离心力作用下直孔实体保持架极限转速的计算

离心力作用下直孔实体保持架极限转速的计算
离心力作用下直孔实体保持架极限转速的计算

离心力和转速之间的简单换算

离心力和离心转速的换算是经常用到的,具体的计算公式如下: RCF = 1.118 ×10-5×N2×R RCF表示相对离心力,单位为g N表示转速,单位为rpm转/分 R表示离心半径,单位为cm。 离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F)的大小取决于离心转头的角速度(ˉ,r/min)和物质颗粒距离心轴的距离(r,cm)。它们的关系是:F=ˉ2R 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g(约等于9.8m/s2)得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60000r/min时,离心力是240000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值)也大一倍。转速(r/min)和离心力(g值)之间的关系可用下式换算: 其换算公式如下:Mt\lS_x~RV G=1.11*10(-5)*R*(rpm)2 G为离心力,一般以g(重力加速度)的倍数来表示。 10(-5)即:10的负五次方。 (rpm)2即:转速的平方。 R为半径,单位为厘米。 例如,离心半径为10厘米,转速为8000, 其离心力为: G=1.11*10(-5)*10*(8000)2=7104 即离心力为7104g.而当离心力为8000g时,其转速应为:8489即约为8500rpm. 值得注意的是,这里跟半径是相关的。也就是说,不同的离心机其换算关系是不一样的。 普通离心机可以用计算器算一下,很准。而低温离心机则不须如此费事。上面有按钮可以在rpm与g之间切换,非常方便。 以前的文章,尤其是国内的文章通常以rpm来表示。现在多倾向于以g来表示。 转速有离心力(×g)和每分钟转速(rpm)两种表示方式,有些离心机没有自动切换功能。下面的公式可以帮助解决这个问题: g=r×11.18×10-6×rpm2(式中r为有效离心半径,即从离心机轴心到离心管桶底的长度) 如:转速为3000rpm,有效离心半径为10cm,则离心力为=10×11.18×10-6×30002=1006.2(×g)。

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

超高计算公式

路线平曲线小于600m 时,在曲线上设置超高。超高方式为,整体式路基采用绕路基中线旋转。 超高设计和计算 3.6.1确定路拱及路肩横坡度: 为了利于路面横向排水,应在路面横向设置路拱。按工程技术标准,采用折线形路拱,路拱横坡度为2%。由于土路肩的排水性远低于路面,其横坡度一般应比路面大1%~2%,故土路肩横坡度取3%。 3.6.2超高横坡度的确定: 为抵消车辆在曲线路段上行驶时所产生的离心力,当平曲线半径小于不设高的最小半径值时,应在路面上设置超高,而当平曲线半径大于不设超高时的最小半径时,即可不设超高。拟建公路为山岭重丘区三级公路,设计行车速度为40km/小时。按各平曲线所采用的半径不同,对应的超高值如表: 表3-1 圆曲线半径与超高 当按平曲线半径查表5-11所得超高值小于路拱横坡度值(2%)时,取2%。 (3)、缓和段长度计算: 超高缓和段长度按下式计算: P B L c i '?= 式中:c L ——超高缓和段长度(m); 'B ——旋转轴至行车道外侧边缘的(m); i ?——旋转轴外侧的超高与路拱横坡度的代数差; P ——超高渐变率,根据设计行车速度40km/小时,若超高旋转轴为路线中时,取1/150,若为边线则取1/100。 根据上式计算所得的超高缓和段长度应取成5m 的整数倍,并不小于

