51单片机存储器的基本结构及工作原理

51单片机存储器的基本结构及工作原理
51单片机存储器的基本结构及工作原理

51单片机存储器的基本结构及工作原理

第一个问题:单片机的外部结构怎样呢?

拿到一块芯片,想要使用它,首先必须要知道怎样连线,我们“新动力2004”单片机学习套件用的一块称之为89S51的芯片,下面我们就看一下如何给它连线。

1、电源:这当然是必不可少的了。单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。

2、振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,使用晶体振荡器,接18、19脚。只要买来晶振,电容,连上就可以了,按“新动力2004版”实验部份原理图接上即可。

3、复位引脚:按“新动力2004版”实验部份原理图中接法连好,至于复位是何含义及为何需要复要复位,复位章节中已做介绍。

4、EA引脚:EA引脚接到正电源端。至此,一个单片机就接好,通上电,单片机就开始工作了。

注:上述讲的是单片机最小应用系统图,朋友们在书让随便找本书都有,也以参考“新动力2004版”实验部份原理图。

这里我就不再画了。

第二个问题:单片机的工作任务分析

我们的第一个任务是要用单片机点亮一只发光二极管LED,显然,这个LED必须要和单片机的某个引脚相连,否则单片机就没法控制它了,那么和哪个引脚相连呢?单片机上除了刚才用掉的5个引脚,还有35个,我们将这个LED和1脚相连。

按照“新动力2004版”实验部份原理图的接法,当1脚是高电平时,LED不亮,只有1脚是低电平时,LE D才发亮。因此要1脚我们要能够控制,也就是说,我们要能够让1引脚按要求变为高或低电平。即然我们要控制1脚,就得给它起个名字,总不能就叫它一脚吧?叫它什么名字呢?设计51芯片的INTEL公司已经起好了,就叫它P1.0,这是规定,不可以由我们来更改。

名字有了,我们又怎样让它变--高--或变--低--呢?叫人做事,说一声就可以,这叫发布命令,要计算机做事,也得要向计算机发命令,计算机能听得懂的命令称之为计算机的指令。让一个引脚输出高电平的指令是SETB,让一个引脚输出低电平的指令是CLR。因此,我们要P1.0输出高电平,只要写SETB P1.0,要P1.0输出低电平,只要写CLR P1.0就可以了。

现在我们已经有办法让计算机去将P1.0输出高或低电平了,但是我们怎样才能计算机执行这条指令呢?总不能也对计算机也说一声了事吧。要解决这个问题,还得有几步要走。

第一步:计算机看不懂SETB CLR之类的指令,我们得把指令翻译成计算机能懂的方式,再让计算机去读。计算机能懂什么呢?它只懂一样东西——数字。因此我们得把SETB P1.0变为(D2H,90H ),把CLR

P1.0变为(C2H,90H ),至于为什么是这两个数字,这也是由51芯片的设计者--INTEL规定的,我们不去研究。

第二步:在得到这两个数字后,怎样让这两个数字进入单片机的内部呢?这要借助于一个硬件工具"编程器"。本站开发的“新动力2004版”集编程器和实验板于一体。大家可以参考一下,如想购买请进入看看!

我们将“新动力2004”学习套件与电脑连好,运行编程器的软件,然后在编缉区内写入(D2H,90H)见图2,写入……好,拿下片子,把片子插入学习套件的实验板,接通电源……什么?灯不亮?这就对了,因为我们写进去的指令就是让P1.0输出高电平,灯当然不亮,要是亮就错了。现在我们再拨下这块芯片,重新放回到编程器上,将编缉区的内容改为(C2H,90H),也就是CLR P1.0,写片,拿下片子,把片子插进实验板,接电,好,灯亮了。因为我们写入的(CLR P1.0)就是让P1.0输出低电平的指令。这样我们看到,硬件电路的连线没有做任何改变,只要改变写入单片机中的内容,就可以改变电路的输出效果。

