力系的简化与平衡

力系的简化与平衡
力系的简化与平衡

第六章 力系的简化与平衡

一、目的要求

1.平面汇交力系(多个力)简化与平衡的几何法和解析法,并能应用平衡条件求解平面汇交力系的平衡问题。

2.力偶系的简化与平衡。

3、了解空间力系向一点简化的方法,明确空间力系合成的四种结果。

4.深入理解平面力系的平衡条件及平衡方程的三种形式。

5.能熟练地计算在平面任意力系作用下单个刚体和物体系统平衡问题。

6.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。

7、会应用各种形式的空间力系平衡方程求解简单空间平衡问题。

8、对平行力系中心和重心应有清晰的概念,能熟练地应用坐标公式求物体的重心。

9. 牢固掌握滑动摩擦的性质,深刻理解库仑摩擦定律的内涵,熟练求解考虑滑动摩擦时的平衡问题(解析法、几何法)。了解全反力、摩擦角、自锁等概念,了解滚动摩擦现象。

二、基本内容

1.平面汇交力系的简化

平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。即

∑==+++=n

i i 11F F F F F n 2R

合力R F 的大小和方向可用力三角形法则或力多边形法则得到。作出图示首尾相接的开口的力多边形abcde ,封闭边矢量ae 即所求的合力。通过力多边形

求合力的方法称为几何法。

平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

其矢量表达式为 ∑==0F F R

力系平衡的几何条件是:力系的力多边形自行封闭。

合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。 平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。即

00x y F

F

?=??=??∑∑ 两个独立的平衡方程,可解两个未知量。

2.力偶系的简化与平衡条件 (1)力偶系的简化

力偶系可简化为一合力偶,合力偶矩等于各分力偶矩的代数和,即

i M M ∑=

力偶系平衡的必要和充分条件是:力偶系中各力偶矩的和等于零,即 ∑=0M 或∑∑∑===000z y x M M M

3. 空间力系的简化与合成的最终结果

1)空间力系向已知点O 简化

力的平移定理:可以把作用在刚体上点A 的力F 平行移到任一点B ,但必须同时附加一个力偶,这个附加力偶矩等于原来的力F 对新作用点B 的矩。

空间力系向已知点O 简化的一般结果为一个作用在O 点的力和一个力偶,该力矢量等于此力系的主矢。该力偶的力偶矩矢量等于力系对简化中心O 的主矩。主矢与简化中心的选取无关。一般情况下,主矩与简化中心的选取有关。

2)空间力系合成的最终结果

空间力系的最终合成结果有四种可能:一个合力、一个合力偶、一个力螺旋和平衡,这四种结果可由力系的主矢和力系对任意一点的主矩来判断。具体归纳如下:

4.空间力系的平衡条件和平衡方程

空间力系平衡的充分与必要条件为:该力系的主矢和对任意点的主矩同时为零。其基本形式的平衡方程为:

ΣX=0 ΣM x(F)=0

ΣY=0 ΣM y(F)=0

ΣZ=0 ΣM z(F)=0

须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。使计算更为简便。

几种特殊力系的平衡方程

(a)空间汇交力系

ΣX=0 ΣY=0 ΣZ=0

(b)空间力偶系

ΣM x(F)=0 ΣM y(F)=0 ΣM z(F)=0

(c)空间平行力系(若各力//z轴)

ΣZ=0 ΣM x(F)=0 ΣM y(F)=0

5.平面力系的平衡条件和平衡方程

平面力系平衡的充分必要条件是该力系的主矢和对作用面内任意一点的主矩同时为零。其解析表达式有三种形式,称为平衡方程。

1)基本形式

?????=∑=∑=∑0)(0

00F M Y X

2)二矩式 ?????=∑=∑=∑0)(0

)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴

3)三矩式

?????=∑=∑=∑0)(0

)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线

特殊力系的平衡方程

1)共线力系:0=∑i F

2)平面汇交力系:???=∑=∑00Y X

4)平面平行力系: )//( 0)(0轴y M Y i o F F ???=∑=∑

6.平面力系平衡方程的应用

应用平衡方程式求解平衡问题的方法称为解析法。它是求解平衡问题的主要方法。这种解题方法包含以下步骤:

①根据求解的问题,恰当的选取研究对象:所谓研究对象,是指为了解决问题而选择的分析主体。选取研究对象的原则是,要使所取物体上既包含已知条件,又包含待求的未知量。

②对选取的研究对象进行受力分析,正确地画出受力图:在正确画出研究对象受力图的基础上,应注意适当地运用简单力系的平衡条件如二力平衡、三力平衡汇交定理、力偶等效定理等确定未知反力的方位,以简化求解过程。

③建立平衡方程式,求解未知量:为顺利地建立平衡方程式求解未知量,应注意如下几点:

(a)根据所研究的力系选择平衡方程式的类别(如汇交力系、平行力系、任意力系等)和形式(如基本式、二矩式、三矩式等等)。

(b)建立投影方程时,投影轴的选取原则上是任意的,并非一定取水平或铅垂方向,应根据具体问题从解题方便入手去考虑。

c)建立力矩方程时,矩心的选取也应从解题方便的角度加以考虑。

d)求解未知量。由于所列平衡方程一般是一组线性方程组,这说明一个静力学题经过上述力学分析后将归结于一个线性方程组的求解问题。从理论上讲,只要所建立的平衡方程组具有完整的定解条件(独立方程个数和未知量个数相等),则求解并不困难,若要解的方程组相互联立,则计算(指手算)耗时费力。为免去这种麻烦,就要求在列平衡方程式时要运用一些技巧,尽可能做到每个方程只含有一个(或较少)的未知量,以便手算求解。

