30℃-+70℃,10-95%RH 其它 重量 净重:6.02Kg 毛重:7.41Kg 尺寸 529**180*142 mm(L*W*H) 包装 558*246*209 mm(L*W*H) 备注 如未特别说明,所有规格参数25℃环境温度下进行量测。

正弦波逆变电源的设计

正弦波逆变电源的设计 摘要 此正弦波逆变电源的设计,用10-14.5V的直流电作为输入电压,输出电压为36V,频率为50HZ,额定满载输出功率为50W的正弦波交流电。该正弦波逆变电源以TMS320芯片为控制核心,由Boost升压电路和全桥逆变电路构成系统主电路,逆变部分采用SPWM调节方式,利用闭环反馈调节控制输出电压。在控制电路上,以TMS320控制驱动电路,驱动DC/DC变换电路以及DC/AC 变换电路,TMS320还控制SPWM的计算和实时电压、电流采样运算;在保护上,电路具有欠压、过压、过流保护、输出短路自恢复和频率可调,以及输出电压可调等功能。其系统效率高,性能稳定,该电源很好的完成了各项指标,输出功率达到49.6HZ,THD为1.6%,逆变效率达到93%,欠压保护点8.9V,过压保护点16.2V;当欠压时,输出关闭。 关键词:正弦波; SPWM;升压;逆变器

Research on the single-phase sine wave inverter power Abstract This design of sine wave inverter, with 10 to 14.5V DC as the input voltage .The sine wave AC output voltage is 36V,the frequency is 50HZ, and its rated full load output power is 50W. The sine wave inverter is using TMS320 chip as the control core. Its system main circuit is consist of the Boost circuit and full-bridge inverter circuit,The inverter part adopts SPWM adjustment method, and use closed-loop feedback to control the output voltage .At the control circuit, with TMS320 to control drive circuit, driving DC / DC converter circuit and DC / AC converter circuit, TMS320 also controls SPWM computing and real-time voltage and current sampling operation. In the protection, the circuit has undervoltage, overvoltage, over-current protection, output short circuit self-recovery and frequency is adjustable, and the output voltage is adjustable functions. Its system has high efficiency and stable performance. the power finishes every indicators very well, the output power reaches 49.6HZ, THD reaches 1.6%, inverter efficiency reaches 93%, the undervoltage protection point reaches 8.9V, overvoltage point reaches 16.2V; when it is overvoltage, the output is off. Keywords:sine wave;SPWM;boost;inverter

相关文档
最新文档