第三个问题:单片机内部结构分析

我们来思考一个问题,当我们在编程器中把一条指令写进单片机内部,然后取下单片机,单片机就可以执行这条指令,那么这条指令一定保存在单片机的某个地方,并且这个地方在单片机掉电后依然可以保持这条指令不会丢失,这是个什么地方呢?这个地方就是单片机内部的只读存储器即ROM(READ ONLY M EMORY)。为什么称它为只读存储器呢?刚才我们不是明明把两个数字写进去了吗?原来在89C51中的ROM是一种电可擦除的ROM,称为FLASH ROM,刚才我们是用的编程器,在特殊的条件下由外部设备对ROM进行写的操作,在单片机正常工作条件下,只能从那面读,不能把数据写进去,所以我们还是把它称为ROM

下面分别介绍各组成部份硬件的结构,工作原理和操作方法:

存储器:

8031单片机有4个存储器空间,分别用来安排4种不同功用的存储器:

一\内部数据存储器;二\特殊功能寄存器;三\程序存储器;四\外部数据存储器。

内部数据存储器和特殊功能寄存器集成于片内,程序存储器和外部数据存储器则安排在

片外,用接口电路与单片机连接。4种存储器中,除内部数据存储器和特殊功能寄存器是统一编址的除外,各存储器均分开编址,并用不完全相同的寻址方式来访问它们。

RAM,共128字节,地址范围为00H一7FH,见下图2。前32个单元(地址00H一1FH)称为寄存器区。其中,每8个寄存器形成-个寄存器组。具体说来:

寄存器0组地址00H一07H

寄存器1组地址08H一0FH

寄存器2组地址10H一17H

寄存器3组地址18H一1FH

图2 内部数据存储器结构

通过对特殊功能寄存器PSW中RS1、RS0两位的编程设置),可选择任一寄存器组为工作寄存器组,方法如下:

RS1 RSO 所选中的寄存器组

0 0 选中的寄存器0组

0 1 选中的寄存器1组

1 0 选中的寄存器2组

1 1 选中的寄存器3组

当某一组被设定成工作寄存器组后,该组中的8个寄存器,从低地址到高地址就分别称为Ro-R7,从而可以把它们用作通用寄存器,并可按寄存器寻址方式被访问。一旦工作寄存器组被指定后,另外三组寄存器则同其它数据RAM一样,只能按字节地址被予以读写。

字节地址20H到2FH称为位地址区,共有16个字节,计128位,每位都有相应的位地址,位地址范围为00H一7FH,见图3。通过位寻址,可以对各位进行位操作。由此可见,8031单片机有着相当出色的位处理能力。

内部数据RAM中,既有字节地址,又有位地址,两者的地址范围都是00H一7FH,这在数据操作时应加以注意。内部数据RAM通常用来存放运算过程的中间值,并用作堆栈区。

程序存储器

MCS-51单片机具有64K字节的程序存储器空间。其中,8051或8751在片内各有4K字节的程序存储器ROM或EPROM,并处于这一空间的最低地址区。8031片内没有程序存储器,必须在外部扩展程序存储器才能构成单片机应用电路。扩展容量可为64K字节中的任一容量,并且常用EPROM或E2PROM的形式(扩展方法见第四章)。程序存储器中的某些地址被固定地用于特定程序的入口地址:

地址用途

0000H 复位操作后的程序入口

0003H 外部中断0服务程序入口

000BH 定时器0中断服务程序入口

0013H 外部中断1服务程序入口

001BH 定时器1中断服务程序入口

0023H 串行I/O中断服务程序入口

在编程时,通常在这些入口地址开始的二三个地址单元中,放入一条转移类指令,以使相应的程序在指定的程序存储器区域中生成。例如,从000阳地址单元开始,放入一条转移到3000H地址单元的转移类指令,定时器0的中断服务程序就可从3000H地址单元开始安排。又如,定时器l的中断服务程序非常短,不会占用到0023H地址单元,或者串行I/O中断根本就没被使用,那么001BH就可以直接作为定时器1中断服务程序的首地址,而不必安排转移类指令。