7.平面简单桁架内力的计算

1)桁架:是由若干直杆在端点用铰连接而成的几何形状不变的结构。若所有杆件都在同一平面内称其为平面桁架。

2)在工程中的桁架满足四点假设。称其为理想桁架,这样桁架的各杆都可以称为两端受力作用的二力杆件。

3)桁架的坚固性条件和静定条件:2n=m+3

4)求平面静定桁架各杆内力的两种方法。

①节点法:逐个考虑桁架中所有节点的平衡,应用平面汇交力系的平衡方程求出各杆的内力。

②截面法:截断待求内力的杆件,将桁架截断为两部分,取其中的一部分为研究对象,应用平面任意力系的平衡方程求出被截断各杆件的内力。

8.平行力系中心及物体的重心

1)平行力系中心

只要平行力系中各力的大小及作用点的位置确定,无论平衡力系中力的方向如何,其合力作用线必定通过确定的一点,该点称为平行力系中心。其坐标公式为

i i

i c i i i c i i i c F z F z F y F y F x F x ∑∑=∑∑=∑∑= , ,

2)物体的重心

物体的重心是该重力的合力始终通过的一点。均质物体的重心与中心重合。物体的重心在物体内占有确定的位置,与物体在空间的位置无关。物体重心的坐标公式为

i i i c i i i c i i i c P z P z P y P y P x P x ∑∑=∑∑=∑∑=

, ,

9.摩擦 1)摩擦现象:按照接触物体之间可能会相对滑动或相对滚动,可分为滑动

摩擦和滚动摩擦。

2)库仑摩擦定律:

①滑动摩擦力是在两个物体相互接触的表面之间有相对滑动趋势或有相对滑动时出现的切向阻力。前者称为静滑动摩擦力,后者称为动滑动摩擦力。

②静摩擦力的方向与接触面间相对滑动趋势的方向相反,它的大小随主动力改变,应根据平衡方程确定。静摩擦力F s 变化的范围在零与最大值F max 之间,即

0≤F s ≤F max

当物体处于平衡的临界状态时,静摩擦力达到最大值F max ,其大小由库仑静摩擦定律决定,即

F max =f s F N

f s 称为静滑动摩擦因数,与接触面的性质有关,用实验方法测定。

当物体发生滑动时的摩擦力称为动滑动摩擦力,其方向与相对运动方向相反,大小为

F d =fF N

其中f 称为动滑摩擦因数,一般有f

③摩擦角与自锁现象

摩擦角?为全约束反力与法线间夹角的最大值,且有

tan ?=f s

当作用于物体的主动力的合力的作用线与支承面的法线所夹的锐角α小于摩

擦角?时,无论这个力有多大,物体总能保持平衡状态的现象。称为自锁。即自锁现象发生时总有

0≤α≤? 其中:N s F F =

αtan

④滚动摩阻力偶与滚动摩阻系数

两个相互接触的物体有相对滚动或滚动趋势时,支承面给物体的作用中除了可能存在的摩擦力F 之外,还有一个阻碍滚动的力偶M 作用于物体,该力偶称为滚动摩阻力偶。其方向与相对滚动趋势相反,大小由平衡条件决定,并且有

0≤M ≤M max

其中M max =δ F N 为滚动摩阻力偶的最大值,δ 称为滚动摩阻系数,具有长度量纲。

三、重点和难点

重点:1. 平面任意力系平衡的解析条件及平衡方程的各种形式。

2.物体及物体系平衡问题的解法。

3.空间汇交力系、空间任意力系、空间平行力系的平衡方程及其应用;

4.各种常见的空间约束及约束反力画法;

5.重心的坐标公式。

6. 滑动摩擦力和临界滑动摩擦力,滑动摩擦定律。

7.考虑滑动摩擦时物体的平衡问题的求解方法。

难点:1、主矢与主矩的概念。

2、利用特殊力系的特点画出某些约束反力,选择恰当的平衡方程求

解未知量。

3、物体系平衡问题中正确选取研究对象及平衡方程。

4.空间结构的几何关系与立体图;

5.解空间力系平衡问题时力矩轴的选取;

6.求组合体的形心坐标。

7. 正确区分不同类型的含摩擦平衡问题;正确判断摩擦力的方向及

正确应用

库仑摩擦定律。

四、学习建议

①对平面力系的简化方法及简化结果应阐述透彻。特别指出:主矢和主矩是在对一个力系进行简化时,为了准确描述力系的特征而引入的重要概念。主矢不是合力,合力有大小,方向与作用点三个要素,而主矢只具有大小和方向两个特征,力系的主矢与简化中心无关。一般而言,主矩的大小、转向与简化中心的选取有关,但是在主矢为零的情况下,主矩与简化中心无关。注意对不同的简化中心的简化结果表面上看互不相同,但它们互为等效力系。

②对物体系统平衡问题中如何选取恰当的研究对象和平衡方程,通过典型例题着重了解,并进行归纳总结。特别指出如下要点:

其一,求解物系的平衡问题的关键在于选取研究对象,它需要一定的分析判断能力,也需要经验的积累。在选取研究对象时,有两种极端情况:(a)只选取整体为研究对象,在此要注意受力图中只画外力,不画内力,本质问题是由外力构成的力系平衡问题,因此,无法求解系统内力,且当未知数多于三个时,也无法求解全部未知量;(b)将系统中所有刚体相互隔离,取每个刚体单独作为研究对象,由于是静定问题,则全部内外反力借助全部的平衡方程均可解出,虽思路简单,但由于求出多个不需求的未知力,使求解工作量增加,且过程繁琐。因此,一般而言,应根据题目的具体要求,灵活选取研究对象,尽量以最少的研究对象求解系统的平衡问题。