10m 的长度。拟建公路为无中间带的三级公路,则上式中各参数的取值如下: 绕行车道中心旋转:z y i i B B +=?= i ' , 2 绕边线旋转:y i B B =?=i ' , 式中:B ——行车道宽度(m); y i ——超高横坡度; z i ——路拱横坡度。 (4)、超高缓和段的确定: 超高缓和段长主要从两个方面来考虑:一是从行车舒适性来考虑,缓和段长度越长越好;二是从排水来考虑,缓和段越短越好,特别是路线纵坡度较小时,更应注意排水的要求。 3.6.3确定缓和段长度时应考虑以下几点: (1)、一般情况下,取缓和段长度和缓和曲线长相等,即s c L L =,使超高过渡在缓和曲线全长范围内进行。 (2)、若c s L L >,但只要横坡度从路拱坡度(-2%)过渡到超高横坡度(2%)时,超高渐变率330/1≥P ,仍取s c L L =。否则按下面两个方法处理: ①、在缓和曲线部分范围内超高。根据不设超高圆曲线半径和超高缓和段长度计算公式分别计算出超高缓和段长度,然后取两者中较大值,作为超高过渡段长度,并验算横坡从路拱坡度(-2%)过渡到超高横坡度(2%)时,超高渐变率是否大于1/330,如果不满足,则需采取分段超高的方法。 ②、分段超高。超高在缓和曲线全长范围内按两种超高渐变率分段进 行,第一段从双向路拱坡度z i 过渡到单向超高横坡z i 时的长度为 z c i B L '1660=,第二段的长度为12c s c L L L -=。 (3)、若s c L L >,则此时应修改平面线形,增加缓和曲线的长度。若平面线形无法修改时,宜按实际计算的长度取值,超高起点应从ZH (或HZ )点后退s c L L -长度。 3.6.4超高值计算公式:

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

风机常用计算公式讲解

风机常识-风机知识: 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间;

压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000P a 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力: 离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。 流量: 单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h (秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速: 风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。

风机常用计算公式

风机常用计算公式 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法

型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。 流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切 影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 常用风机用途代号

离心机转速与离心力的换算

离心机转速与离心力的换算:(离心机分离因素计算公式) 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。 2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω2r/mg= ω2r/g= (2*π*r/r*rpm)2*r/g注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数: 1、沉降系数(sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r 或者F=V.D.ω2r (1) 上述表明:被离心物质所受到的离心力与该物质的质量、体积、密度、离心角速度以及旋转半径呈正比关系。离心力越大,被离心物质沉降得越快。

标准公差值及孔和轴的极限偏差值

.2.标准公差值及孔和轴的极限偏差值标准公差值(基本尺寸大于6至500mm) 基本尺寸 mm 公差等级 IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12 >6~10 >10~18 >18~30 >30~50 >50~80 >80~ 120 >120~ 180 >180~ 250 >250~ 315 >315~ 400 >400~ 500 6 8 9 11 13 15 18 20 23 25 27 9 11 13 16 19 22 25 29 32 36 40 15 18 21 25 30 35 40 46 52 57 63 22 27 33 39 46 54 63 72 81 89 97 36 43 52 62 74 87 100 115 130 140 155 58 70 84 100 120 140 160 185 210 230 250 90 110 130 160 190 220 250 290 320 360 400 150 180 210 250 300 350 400 460 520 570 630 孔的极限差值(基本尺寸由大于10至315mm)μm 公差带等 级 基本尺寸mm >0~18 >18~ 30 >30~ 50 >50~ 80 >80~ 120 >120~ 180 >180~ 250 >250~ 315 D 8 +77 +50 +98 +65 +119 +80 +146 +100 +174 +120 +208 +145 +242 +170 +271 +190 ▼9 +93 +50 +117 +65 +142 +80 +174 +100 +207 +120 +245 +145 +285 +170 +320 +190 10 +120 +50 +149 +65 +180 +80 +220 +100 +260 +120 +305 +145 +355 +170 +400 +190 11 +160 +50 +195 +65 +240 +80 +290 +100 +340 +120 +395 +145 +460 +170 +510 +190 E 6 +43 +32 +53 +40 +66 +50 +79 +60 +94 +72 +110 +85 +129 +100 +142 +110 7 +50 +32 +61 +40 +75 +50 +90 +60 +107 +72 +125 +85 +146 +100 +162 +110 8 +59 +32 +73 +40 +89 +50 +106 +60 +126 +72 +148 +85 +172 +100 +191 +110 9 +75 +32 +92 +40 +112 +50 +134 +60 +159 +72 +185 +85 +215 +100 +240 +110

离心机转速换算公式(rpm与g)

离心机转速换算公式(rpm与g)