程序存储器用来存放固化了的用户程序,取指地址由程序计数器PC给出,PC具有自动加l的功能,从而在无转移类指令的条件下,指令被逐一执行。转移类指令可改变PC值,使程序得以转移。程序存储器中也可固化一片数据区,存放被查阅的表格和参数等。

外部数据存储器

外部数据存储器又称为外部数据RAM,当803l片内128个字节的数据RAM不能满足数量上的要求时,可通过总线端口和其它I/O端口扩展外部数据RAM(扩展方法见相关章节),其最大容量可达64K字节。外部数据RAM与内部数据RAM的功用基本相同,但前者不能进行堆栈操作。

当803l单片机同时外接有程序存储器和数据存储器时,两者的区别在于:程序存储器只有读操作而无写操作,且读操作信号由引脚PSEN直接提供;数据存储器则有读写操作,且由引脚信号RD和WR选通读写操作。对片内RAM和片外RAM操作的区别在于:片内RAM操作时无读写信号产生,片外RAM操作时则有读写信号(RD,WR)产生。上面是不同的存储器操作在硬件信号方面的区别,这些反映在符号指令上则是有着完全不同的符号形式和寻址方式.

存储器的数据操作

1.程序存储器的数据操作

只有读操作。除由PC直接寻址,以执行各条指令外,还可用FC或DPTR作变址寻址。例如,若DPTR =2000H,A=20H,则指令MOVC A,@A十DPTR完成了把程序存储器2020H单元中的内容送入A

中的操作。这种数据操作方式通常用来查阅程序存储器中的数据表格。

2.外部数据RAM的数据操作

可进行读写操作。用DPTR或工作寄存器组中的Ro或R1作寄存器间接寻址。当用RO或R1作寄存器间

接寻址时,由P2端口提供高8位地址,R0或R1提供低8位地址。例1 MOVX A,@DPTR ;外部数据RAM中以DPTR为地址中的内容----A

例2 MOV P2,#20H ;数20H ----P2

MOV R0,#30H ;数30H ----R0

MOVX @R0,A ;A ---- 外部数据RAM中2030H单元

3.内部数据RAM的数据操作

可进行读写操作。按直接字节地址作直接寻址或用工作寄存器组中的R0或R1作寄存器间接寻址。

例1 MOV 35H,#64H ;数64H送入片内RAM35H单元

例2 MOV R0 ,#40H ;数40H ----R0

MOV A ,@Ro ;内部数据RAM中40H地址中的内容----A

4.特殊功能寄存器SFR的数据操作

可进行读写操作。只能用直接寻址方式对给出地址的SFR作数据操作。

例1 MOV P1 ,#55H ;数55H经P1端口输出

例2 MOV A ,P0 ;把Po端口上的数据输入到A

例3 MOV PSW,#10H ;数10H ----PSW,从而使RS1=1,RS0=O,实现了选中第2组寄存器为工作寄存器的操作(此操作还清掉了PSW其它各标志位)

5.位地址空间的数据操作

可进行读写操作。采用直接位寻址方式对位地址中的数据作位操作。

例1 SETB 20H ;"1" ----片内RAM20H位地址单元

创2 SETB EA ;"1" ----SFR中的EA位(由图可见,EA的位地址为AFH)