其二:在开始求解平衡方程时,如果独立平衡方程式的个数少于未知量的个数,可能出现两种情况:(a)该问题是静不定问题;(b)该问题为刚体系统的平衡问题,需再次选择研究对象。应注意的是,此种情形下,虽然不能依据这些平衡方程式求出全部未知量,但有可能求出其中的一个或两个未知量。

③简单桁架的内力计算实际上是平衡方程的工程应用,当桁架结构比较复杂,杆件总数和节点数都比较大的情形下,则无论采用节点法或截面法,计算量都可能较大。若采用计算机分析方法,则会简单得多。目前一些工程力学应用软件中,都包含有分析静定和超静定桁架内力的程序。

④通过与平面任意力系对照和比较的方法,来理解空间任意力系向一点简化的方法、主矢和主矩的概念,简化结果、平衡条件及平衡方程,重点介绍力矩轴与投影轴选取原则与方法,简单系统的空间平衡问题。

⑤在计算重心坐标时要讲清坐标选取原则,利用对称均质物体的对称性求重心,对组合法求重心要求熟练应用,积分法、查表法、实验法等只作一般介绍。

⑥讲清摩擦力与运动状态之间的关系,通过实例说明物体处于不同状态下摩擦力的大小和方向的确定方法。

滑动摩擦和滚动摩擦都是接触面对物体的约束作用。滑动摩擦显示为一个力,滚动摩擦则显示为一个力偶,二者性质不同。一般有滚动摩擦的场合,总会有滑动摩擦存在,但是,不一定是最大值,对又滑又滚的临界平衡问题,两者都是最大值,而只滚不滑(纯滚动)的情况,一般仅滚动摩阻力偶矩达到最大值。

⑦通过例题总结考虑含摩擦平衡问题的类型题及解题要点,值得强调,在分析求解考虑摩擦的平衡问题时,首先需要对物体所处的状态作出判断,其次是要判断物体的运动趋势,以便正确分析摩擦力和滚动摩阻力偶。物体平衡时,既要满足平衡条件又要满足接触面的物理性质给出的限制条件。要注意只有物体处于临界平衡状态时才能使用关系式

F max=f s F N M max= F N

有时利用几何平衡条件和摩擦角的概念求解考虑摩擦的平衡问题(夹具或机构的自锁等)较为方便,此时三力平衡汇交定理和二力构件的概念十分有用

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、 判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。( ) 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度 轴,那么Σ =0。( ) 图 3 图 4

5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( ) 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。( ) 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。( ) 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同( ) 图 7 图 8 9.图8所示梁,若求支反力 时,用平面一般力系的平衡方程不能全部求出。 ( ) 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。( ) 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。( )

12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ( )。 13.平面任意力系,其独立的二力矩式平衡方程为 ∑Fx=0, ∑M A =0, ∑M B=0,但要求矩心A、B的连线不能与x轴垂直。( ) 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影( )。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明( )。 图 11 A. 支反力R0与P平衡 B. m与P平衡 C. m简化为力与P平衡 D. R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力 ( )。 图12 A.A、B处都变化 B.A、B处都不变 C.A处变,B处不变

平面任意力系

第三章平面任意力系 一、目的要求 1?掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。 2?深入理解平面力系的平衡条件及平衡方程的三种形式。 3?能熟练地计算在平面任意力系作用下单个刚体和物体系统平衡问题。 4?正确理解静定与静不定的概念,会判断物体系统是否静定。 5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 二、基本内容 1.力的平移定理:可以把作用在刚体上点A的力F平行移到任一点B,但必须同时附加一个力偶,这个附加力偶矩等于原来的力F对新作用点B的矩。 2?平面力系的简化 步骤如下: ①选取简化中心0:题目指定点或自选点(一般选在多个力交点上) ②建立直角坐标系Oxy ③主矢:平面力系各力的矢量和,即 n n n F R’ 八F j = \ Xj \ Y j i =1i# i 二 其中 F Rx=^[ 大小:F R = J/)2 +0丫)2 , 丿 F Ry = 工丫丿方向:tan。=竺 - 也x| 其中:为F R与x轴所夹锐角,所在象限由工X、工丫符号确定,并画在简化中 心0上。 主矩:平面力系中各力对于任选简化中心之矩的代数和,即 n n M。》M o(F i)? (xY -y i X i) i =1i =1

一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选

取有关。 ④ 简化结果讨论 I a. 若F R =0, M o :平面力系与一力偶等效,此力偶为平面力系的合力 偶,其力偶矩用主矩M 。度量,这时主矩与简化中心的选择无关。 I b. 若F R =0, M 。=° :平面力系等效于作用线过简化中心的一个合力 F R , 且有F R =F R 。 I c. 若F R =°,M 。:平面力系简化结果为一合力F R ,其大小、方向与主 矢相同,作用线在距简化中心0为 丨F R I 处。 I d. F R M 。=0,则该力系为平衡力系。 3 ?平面力系的平衡条件和平衡方程 平面力系平衡的充分必要条件是该力系的主矢和对作用面内任意一点的主 矩同时为零。其解析表达式有三种形式,称为平衡方程。 1) 基本形式 ZX =0 * 龙丫 =0 |!M o (F )=0 2) 二矩式 3) 三矩式 饷 A (F )=0 ZM B (F )=0 I M C ( F )=0 特殊力系的平衡方程 1)共线力系:丐=0 fix =0 QY =0 ZM A (F )=0 ZM B (F )=0 附加条件为:A 、B 两点连线不垂直于x 轴 附加条件为:A 、B 、C 三点不共线 2)平面汇交力系:

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。() 图1 2.图示三个不为零的力交于一点,则力系一定平衡。() 图2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。() 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么Σ=0。()

图3 图4 5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。() 图5 图6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。() 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。() 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同()

图7 图8 9.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能全部求出。() 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。() 图9 图10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。() 12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ()。 13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A=0,∑M B =0,但要求矩心A、B的连线不能与x轴垂直。() 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影()。

A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明()。 图11 A.支反力R0与P平衡 B.m与P平衡 C.m简化为力与P平衡 D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力()。 图12

九、平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得 0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主 矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

九、 平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

平面一般力系的平衡方程

....................... 装.............订.......... 线 ..................... .