离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2) 同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或

r/min)表示:一般情况下,低速离心时常以r /min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm)?2*r/g = (2*π* rpm)?2*r/g =(2*π)?2/g * rpm^2* r 注:rpm应折换成转/秒,r转换成m =(2*π/60)?2/g * rpm^2* r/100=1.119 x 10-5 x (rpm)^2 x r 换算后,rpm为r/min,r为cm 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 在有关离心机的实验中,RCF(relative centrifugal field)表示相对离心场,以重力加速度g(980.66cm/s2)的倍数来表示; rpm(revolution per minute,或r/min)表示离心机每分钟的转数。rmp与g之间的换算公式

公差与配合标准表 孔轴公差 表面粗糙度 制图一标示

公差与配合(摘自GB1800~1804-79)免费 1 .基本偏差系列及配合种类 .2.标准公差值及孔和轴的极限偏差值 标准公差值(基本尺寸大于6至500mm) 基本尺寸mm 公 差 等 级 IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12

>6~10 >10~18 >18~30 >30~50 >50~80 >80~120 >120~180 >180~250 >250~315 >315~400 >400~500 6 8 9 11 13 15 18 20 23 25 27 9 11 13 16 19 22 25 29 32 36 40 15 18 21 25 30 35 40 46 52 57 63 22 27 33 39 46 54 63 72 81 89 97 36 43 52 62 74 87 100 115 130 140 155 58 70 84 100 120 140 160 185 210 230 250 90 110 130 160 190 220 250 290 320 360 400 150 180 210 250 300 350 400 460 520 570 630 孔的极限差值(基本尺寸由大于10至315mm)μm 公差带等 级 基本尺寸m m >0~18>18~30 >30~50 >50~80 >80~120>120~180 >180~250>250~315 D 8 +77 +50 +98 +65 +119 +80 +146 +100 +174 +120 +208 +145 +242 +170 +271 +190 ▼9 +93 +50 +117 +65 +142 +80 +174 +100 +207 +120 +245 +145 +285 +170 +320 +190 10 +120 +50 +149 +65 +180 +80 +220 +100 +260 +120 +305 +145 +355 +170 +400 +190 11 +160 +50 +195 +65 +240 +80 +290 +100 +340 +120 +395 +145 +460 +170 +510 +190 E 6 +43 +32 +53 +40 +66 +50 +79 +60 +94 +72 +110 +85 +129 +100 +142 +110 7 +50 +32 +61 +40 +75 +50 +90 +60 +107 +72 +125 +85 +146 +100 +162 +110

孔和轴的配合、形位公差复习要点

第一章——孔与轴的极限与配合 互换性:同一规格的一批零件或部件中,任取其一,不许任何挑选或附加修配就能装在机器上,达到规定的功能要求 零部件的互换性,按其互换程度,可分为完全互换和不完全互换 公称尺寸(基本尺寸):是计算极限尺寸和极限偏差的起始尺寸极限尺寸:尺寸要素允许尺寸变化的两个极限值。包括上极限和下极限尺寸 尺寸偏差(简称偏差):某一尺寸(实际尺寸、极限尺寸)与公称尺寸的代数差 实际偏差和极限偏差、基本偏差 尺寸公差(简称公差):允许尺寸的变动量,他是上极限尺寸与下极限尺寸之差,或者是上极限偏差与下极限偏差之差,是一个无符号的绝对值 公差带:由公差大小和基本偏差来决定 标准公差:在“极限与配合”国标中,用以确定公差带大小的任一公差,称为标准公差,用代号“IT”表示。 基本偏差:靠近零线的那个偏差 配合:公称尺寸相同的相互结合的孔和轴公差带之间的关系 配合公差(Tf):等于配合的孔公差与轴公差之和 由标注即可得知孔和轴的公称尺寸、上极限与下极限尺寸、上极限与下极限偏差、孔公差与轴公差、配合公差、最大间隙(过盈)与最小间隙(过盈),当然,画出公差带图之后,跟更为显而易见了