803l单片机4种存储空间的主要特点及数据操作方式可归纳如下表所示。关于数据操作方法,在下面的章节中还会详细讨论

需要指出的是,单片机中的存储器结构与数据操作方法,是应用单片机的基础,必须了解得十分清楚。

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

80C51单片机存储器的扩展

程设计任务书 机械工程学院学院机制1211 班学生张会利-39号 课程设计题目: 单片ROM扩展 一、课程设计工作日自 2015 年 1 月 19 日至 2015 年 2 月 23 日 二、同组学生:张会利 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资 料等): 1、目的及意义 (1)巩固和深化《单片机原理及应用》课程的理论知识,培养,分析、解决实际问题的能力。(2)掌握单片机基本运用技术及汇编语言的基本方法,能根据题目要求确定设计思路、绘制流程图、编制并调试汇编语言程序,得出结果。 2、主要内容 用一片Intel2732为80C51单片机扩展一个4KB的外部程序存储器,要求使用73LS138译码器,地址范围为A000H~AFFFH。请连线并写明扩展步骤。 3、基本要求 (1)分析题目,写出详细分析过程。 (2)绘制工作流程图。 (3)编制程序,画出硬件线路图。 (4)上机调试程序,运行结果。 (5)编写设计说明书,包括1—4个步骤的内容。 (6)答辩。 4、主要参考资料 单片机基础及应用,赵巍,冯娜,马苏常,刘玉山等,清华大学出版社,2009年指导教师签字:教研室主任签字:

程序设计说明书 (一)芯片简介 1.2732简介: 2732是容量为4k×8位(4KB)。采用单一+5V供电,最大静态工作电流100mA, 电流35mA出时间最大为250ns. 2732的封装形式为DIP24,管脚如图所示。 ●A0~A11 :12条地址线,表示有212个地址单元 ●O0~O7 :8条数据线,表示地址单元字长8位 ●CE :片选控制输入端,低电平有效 ●OE/Vpp :双功能管脚,低电平时,允许2732输出数据 ●Vcc :工作电平+5V ●GND :芯片接地端 2.74LS373简介: 74LS373是带三态缓冲输出的8D锁存器,由于单片机的三片总线结构中,数据线与地址线的低8位公用P0口,因此必须用地址所存器将地址信号和数据信号区分开。74L373的锁存控制端G直接与单片机的锁存控制信号和数据信号ALE相连,在AEL的下降沿锁存低8位地址。

单片机的存储组织和结构认识

单片机的存储组织和结构认识 一.51单片机为例 1、一个8位的微处理器CPU。 2、片内数据存储器(RAM128B/256B):用以存放可以读 /写的数据,如运算的中间结果、最终结果以及欲显示 的数据等。 3、片内4kB程序存储器Flash ROM(4KB):用以存放 程序、一些原始数据和表格。 4、四个8位并行I/O(输入/输出)接口P0~P3:每个口 可以用作输入,也可以用作输出。 5、两个或三个定时/计数器: 每个定时/计数器都可以 设置成计数方式,用以对外部事件进行计数,也可 以设置成定时方式,并可以根据计数或定时的结果实现计算机控制 6、一个全双工UART的串行I/O口:可实现单片机与单片机或其它微机之间串行通信。 7、片内振荡器和时钟产生电路:但需外接晶振和电容。 8、五个中断源的中断控制系统。 9、具有节电工作方式:休闲方式及掉电方式。 二、结构:由中央处理单元(CPU)、存储器(ROM及RAM)和I/O接口组成。89C51单片机内部结构如图所示: 下面介绍的是mcs-51 MCS-51单片机存储器的配置特点 ①内部集成了4K的程序存储器ROM; ②内部具有256B的数据存储器RAM; ③可以外接64K的程序存储器ROM和数据 存储器RAM。 三、从物理结构的角度讲 51单片机的存储系统可以分为四个存储空间:既片内 ROM,RAM和片外ROM、RAM。 从逻辑上讲(既编程的角度),51单片机的存储系统实际 上分为三个存储空间。 1. 片内数据存储器RAM; 2. 片外数据存储器RAM; 3. 片内或外的程序存储器ROM(由EA电平决定)。 物理结构: 1.程序存储器ROM用于存放程序、常数或表格。 2.在51单片机中,由引脚/EA 上的电平选择内、外 ROM:EA=1时,CPU执行片内的4KROM中的程序; EA=0 时,CPU选择片外ROM中的程序。 3.无论是使用片内还是使用片外ROM,程序的起始地 址都是从ROM的0000H单元开始。 4.尽管系统可以同时具备片内ROM和外部ROM,但是 在一般正常使用情况下,通过/EA的设定来选择其一 (或者使用内部ROM,或者使用外部ROM)。 5.如果EA=1(执行片内程序存储器中程序时):如果程序