分配记 20 ∑Fy=0 ∑MO(F)=0 不难看出,平面平行力系的二矩式平衡方程为 ∑MA(F) =0 ∑MB(F) =0 其中A、B两点的连线不能与各力平行。 平面平行力系只有两个独立的方程,因而最多能解出两个未知量。 三.应用平面一般力系平衡方程的解题步骤如下: (1) 根据题意,选取适当的研究对象。 (2) 受力分析并画受力图。 (3) 选取坐标轴。坐标轴应与较多的未知反力平行或垂直。 (4) 列平衡方程,求解未知量。列力矩方程时,通常选未知力较多的交点为矩心。 (5) 校核结果。 应当注意:若由平衡方程解出的未知量为负,说明受力图上原假定的该未知量的方向与其实际方向相反。而不要去改动受力图中原假设的方向。 例4-2 已知F=15kN,M=3kN.m,求A、B处支座反力。 解(1) 画受力图,并建坐标系 (2) 列方程求解 图4-8

分配记 20例4-3 如图3-9所示外伸梁上作用有集中力FC=20kN,力偶矩M=10kN.m ,载荷集度为q=10kN/m的均布载荷。求支座A、B处的反力。 图4-9 解取水平梁AB为研究对象, 画受力图如图4-9(b)所示。 列平衡方程并求解

分配记 结果均为正,说明图示方向与实际方向一致。 例3-4 塔式起重机如图4-10所示。设机架自重为G,重心在C点,与右轨 距离为e,载重W,吊臂最远端距右轨为l,平衡锤重Q,离左轨的距离为a, 轨距为b。试求塔式起重机在满载和空载时都不致翻倒的平衡锤重量的范围。 图4-10 解取塔式起重机为研究对象,作用在起重机上的力有重物W、机架重G、 平衡锤的重力Q及钢轨的约束反力NA和NB,这些力构成了平面平行力系,起 重机在该平面平行力系作用下平衡。 (1)满载时W=Wmax,Q=Qmin,机架可能绕B点右翻,在临界平衡状 态,A处悬空,NA=0,受力图如图3-10b所示。则

2第二章 力系的简化和平衡方程习题+答案

第二章力系的简化和平衡方程 一、填空题 1、在平面力系中,若各力的作用线全部,则称为平面汇交力系。 2、求多个汇交力的合力的几何法通常要采取连续运用力法则来求得。 3、求合力的力多边形法则是:将各分力矢首尾相接,形成一折线,连接其封闭边,这一从最先画的分力矢的始端指向最后面画的分力矢的的矢量,即为所求的合力矢。 4、平面汇交力系的合力作用线过力系的。 5、平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 6、平面汇交力系合成的结果是一个合力,这一个合力的作用线通过力系的汇交点,而合力的大小和方向等于力系各力的。 7、若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。 8、如果共面而不平行的三个力成平衡,则这三力必然要。 9、在平面直角坐标系内,将一个力可分解成为同一平面内的两个力,可见力的分力是量,而力在坐标轴上的投影是量。 10、合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 11、已知平面汇交力系合力R在直角坐标X、Y轴上的投影,利用合力R与轴所夹锐角a的正切来确定合力的方向,比用方向余弦更为简便,也即tg a= | Ry / Rx | 。 12、用解析法求解平衡问题时,只有当采用坐标系时,力沿某一坐标的分力的大小加上适当的正负号,才会等于该力在该轴上的投影。 13、当力与坐标轴垂直时,力在该坐标轴上的投影会值为;当力与坐标轴平行时,力在该坐标轴上的投影的值等于力的大小。 14、平面汇交力系的平衡方程是两个的方程,因此可以求解两个未知量。 15、一对等值、反向、不共线的平行力所组成的力系称为_____。 16、力偶中二力所在的平面称为______。 17、在力偶的作用面内,力偶对物体的作用效果应取决于组成力偶的反向平行力的大小、力偶臂的大小及力偶的______。 18、力偶无合力,力偶不能与一个_____等效,也不能用一个______来平衡. 19、多轴钻床在水平工件上钻孔时,工件水平面上受到的是_____系的作用。 20、作用于物体上并在同一平面内的许多力偶平衡的必要和充分条件是,各力偶的_____代数和为零。 21、作用于刚体上的力,可以平移到刚体上的任意点,但必须同时附加一力偶,此时力偶的_____等于_____对新的作用点的矩。 22、一个力不能与一个力偶等效,但是一个力却可能与另一个跟它_____的力加一个力偶等效。 23、平面任意力系向作用面内的任意一点(简化中心)简化,可得到一个力和一个力偶,这个力的力矢等于原力系中所有各力对简化中心的矩的_____和,称为原力系主矢;这个力偶的力偶矩等于原力系中各力对简化中心的矩的和,称为原力对简化中心的主矩。 24、平面任意力系向作用面内任一点(简化中心)简化后,所得的主矢与简化中心的位置____,而所得的主矩一般与简化中心的位置______。 25、平面任意力系向作用面内任一点和简化结果,是主矢不为零,而主矩不为零,说明力系无论向哪一点简化,力系均与一个_____等效。 26、平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 27、平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 28、平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 29、平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。 30、对物体的移动和转动都起限制作用的约束称为______约束,其约束反力可用一对正交分力和一个力偶来表示。 31、建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。