标准公差因子:计算标注公差的基本单位,是制定标准公差系列值的基础 国标将标准公差等级分为20级,用符号“IT”和阿拉伯数字组成的代号表示,即IT(01,0,1,2……18)从01到18,公差等级依次降低,相应的标准公差数值则依次增大 注意:理论上同等精度的孔和轴具有相同的加工难易程度 基本偏差是国家标准公差带位置标准化的重要指标 孔和轴各有28个基本偏差 孔的基本偏差中:A-H为下极限偏差,J-ZC为上极限偏差(J、K除外) 轴的正好相反 a-h 用于间隙配合 j-n 用于过渡配合 p-zc用于过盈配合 公差带代号:H8,f7 配合代号:H7/f6 p30表1-14与1-15可知: 基孔制时,当轴的标准公差小于或等于IT7级时,孔比轴低一级;大于或等于IT8级时,孔与轴同级配合 基轴制时,当孔的标准公差小于IT8级或少数等于IT8级时,孔比轴低一级,其余都是孔与轴同级 在设计工作中,公差与配合的选用主要包括:确定基准制、公差等级

风机常用计算公式 工作必备知识汇总

风机常用计算公式工作必备知识汇总! 风机常识-风机知识 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 1、风机分类及用途 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。

按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在圆柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa

高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 2、一般通风机全称表示方法 型式和品种组成表示方法 压力: 离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。 流量: 单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是:m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速: 风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。 功率: 驱动风机所需要的功率。常以N来表示、其单位用Kw。

离心力和转速之间的简单换算(精)

离心力和离心转速的换算是经常用到的,具体的计算公式如下: RCF = 1.118 ×10-5×N2×R RCF表示相对离心力,单位为g N表示转速,单位为rpm转/分 R表示离心半径,单位为cm。 离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。离心力(F的大小取决于离心转头的角速度(ˉ,r/min和物质颗粒距离心轴的距离(r,cm。它们的关系是:F=ˉ2R 为方便起见,F常用相对离心力也就是地心引力的倍数表示。即把F值除以重力加速度g(约等于9.8m/s2得到离心力是重力的多少倍,称作多少个g。例如离心机转头平均半径是6cm,当转速是60000r/min时,离心力是240000×g,表示此时作用在被离心物质上的离心力是日常地心引力的24万倍。 因此,转速r/min和离心力g值之间并不是成正比关系,还和半径有关。同样的转速,半径大一倍,离心力(g值也大一倍。转速(r/min和离心力(g值之间的关系可用下式换算: 其换算公式如下:Mt\lS_x~RV G=1.11*10(-5*R*(rpm2 G为离心力,一般以g(重力加速度的倍数来表示。 10(-5即:10的负五次方。 (rpm2即:转速的平方。 R为半径,单位为厘米。

例如,离心半径为10厘米,转速为8000, 其离心力为: G=1.11*10(-5*10*(80002=7104 即离心力为7104g.而当离心力为8000g时,其转速应为:8489即约为8500r pm. 值得注意的是,这里跟半径是相关的。也就是说,不同的离心机其换算关系是不一样的。 普通离心机可以用计算器算一下,很准。而低温离心机则不须如此费事。上面有按钮可以在rpm与g之间切换,非常方便。 以前的文章,尤其是国内的文章通常以rpm来表示。现在多倾向于以g来表示。 转速有离心力(×g和每分钟转速(rpm两种表示方式,有些离心机没有自动切换功能。下面的公式可以帮助解决这个问题: g=r×11.18×10-6×rpm2(式中r为有效离心半径,即从离心机轴心到离心管桶底的长度 如:转速为3000r pm,有效离心半径为10cm,则离心力为=10×11.18×10- 6×30002=1006.2(×g。

计算公式

齿轮各部分名称及有关尺寸 标准渐开线直齿圆柱齿轮几何尺寸的计算 名称 符号 计算公式 基本 参数 模数 m 根据强度使用条件,查表选取标准值。(解释:为了方便齿轮 的加工和几何尺寸计算,人为规定了齿距与π的比值要等于标准数值,称这个标准值为模数,它直接影响齿轮齿形的大小。) 齿数 z 根据强度等使用条件选定 分度圆压力角 a a=20o 几何尺寸 齿顶高 h a h a=m 工作高度 h ' h '=2h a =2m 全齿高 h h=h '+c=2.25m 顶隙 c c=0.25m 分度圆直径 d d=mz 齿顶圆直径 d a d a =d+2h a =m(z+2) 齿根圆直径 d f d f =d-2( h '-h a +c) = m(z-2.5) 基圆直径 d b d b =mz cosa 分度圆齿距 p p=πm 分度圆齿厚 s s=πm/2 分度圆齿槽宽 e e=πm/2 啮合计算 中心距 a a=(d 1+d 2)/2=m(z 1+z 2)/2 其中(d 1+d 2)为两齿轮分度圆直径之和,(z 1+z 2)为两齿轮齿数之和。