51单片机大容量数据存储器的扩展

郑州航空工业管理学院 《单片机原理与应用》 课程设计说明书 10 级自动化专业 1006112 班级 题目51单片机大容量数据存储器的系统扩展姓名杨向龙学号100611234 指导教师王义琴职称讲师 二О一三年六月十日

目录 一、51单片机大容量数据存储器的系统扩展的基本原理 (4) 二、设计方案 (4) 三、硬件的设计 (5) 3.1 系统的硬件构成及功能 (5) 3.2硬件的系统组成 (5) 3.2.1、W241024A (5) 3.2.2、CPLD的功能实现 (5) 3.2.3、AT89C52简介 (6) 3.2.4、SRAM的功能及其实现 (9) 3.3、基本单片机系统大容量数据存储器系统扩展 (9) 五、结论 (13) 六、参考资料 (13)

51单片机大容量数据存储器的系统扩展 摘要:在单片机构成的实际测控系统中,仅靠单片机内部资源是不行的,单片 机的最小系统也常常不能满足要求,因此,在单片机应用系统硬件设计中首先要解决系统扩展问题。51单片机有很强的外部扩功能, 传统的用IO口线直接控制大容量数据存储器的片选信号的扩展系统存在运行C51编译的程序时容易死机的缺点。文中介绍了一种改进的基于CPLD的51系列单片机大容量数据存储器的扩展方法,包括硬件组成和软件处理方法。 关键字:W241024A、CPLD、AT89C52、SRAM 一、51单片机大容量数据存储器的系统扩展的基本原理 MCS-51 单片机系统扩展时,一般使用P0 口作为地址低8位(与数据口分时复用),而P2口作为地址高8位,它共有16根地址总线,最大寻址空间为64KB。但在实际应用中,有一些特殊场合,例如,基于单片机的图像采集传输系统,程控交换机话单的存储等,需要有大于64KB 的数据存储器。 二、设计方案 在以往的扩展大容量数据存储器的设计中,一般是用单片机的IO口直接控制大容量数据存储器的片选信号来实现,但是这种设计在运行以C51编写的程序(以LARGE 方式编译)时往往会出现系统程序跑飞的问题,尤其是在程序访问大容量数据存储器(如FLASH)的同时系统产生异常(如中断),由于此时由IO 口控制的片选使FLASH 被选中而SRAM 无法被选中,堆栈处理和函数参数的传递无法实现从而导致程序跑飞的现象。文章介绍一种基于CPLD 的大容量数据存储器的扩展系统,避免了上述问题的产生,提高了扩展大容量数据存储器系统的可靠性。该系统MCU 采用89C52,译码逻辑的实现使用了一片EPM7128 CPLD 芯片,系统扩展了一片128K 的SRAM,一片4M 字节的NOR FLASH,以上芯片均为5V 供电。

51单片机基础知识及期末复习

51单片机简答题部分(经典) 1、什么叫堆栈? 答:堆栈是在片内RAM中专门开辟出来的一个区域,数据的存取是以"后进先出"的结构方式处理的。实质上,堆栈就是一个按照"后进先出"原则组织的一段内存区域。 2、进位和溢出? 答:两数运算的结果若没有超出字长的表示范围,则由此产生的进位是自然进位;若两数的运算结果超出了字长的表示范围(即结果不合理),则称为溢出。 3、在单片机中,片内ROM的配置有几种形式?各有什么特点? 答:单片机片内程序存储器的配置形式主要有以下几种形式:(1)掩膜(Msak)ROM型单片机:内部具有工厂掩膜编程的ROM,ROM中的程序只能由单片机制造厂家用掩膜工艺固 化,用户不能修改ROM中的程序。掩膜ROM单片机适合于 大批量生产的产品。用户可委托芯片生产厂家采用掩膜方法 将程序制作在芯片的ROM。 (2)EPROM型单片机:内部具有紫外线可擦除电可编程的只读存储器,用户可以自行将程序写入到芯片内部的EPROM 中,也可以将EPROM中的信息全部擦除。擦去信息的芯片 还可以再次写入新的程序,允许反复改写。 (3)无ROM型单片机:内部没有程序存储器,它必须连接程序存储器才能组成完整的应用系统。 无ROM型单片机价格低廉,用户可根据程序的大小来选择外接 程序存储器的容量。这种单片机扩展灵活,但系统结构较复 杂。 (4)E2ROM型单片机:内部具有电可擦除叫可编程的程序存储器,使用更为方便。该类型目前比较常用 (5)OTP(One Time Programmable)ROM单片机:内部具有一次可编程的程序存储器,用户可以在编程器上将程序写入片内程 序存储器中,程序写入后不能再改写。这种芯片的价格也较 低。 4、什么是单片机的机器周期、状态周期、振荡周期和指令周期?它们之间是什么关系? 答:某条指令的执行周期由若干个机器周期(简称M周期)构成,一个机器周期包含6个状态周期(又称时钟周期,简称S周期),而一个状态周期又包含两个振荡周期(P1和P2,简称P周期)。也就是说,指令执行周期有长有短,但一个机器周期恒等于6个状态周期或12个振荡周