平面一般力系的平衡 作业及答案

平面一般力系得平衡 一、判断题:?1、下图就是由平面汇交力系作出得力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图1 2、图示三个不为零得力交于一点,则力系一定平衡。( ) ?图 2 3、如图3所示圆轮在力F与矩为m得力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4、图4所示力偶在x轴上得投影ΣX=0,如将x轴任转一角度轴,那么Σ =0。( ) ?图 3 图4 5、如图5所示力偶对a得力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( )

图 5 图 6 6、图6所示物体得A、B、C、D四点各有一力作用,四个力作出得力多 7、如果两个力偶得力偶矩大边形闭合,则此物体处于平衡状态。( )? 小相等,则此两个力偶等效.( )? 8、图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果就是否相同() ?图 7 图 8 9、图8所示梁,若求支反力时,用平面一般力系得平衡方程不能全部 10、图9所示物体接触面间静摩擦系数就是f,要使物体求出. ()? 向右滑动。试判断哪种施力方法省力。( ) 图 9 图10 11、力在坐标轴上得投影与该力在该轴上分力就是相同得。( ) ?12、如果将图10所示力F由A点等效地平移到B点,其附加力矩M=

13、平面任意力系,其独立得二力矩式平衡方程为∑Fx=0,Fa ( )。? ∑MA=0, ∑MB=0,但要求矩心A、B得连线不能与x轴垂直。()?二、选择题? 1、同一个力在两个互相平行得同向坐标轴上得投影()。?A、大小相等,符号不同 B、大小不等,符号不同 C、大小相等,符号相同D、大小不等,符号相同 2、图11所示圆轮由O点支承,在重力P与力偶矩m作用下处于平衡. 这说明( )。 图 11 A. 支反力R0与P平衡 B。m与P平衡 C. m简化为力与P平衡?D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3、图12所示三铰刚架,在D角处受一力偶矩为m得力偶作用, 如将该力力偶移到E角出,支座A、B得支反力(). 图12 A.A、B处都变化?B。A、B处都不变? C.A处变,B处不变?E.B处变,A处不变 4、图13所示一平面上A、B、C、D四点分别有力作用,这四个力?画出得力多边形自行闭合,若向平面内任一点O简化可得( ). 图13 A.M0=0, R′=0?B、M0≠0,R′=0 C。M0≠0,R′≠0 D、 M0=0,R′≠0 5、图14所示物体放在平面上,设AB间与BC间得最大静摩擦力分别为FAB与FBC,外力P在什么情况下,使A、B一起运动?( ) 图14 A.P>F AB〉F BC B、FAB〈 P 〈 F BC? C、 F BC<P 〈F AB

工程力学项目2 平面力系的合成与平衡 答案

项目2 答案 2-1 (a )F RX =-676.93N (向左); F RY =-779.29N (向下);F R =1032.2N α=49.02° (指向第三象限) (b )F RX =-346.6N (向左); F RY =-181.8N (向下);F R =407.4N α=26.5°(指向第三象限) 2-2 (1) F RX =12.3KN ; F RY =-1.19KN (向下); F R =12.4KN ; α=5.53°(指向第四象限) (2) α=61.73°(指向第一象限) 2-3 (a) F AC =-3.15KN (受压) F AB =-0.41KN (受压) (b) F AC =-3942.4N (受压) F AB =557N (受拉) 2-4 (a) M O (F)=0; (b )M O (F)= F l sin β; (c )M O (F)= F l sin θ ;(d) M O (F)=-F ×a (逆时针);(e )M O (F)= F ×(l +r) (f )M O (F)=22sin b a F +??α 2-5 (1) M D (F)=-88.8KN.m(顺时针); (2)F CX =-394.7N (向左);(3) F C =-279.17N (指向左下方); 2-6 (a )M O (F)=-75.18N.m(顺时针); (b) M O (F)=8N.m ; 2-7 (a) F A =-2.25KN (向下); F B =2.25KN (向上); (b )F AX =2.5KN ;F AY =-2.5KN (向下); F B =3.54KN (指向左上方); 2-8 F AN =100KN ; 2-9 F AX =0.683KN (向右); F AY =1.183KN (向上);F BT =0.707KN (沿绳索方向) 2-10 (a) F A =3qa (向上); F B =3 2qa (向上); (b) F A =-qa (向下); F B =qa 2(向上); (c) F A =qa (向上); F B =qa 2(向上); (d) F A = 6 11qa (向上); F B =613qa (向上); (e) F A =qa 2(向上); M A =227qa -(顺时针); (f ) F A =qa 3(向上); M A =qa 3(逆时针); (g )F A =qa 2(向右); F BX =qa 2-(向左);F BY =qa (向上) (h) F AX =0; F AY =qa (向上); F B =0; 2-11 m l 2.25≥ 2-12 G P =7.4KN 2-13 (a) F A = F C = F D = F 21=2qa ;F B =F=qa ; (b) F A =qa 23-(向下);F B =qa 3;F C = F D =2 qa (c )F A = F B =qa 23;F C =-2qa (向下);M A =22 3qa (d )F A =0;F B =qa ;F C =qa ;M C =2 3qa -(顺时针)