其它相关计算公式 名称符 号 计算公式备注 齿轮传动比i i=n1/n2=z2/z1n1、n2 分别表示主、被动轮转速;z1、z2分别表示主、被动轮齿数。 蜗杆蜗轮传动比i i=n1/n2=z/k n1、n2 分别表示蜗杆、蜗轮轮转速;k、z 分别表示蜗杆头数、蜗轮齿数。 带传动比i i=n1/n2 =d2/d1(1-ε) n1、n2 分别表示主、从动轮转速;d1、d2分别表 示主、从动轮直径。ε为滑动率,一般ε=1%--2%, 在无需精确计算从动轮转速的机械中,可不 计ε的影响。 带速v v=πDn/60*1000D、n分别表示皮带滚筒直径、转速;注意:V单位为米/秒,D单位为毫米,n单位为转/分钟。 钻削速度v v=πDn/1000D、n分别表示钻头直径、转速;注意:V单位为米/分,D单位为毫米,n单位为转/分钟。 链传动比i i=n1/n2=z2/z1n1、n2 分别表示主、被动链轮转速;z1、z2分别表示主、被动链轮齿数。 套丝圆杆直径d o d o =d-0.13p d表示螺纹直径;p表示螺距。攻丝底孔直径 D D=d-1.1 p d表示螺纹直径;p表示螺距。 装配加热温度T T=(2~3)I/k*d+t I为过盈量;K为膨胀系数;d为加工件直径;t为现场环境温度。 管道安装补偿量△l△l=aL(t2-t1)△l为热膨胀量(mm),a为钢管的膨胀系数,L为管道安装长度(m),t2为工作温度,t1为安装温度。 碳钢板理重m m =长*宽*厚*7.85 单位为米,重量为千克不锈钢板理重m m =长*宽*厚*7.91 单位为米,重量为千克 碳钢管每米理论 重量m m=(外径-壁厚)*壁 厚*0.02466 单位为毫米,重量为千克 不锈钢管每米理 论重量m m=(外径-壁厚)*壁 厚*0.02491 单位为毫米,重量为千克 斜度M M=(H-h)/L H为斜面最高尺寸;h为斜面最低尺寸;L为斜面长度尺寸。 锥度K K=(D-d)/L D为圆锥体大端直径;d为圆锥体小端直径;L为圆锥体长度尺寸。 分度头每等份手柄摇动转数n n=40/z Z为分度头在工件上的等分数。 气瓶内气体量V V=10VoP Vo为气瓶容积(L),P为气瓶表压力(MPa)。 旋转件不平衡质量产生的离心力F F=mr(πn/30)2 F为离心力(N);m为不平衡质量(kg);r为不平 衡质量与旋转中心的距离(m);n为转速(r/min)。 减速机扭矩减速机扭矩=9550×电机功率÷电机输入转速×速比×使用系数电机功率电机功率=扭矩÷9550×电机输入转速÷速比÷使用系数

螺旋桨计算公式

) 直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量这个问题就是直升机的飞行原理: (以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在~之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式