MCS-51单片机存储器结构

MCS-51单片机在物理结构上有四个存储空间: 1、片内程序存储器 2、片外程序存储器 3、片内数据存储器 4、片外数据存储器 但在逻辑上,即从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令(具体我们在后面的指令系统学习时将会讲解),以产生不同的存储器空间的选通信号。 程序内存ROM 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM;EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口

0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 内部数据存储器RAM 物理上分为两大区:00H ~ 7FH即128B内RAM 和SFR区。 作用:作数据缓冲器用。 下图是8051单片机存储器的空间结构图 程序存储器 一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设

计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的端必须接地。强制CPU从外部程序存储器读取程序。对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。

51单片机外部存储器的使用

纠结了这么久,现在总算有点儿头绪了,先把它整理到这里先,有几点还是j经常被弄糊涂:地址和数据,地址/数据复用,地址的计算,总线的概念,执行指令跟脉冲的关系,哎呀呀,看来计算机组成和原理不看不行啊,得找个时间瞧瞧,过把瘾了解了解。。。 使用ALE信号作为低8位地址的锁存控制信号。以PSEN信号作为扩展程序存储器的读选通信号,在读外部ROM是PSEN是低电平有效,以实现对ROM 的读操作。 由RD和WR信号作为扩展数据存储器和I/O口的读选通、写选通信号。 ALE/PROG: 当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。 在FLASH编程期间,此引脚用于输入编程脉冲。 在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 当访问外部存储器时,ALE作为锁存扩展地址的低8位字节的控制信号。 当访问外部数据存储器时,ALE以十二分之一振荡频率输出正脉冲,同时这个引脚也是EPROM编程时的编程脉冲输入端。] 当非访问外部数据存储器时,ALE以六分之一振荡频率固定输出正脉冲,8051一个机器周期=6个状态周期=12个振荡周期,若采用6MHz的晶体振荡器,则ALE会发出1MHz的固定的正脉冲。因此它可以用来做外部时钟或定时。如果我们把这个功能应用与实际,可能给我们的设计带来简化,降低生产成本。 ALE脚是在使用MOVX、MOVC指令时才会变成有效(这些指令都使用到外部RAM或ROM 的地址。这些指令都有一个特点:地址和数据分时出现在P0口)。使用C写程序时,要使用它有效,可用访问内部RAM地址的方法。如:uVariable=*((char *)0x12C),把0x12C地址的内容给uVariable变量。这个过程有效的脚为ALE、RD。 这个信号线的信号生成是MCU硬件电路实现的,不可以人工控制。 在某些内置TOM的MCU里,可以关闭ALE信号输出,以降低EMI。