第四章平面一般力系

第4章平面一般力系 1、图示平面机构,正方形平板与直角弯杆ABC 在C 处铰接。平板在 板面内受矩为M=8N ·m 的力偶作用,若不计平板与弯杆的重量,则当系统平衡时,直角弯杆对板的约束反力大小为( C )。 A.2N B.4N C.2N D.4N 2、悬臂梁承受均匀分布载荷,支座A 处的反力有四种结果,正确的是( B )。 A.R A =ql, M A =0 B.R A =ql, M A =q l 2 C.R A =ql, M A =q l 2 D.R A =ql, M A =q l 2 3、图示平面结构,由两根自重不计的直角弯杆组成,C 为铰链。不计各接触处摩擦,若在D 处作用有水平向左的主动力,则支座 A 对系统的约束反力为( C )。 A.F ,方向水平向右 B.,方向铅垂向上 C.F ,方向由A 点指向C 点 D.F ,方向由A 点背离C 点 4、图示平面直角弯杆ABC ,AB=3m ,BC=4m ,受两个力偶作用,其力偶矩分别为M 1=300N ·m 、M 2=600N ·m ,转向如图所示。若不计杆重及各接触处摩擦,则A 、C 支座的约束反力的大小为( D )。 A.F A =300N ,F C =100N B.F A =300N ,F C =300N C.F A =100N ,F C =300N D.F A =100N ,F C =100N 2221 31 F 2F 22 22

5、力系向某点平移的结果,可以得到( D )。 A.一个主矢量 B.一个主矩 C.一个合力 D.一个主矢量和一个主矩 6、平面一般力系向一点O简化结果,得到一个主矢量R′和一个主矩m0,下列四种情况,属于平衡的应是( B )。 A.R′≠0 m0=0 B.R′=0 m0=0 C.R′≠0 m0≠0 D.R′=0 m0≠0 7、以下有关刚体的四种说法,正确的是( D )。 A.处于平衡的物体都可视为刚体 B.变形小的物体都可视为刚体 C.自由飞行的物体都可视为刚体 D.在外力作用下,大小和形状看作不变的物体是刚体 8、力的作用线都相互平行的平面力系称(D )力系。 A.空间平行 B:空间一般 C:平面一般 D:平面平行 9、力的作用线既不汇交于一点,又不相互平行的力系称(B )力系。A:空间汇交 B:空间一般 C:平面汇交 D:平面一般 10、平面力偶系合成的结果是一个(B )。 A:合力 B:合力偶 C:主矩 D:主矢和主矩11、平面汇交力系合成的结果是一个(A )。 A:合力 B:合力偶 C:主矩 D:主矢和主矩12、平面平行力系合成的结果是(D )。 A:合力 B:合力偶 C:主矩 D:主矢和主矩 13、图示力F=2KN对A点之矩为(A )kN·m。 A:2 B:4 C:-2 D:-4

平面力系合成与平衡习题0

平面力系合成与平衡习题 1、判断题: (1)无论平面汇交力系所含汇交力的数目是多小,都可用力多边形法则求其合力。()(2)应用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。()(3)若两个力在同一轴上的投影相等,则这两个力的大小必定相等。() (4)两个大小相等式、作用线不重合的反向平行力之间的距离称为力臂。() (5)平面力偶系合成的结果为一合力偶,此合力与各分力偶的代数和相等。() (6)平面任意力系向作用内任一点简化的主矢,与原力系中所有各力的矢量和相等。()(7)一平面任意力系向作用面内任一点简化后,得到一个力和一个力偶,但这一结果还不是简化的最终结果。() (8)平面任意力系向作用面内任一点简化,得到的主矩大小都与简化中心位置的选择有关。() (9)只要平面任意力系简化的结果主矩不为零,一定可以再化为一个合力()。 (10)在求解平面任意力系的平衡问题时,写出的力矩方程的矩心一定要取在两投影轴的交点处。() (11)平面任意力系平衡方程的基本形式,是基本直角坐标系而导出来的,但是在解题写投影方程时,可以任意取两个不相平行的轴作为投影轴,也就是不一定要使所取的两个投影轴互相垂直。() 2、填空题: (1)在平面力系中,若各力的作用线全部,则称为平面汇交力系。 (2)平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 (3)若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。(4)合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 (5)平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 (6)平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 (7)平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 (8)平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。(9)建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。 (10)平面任意力系的平衡方程可以表示成不同的形式,但不论哪种形式的独立方程应为______个。 (11)平面平行力系的平衡方程,也可以是任取A、B两点为矩心而建成两个力矩方程,但

教案8 平面一般力系的合成与平衡

浙江广厦建设职业技术学院 2011/2012学年第 二学期 所属分院 建筑 工程学院 课程名称 《建筑力学与结构》 授课教师 审核人 课号授课 班级 11建 技 班 11建 技 班 11建 技 班 11建 技 班 08授课时间 课题第二章静力学基本知识 第八节平面一般力系的合成与平衡 能力目标 能够灵活的运用平衡方程解支座反力。 知识目标(素质目 标)1、熟练运用平面一般力系的平衡方程——基本形 式、二矩式和三矩式计算支座反力; 2、掌握平面特殊力系的平衡方程的运用。 教学内容能力训 练项目 (或任 务、案 例) 无 知识要 点 1、平面一般力系的平衡方程——基本形式、二矩式 和三矩式; 2、平面特殊力系的平衡方程及应用。

教学准备参考资 料 《建筑力学与结构》 吴承霞主编 所需教 具、仪 器等 无 多媒体PPT课件 课后分析 教学过程设计学习任务 第二章静力学基本知识 第八节平面一般力系的合成与平衡 步骤教学内容教师活动与 要求 学生活 动与要 求 时间分 配(分) 注释及 教后感 课前提问1、平面一般力系向 任一点简化结果类型 有哪些情况? 2、合力矩定理的内 容是什么? 教师可以提 示并记录回 答情况,打 等级 态度认 真,回 答准 确; 10 新课引入建筑物中的构件是否 应处于处于平衡状 态?为什么? 回顾以前所 学的关于独 立方程的知 识 思考、 回答 5 平面一般力系平衡的 充分与必要条件 结合PPT讲 35平面一般力系的平衡 方程