离心机转速与离心力的换算

离心机转速与离心力的换算 (离心机分离因素计算公式) 1、分离因素的含义: 在同一萃取体系内两种溶质在同样条件下分配系数的比值。分离因素愈大(或愈小),说明两种溶质分离效果愈好,分离因素等于1,这两种溶质就分不开了。离心机上的分离因素则指的是相对离心力。 2、影响分离因素的主要因素: 离心力Centrifugal force (F) 离心力作为真实的力根本就不存在,在非惯性系中为计算方便假想的一个力。请看下面的说明:向心力使物体受到指向一个中心点的吸引、或推斥或任何倾向于该点的作用。笛卡儿把离心力解释为物体保持其“限定量”的一种趋势。它们的区别就是,向心力是惯性参考系下的,而离心力是非惯性系中的力。我们处理物理题时都是在惯性系下(此时牛顿定律才成立),所以一般不用离心力这个概念。由于根本不是一个情况下的概念,我们无法对他们的方向和大小进行比较。 F=mω2r ω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm) m:颗粒质量 相对离心力Relative centrifugal force (RCF) RCF 就是实际离心力转化为重力加速度的倍数 g为重力加速度(9.80665m/s2)

同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n或r/min)表示:一般情况下,低速离心时常以r/min来表示。 3、分离因素计算公式: RCF=F离心力/F重力= mω?2r/mg= ω?2r/g= (2*π*r/r*rpm) ?2*r/g 注:rpm应折换成转/秒 例如:直径1000mm,转速1000转/分的离心机,分离因素为: RCF(1000)=(2*3.1415*16.667)^2*0.5/9.8 =104.72^2*0.5/9.8 =560 沉降离心机沉降系数: 1、沉降系数(sedimentation coefficient,s)根据1924年Svedberg(离心法创始人--瑞典蛋白质化学家)对沉降系数下的定义:颗粒在单位离心力场中粒子移动的速度。沉降系数是以时间表示的。用离心法时,大分子沉降速度的量度,等于每单位离心场的速度。或s=v/ω2r。s是沉降系数,ω是离心转子的角速度(弧度/秒),r是到旋转中心的距离,v是沉降速度。沉降系数以每单位重力的沉降时间表示,并且通常为1~200×10^-13秒范围,10^-13这个因子叫做沉降单位S,即1S=10^-13秒. 2、基本原理 物体围绕中心轴旋转时会受到离心力F的作用。当物体的质量为M、体积为V、密度为D、旋转半径为r、角速度为ω(弧度数/秒)时,可得: F=Mω2r 或者F=V.D.ω2r (1)

真空计算公式

真空计算公式 1、玻义尔定律 体积V,压强P,P·V=常数 一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比: V1/V2=T1/T2=常数 当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其绝对温度T成正比,即: P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=d v/d t (升/秒)或S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气 时间计算式:t=8V/S (经验公式) V为体积,S为抽气速率,通常t在5~10分钟内选择。8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(P a/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 P a-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有:

离心机离心力的计算

离心机离心力的计算 通常离心力常用地球引力的倍数来表示,因而称为相对离心力“ RCF ”。或者用数字乘“g” 来表示,例如25000×g,则表示相对离心力为25000。相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g”(980cm/sec2), 此时“RCF”相对离心力可用下式计算: RCF = 1.119×10-5×(rpm)2 r ( rpm — revolutions per minute每分钟转数,r/min ) 由上式可见,只要给出旋转半径r,则RCF和rpm之间可以相互换算。但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“ra v”代替:ra v=( r min+rmax) / 2 一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g” 表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。因此在报告超离心条件时,通常总是用地心引力的倍数“×g”代替每分钟转数“rpm”,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。科技文献中离心力的数据通常是指其平均值(RCFa v),即离心管中点的离心力。 为便于进行转速和相对离心力之间的换算,Dole 和Cotzias 利用RCF的计算公式,制作了转速“rpm”、相对离心力“RCF”和旋转半径“r”三者关系的列线图,图式法比公式计算法方便。换算时,先在r标尺上取已知的半径和在rpm标尺上取已知的离心机转数,然后将这两点间划一条直线,与图中RCF标尺上的交叉点即为相应的相对离心力数值。注意,若已知的转数值处于rpm标尺的右边,则应读取RCF标尺右边的数值,转数值处于rpm标尺左边,则应读取RCF 标尺左边的数值。 基本原理: 1.重力场中的沉降 2.相对离心力:离心力长相对离心力用Relative centrifugal force ,RCF来表示,它的大小一般用相当于地心引力(重力加速度g)的倍数来表示, 3.沉降速度:沉降速度是指离心力的作用下单位时间内物质颗粒沿半径方向运动的距离。

相关文档
最新文档