6264与51单片机扩展

Intel6264芯片 单片机内存扩展6264芯片 2012-5-2 1.Intel6264芯片 Intel 6264的特性及引脚信号Intel 6264的容量为8KB,是28引脚双列直插式芯片,采用CMOS工艺制造 A12~A0(address inputs):地址线,可寻址8KB的存储空间。 D7~D0(data bus):数据线,双向,三态。 OE(output enable):读出允许信号,输入,低电平有效。 WE(write enable):写允许信号,输入,低电平有效。 CE1(chip enable):片选信号1,输入,在读/写方式时为低电平。 CE2(chip enable):片选信号2,输入,在读/写方式时为高电平。 VCC:+5V工作电压。 GND:信号地。 Intel 6264的操作方式Intel 6264的操作方式由, CE1 , CE2的共同作用决定 ②读出:当和CE1为低电平,且和CE2为高电平时,数据输出缓冲器选通,被选中单元的数据送到数据线D7~D0上。 2. 74LS373 有54S373 和74LS373 两种线路结构型式,其主要电器特性的典型值如下(不同厂家具体值有差别):型号TPD PD 54S373/74S373 7ns 525mW 54LS373/74LS373 17ns 120mW 373 的输出端O0~O7 可直接与总线相连。当三态允许控制端OE 为低电平时,Q0~Q7为正常逻辑状态,可用来驱动负载或总线。当OE 为高电平时,Q0~Q7 呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。当锁存允许端LE 为高电平时,Q 随数据D 而变。当LE 为低电平时,D 被锁存在已建立

51单片机原理期末考试题

广西工学201 2011学年 2学期课程考核试 考核课单片机技卷)考核班通08082 考核类闭学生人 8 打印份 8 一、填空题(每小分,2分 1.若累加器A中的数据为67H,则PSW中的P=_1__。 2. 一个机器周期= _6_个状态周期=12个振荡周期。 3.89C51的堆栈是按照先进后出的原则进行存取的RAM区。 4. 用一条指令实现以下功能: 若A中数据不等于200,则程序转至PROM_ CJNZ A,#200H,PROM__。 5. 为了使10H—17H作工作寄存器使用RS1, RS0的取值为__1,0。 6. 89C51中21个特殊功能寄存器,其地址凡是能被8整除的都有位寻址功能。 7. 89C51单片机有片内ROM容量_4KB , RAM容量128。 8. 某串行通信中有1个起始位,8个数据位和1个停止位,应选择的异步串行通信方式为方式1。 9. 在89C51单片机初始化时,SP存放的是07H。 10. 当89C51引脚ALE信号有效时,表示从P0口稳定地送出了_数据和地信息。 四、判断题(每小题2分,共20分) 1.如果发生除法溢出错误,则PSW标志位P置1。(∨) 5.对于89C51单片机,当CPU对内部程序存储器寻址超过4K时,系统会自动在外部程序存储器中寻址(∨)。 6.外加晶振频率越高,系统运算速度也就越快,系统性能也就越好(∨)。 7. 位TF0是定时器T1的溢出中断标志位。(∨) 8.在定时器T0和外部中断1都设为高优先级时,外部中断1优先级高于定时器T0。(×) 9.子程序的返回指令是RETI ,中断程序的返回指令是RET。(×) 10.波特率是数据传输的速率,指每秒传送的字节数。(∨) 3、51有 5个中断源,有2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择 4、中断请求信号有电平触发和脉冲触发两种触发方式。 6、74LS273通常用来作简单输出接口扩展;而74LS244则常用来作简单输入接口扩展。 7、A/D转换器的三个重要指标是转换速度、分辨率和转换精度。 二、选择题(从备选答案中选择一个正确答案,并将代号写在括号内。每题2分,共10分) 1、MCS-51单片机外扩存储器芯片时,4个I/O口中用作数据总线的是( B )。 (A)P0和P2口(B)P0口(C)P2和P3口(D)P2口 2、访问外部数据存储器时,不起作用的信号是( C )。 WRPSENRD(D)(CA))(B)ALE (3、使用定时器T1时,有几种工作模式( C )。 (A)1种(B)2种(C)3种(D)4种 4、MCS-51响应中断时,下面哪一个条件不是必须的( C )。 A、当前指令执行完毕 B、中断是开放的 C、没有同级或高级中断服务 D、必须有RETI指令 5、当MCS-51进行多机通讯时,串行接口的工作方式应选为( C )。 (A)方式0 (B)方式1 (C)方式2 (D)方式0或方式2 三、简答题(每题15分,共30分) 1、MCS-51单片机内部有几个定时/计数器?它们由哪些寄存器组成? 答:MCS-51单片机内部有两个16位可编程的定时/计数器,简称定时器0(T0)和定时器1(T1)。它们分别由方式寄存器TMOD、控制寄存组成。TL1、TH1,TL0、TH0和数据寄存器TCON器. 一、填空题(每空1分,共20分) 1、计算机的系统总线有地址总线、控制总线和数据总线。 2、通常、单片机上电复位时PC= 0000H ,SP= 07H ;而工作寄存器则缺省采用第 00 组,这组寄存器的地址范围是从000H~007H 。 3、JZ e 的操作码地址为1000H,e=20H,它转移的目标地址为 1022H 。 4、汇编语言中可以使用伪指令,它们不是真正的指令,只是用来对汇编过程进行 某种控制进行某种控制。