新课内容二矩式平衡方程形式解,联系以 前所学知 识,通过例 题,巩固知 识 听讲、 思考、 互动、 记笔记 三矩式平衡方程形式 平面汇交力系的平衡 方程 25平面力偶系的平衡方 程 平面平行力系的平衡 方程 学习检验完成习题集P16的第4 题 教师边指导 边检查题目 的完成情况 学生当 堂完 成,记 笔记 7 归纳小结平面一般力系平衡求 解注意事项 启发、引导 思考、 总结 5 课后任务布置习题集P14-P16的相 关题目 讲清要求: 不可抄袭, 完成于作业 本中 思考、 查找, 完成任 务 3 教学注意1、 计算式与例题解答必须板书,而且规范。(求解结果后应标 实际方向) 2、 必须向学生强调:学好支座反力求解对后续内力计算的重要 性,与期中期末考试息息相关。 备注教师可以根据学生掌握情况决定是否讲授特殊力系的平衡条件及应用。如时间不允许可在习题课补充讲解。

平面一般力系的平衡作业及答案

平面一般力系的平衡作业 及答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面一般力系的平衡 一、判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。() 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。() 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。() 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么Σ=0。()

图 3 图 4 5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。() 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。() 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。() 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同() 图 7 图 8

9.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能全部求出。() 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。() 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。() 12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ()。 13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A=0,∑M B=0,但要求矩心A、B的连线不能与x轴垂直。() 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影()。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同

平面一般力系的合成与平衡

项目一1.2.2 教学设计 2015年月日星期模块名称平面一般力系模块课时7、8 模块描述理解力的平移原理; 能够把平面一般力系向一点简化;掌握平面一般力系的计算方法。 教学目标学会平面一般力系的解题方法; 能把工程实际结构转换成力学模型;培养分析问题和解决问题的能力。 教学资源平面一般力系的实例 教学组织按座位自然分组 教学过程 教学阶段 (可以按 照完成这一模块(任务)的步骤呈现)学习任务知识点 活动设计 (教师活动、学生活动) (讲解、示范、组织、指导、安 排、操作等) 估 用 时 间 新课引入复习旧课约束和约束反力的相 关知识 平面一般力系教师引导学生复习。 教师:平面一般力系是指各力的作用 线位于同一平面内但不全汇交于一点,也不全平行的力系。平面一般力 系是工程上最常见的力系,很多实际 问题都可简化成平面一般力系问题 处理。 5 新课讲解学习力的 平移定理 1.力的平移定理教师:已经研究了平面汇交力系与平 面力偶系的合成与平衡。为了将平面 一般力系简化为这两种力系,首先必 须解决力的作用线如何平行移动的 问题。 学生:思考力该怎么平移?

2.力的平移定理的逆过程。 3、力的平移定理的应用教师:绘制图形并讲解。 设刚体的A点作用着一个力F(图a), 在此刚体上任取一点O。现在来讨论 怎样才能把力F平移到O点,而不改 变其原来的作用效应?为此,可在O 点加上两个大小相等、方向相反,与 F平行的力F′和F〞,且F′=F〞 =F(图b)根据加减平衡力系公理, F、F′和F〞与图a的F对刚体的作 用效应相同。显然F〞和F组成一个 力偶,其力偶矩为: ) (O F M Fd m= = 这三个力可转换为作用在O点的一 个力和一个力偶(图4-3(c))。由 此可得力的平移定理:作用在刚体上 的力F,可以平移到同一刚体上的任 一点O,但必须附加一个力偶,其力 偶矩等于力F对新作用点O之矩。 根据上述力的平移的逆过程,共面的 一个力和一个力偶总可以合成为一 个力,该力的大小和方向与原力相 同,作用线间的垂直距离为: F m d ' = 教师:力的平移定理是一般力系向一 点简化的理论依据,也是分析力对物 体作用效应的一个重要方法。 教师举例:如图a所示的厂房柱子受 到吊车梁传来的荷载F的作用,为分 析F的作用效应,可将力F平移到柱 的轴线上的O点上,根据力的平移定 理得一个力F′,同时还必须附加一 15

平面一般力系的平衡作业及答案

平面一般力系的平衡作业及答案 平面一般力系的平衡 一、判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。() 图1 2.图示三个不为零的力交于一点,则力系一定平衡。() 图2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。() 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么 Σ=0。()

图3图4 5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。() 图5图6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。() 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。() 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同() 图7图8 9.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能

全部求出。() 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。() 图9图10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。() 12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M=Fa()。 13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A =0,∑M B=0,但要求矩心A、B的连线不能与x轴垂直。() 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影()。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。 这说明()。

平面任意力系习题

第3章平面任意力系习题 1. 是非题(对画√,错画×) n 3-1.平面任意力系的主矢F R= ∑F i =O时,则力系一定简化一个力偶。() i =I n 3-2.平面任意力系中只要主矢F R = ∑F i =0 ,力系总可以简化为一个力。() i 4 3-3.平面任意力系中主矢的大小与简化中心的位置有关。() 3-4.平面任意力系中主矩的大小与简化中心的位置无关。() 3-5.作用在刚体上的力可以任意移动,不需要附加任何条件。() 3-6.作用在刚体上任意力系若力的多边形自行封闭,则该力系一定平衡。() 3-7.平面任意力系向任意点简化的结果相同,则该力系一定平衡。() 3-8.求平面任意力系的平衡时,每选一次研究对象,平衡方程的数目不受限制。()3-9.桁架中的杆是二力杆。() 3-10.静滑动摩擦力F应是一个范围值。() 2. 填空题(把正确的答案写在横线上) n n 3-11.平面平行力系的平衡方程V M A(F i) =0 a M B(F i) =0, i T i T 其限制条件 _________________ 。 3-12.题3-12图平面力系,已知:F1=F2=F3=F 4=F , M=Fa,a为三角形边长,如以A 为简化中心,则最后的结果其大小___________ ,方向__________ 。 3-13 .平面任意力系向任意点简化除了简化中心以外,力系向______________________ 简化其主矩不变。 3-14.平面任意力系三种形式的平衡方程:___________________________ 、____________ 3-15.判断桁架的零力杆。题3-13a图_____________________ 、题3-13b图____________

第六章 力系的简化与平衡

第六章 力系的简化与平衡 一、目的要求 1.平面汇交力系(多个力)简化与平衡的几何法和解析法,并能应用平衡条件求解平面汇交力系的平衡问题。 2.力偶系的简化与平衡。 3、了解空间力系向一点简化的方法,明确空间力系合成的四种结果。 4.深入理解平面力系的平衡条件及平衡方程的三种形式。 5.能熟练地计算在平面任意力系作用下单个刚体和物体系统平衡问题。 6.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 7、会应用各种形式的空间力系平衡方程求解简单空间平衡问题。 8、对平行力系中心和重心应有清晰的概念,能熟练地应用坐标公式求物体的重心。 9. 牢固掌握滑动摩擦的性质,深刻理解库仑摩擦定律的内涵,熟练求解考虑滑动摩擦时的平衡问题(解析法、几何法)。了解全反力、摩擦角、自锁等概念,了解滚动摩擦现象。 二、基本内容 1.平面汇交力系的简化 平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。即 ∑==+++=n i i 11F F F F F n 2R Λ 合力R F 的大小和方向可用力三角形法则或力多边形法则得到。作出图示首尾相接的开口的力多边形abcde ,封闭边矢量ae 即所求的合力。通过力多边形

求合力的方法称为几何法。 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 其矢量表达式为 ∑==0F F R 力系平衡的几何条件是:力系的力多边形自行封闭。 合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。 平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。即 00x y F F ?=??=??∑∑ 两个独立的平衡方程,可解两个未知量。 2.力偶系的简化与平衡条件 (1)力偶系的简化 力偶系可简化为一合力偶,合力偶矩等于各分力偶矩的代数和,即 i M M ∑= 力偶系平衡的必要和充分条件是:力偶系中各力偶矩的和等于零,即 ∑=0M 或∑∑∑===000z y x M M M 3. 空间力系的简化与合成的最终结果 1)空间力系向已知点O 简化 力的平移定理:可以把作用在刚体上点A 的力F 平行移到任一点B ,但必须同时附加一个力偶,这个附加力偶矩等于原来的力F 对新作用点B 的矩。 空间力系向已知点O 简化的一般结果为一个作用在O 点的力和一个力偶,该力矢量等于此力系的主矢。该力偶的力偶矩矢量等于力系对简化中心O 的主矩。主矢与简化中心的选取无关。一般情况下,主矩与简化中心的选取有关。 2)空间力系合成的最终结果 空间力系的最终合成结果有四种可能:一个合力、一个合力偶、一个力螺旋和平衡,这四种结果可由力系的主矢和力系对任意一点的主矩来判断。具体归纳如下:

土木工程力学基础--2.平面力系平衡7.22-26

《土木工程力学基础力学》 2014-8-21 土木工程力学基础 幻灯片5 一.力的投影 1.力在直角坐标轴上的投影 α cos F F x = α cos F F x -= α sin F F y -= α sin F F y = 2014-8-21 土木工程力学基础 幻灯片6

一.力的投影 求合力 ?? ? ????=+=x y y x F F F F F αtan 2 2 α cos F F x = α sin F F y = 2014-8-21 土木工程力学基础

幻灯片7 例2-1试求出图2-5中各力在x、y轴上的投影。已知F1=100N,F2=150N,F3=F4=200N。 2014-8-21 土木工程力学基础 幻灯片8 二.平面汇交力系的平衡 ●力系的分类: ●平面力系——凡各力作用线都在同一平面内的力系。 ●空间力系——凡各力作用线不在同一平面内的力系。 ●平面汇交力系——若作用在刚体上各力的作用线都在同一平面内,且汇交于同一点的 力系。 ●平面平行力系——在平面力系中,各力作用线互相平行的力系。 ●平面一般力系——若作用在刚体上各力的作用线都在同一平面内,且任意分布的力系。 2014-8-21 土木工程力学基础 幻灯片9 二.平面汇交力系的平衡 1.平面汇交力系合成的几何法 力多边形法则——连续应用力的平行四边形法则,依次两两合

成各力,最后求得一个作用线也通过力系汇交点的合力R。 R=F1+F2+F3+…+F n=ΣF n 2014-8-21 土木工程力学基础 幻灯片10

二.平面汇交力系的平衡 2.平面汇交力系平衡的几何条件 该力系的合力等于零。用矢量式表示, 即 R = ΣF n = 0 平面汇交力系平衡的必要和充分条件是该力系的力多边形自行封闭。 土木工程力学基础 幻灯片11 二.平面汇交力系的平衡 ● 3.平面汇交力系的平衡条件及应用 ● 合力投影定理——平面汇交力系的合力在任一坐标轴上的投影,等于它的各分力在同一坐标轴上投影的代数和。 ● 即: ● x nx x x x F F F F R ∑=+++= 21 y ny y y y F F F F R ∑=+++= 21 x y x y y x y x F F R R F F R R R ∑∑= = ∑+∑=+=αtan )()(2 22 2

相关文档
最新文档