51单片机的电子钟以及lcd1602显示器的工作原理

51单片机的电子钟以及lcd1602显示器的工作原理 基于51单片机的电子钟C语言程序 #include #include #define uchar unsigned char #define uint unsigned int /*七段共阴管显示定义*/ uchar code dispcode[ ]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F, 0xBF,0x86,0xCB,0xCF,0xEF,0xED,0xFD,0x87,0xFF, 0xDF}; /*定义并初始化变量*/ uchar seconde=0; uchar minite=0; uchar hour=12; uchar mstcnt=0; sbit P1_0=P1^0; // second 调整定义 sbit P1_1=P1^1; //minite调整定义 sbit P1_2=P1^2; //hour调整定义 /*函数声明*/ void delay(uchar k ); //延时子程序 void time_pro( ); //时间处理子程序 void display( ); //显示子程序 void keyscan( ); //键盘扫描子程序 /*****************************/ /*延时子程序*/ /****************************/ void delay (uchar k) { uchar j; while((k--)!=0) { for(j=0;j<125;j++) {;} } } /**************************/ /*时间处理子程序*/ /**************************/ void time_pro( void) {

MCS-51单片机存储器的扩展

第八章MCS-51单片机存储器的扩展 第一节MCS-51单片机存储器的概述 (一)学习要求 1、熟悉MCS-51 单片机的系统总线及系统总线扩展结构 2、掌握常用的片选方法:线选法和全地址译码法。 (二)内容提要 1、三总线的扩展方法 单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。为此,应扩展其功能。 MCS-51单片机的扩展性能较强,根据需要,可扩展。三总线是指地址总线、数据总线、控制总线。 1)地址总线 MCS-51 单片机地址总线宽度为16 位,寻址范围为64K。 地址信号:P0 作为地址线低8 位,P2 口作为地址线高8 位。 2)数据总线 MCS-51 单片机的数据总线宽度为8 位。 数据信号:P0 口作为8 位数据口,P0 口在系统进行外部扩展时与低8 位地址总线分时复用。 3)控制总线 主要的控制信号有/WR 、/RD 、ALE 、/PSEN 、/EA 等。 2、系统的扩展能力 MCS-51 单片机地址总线宽度为16 位,因此它可扩展的程序存储器和数据存储器的最大容量是64K(216)。 1)线选法 线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。缺点是外扩器件的数量有限,而且地址空间是不连续的。 2)全地址译码法 由于线选法中一根高位地址线只能选通一个部件,每个部件占用了很多重复的地址空间,从而限制了外部扩展部件的数量。采用译码法的目的是减少各部件所占用的地址空间,以增加扩展部件的数量。 3)译码器级连 当组成存储器的芯片较多,不能用线选法片选,又没有大位数译码器时,可采用多个小位数译码器级连的方式进行译码片选. 4)译码法与线选法的混合使用 译码法与线选法的混合使用时,凡用于译码的地址线就不应再用于线选,反之,已用于线选的地址线就不应再用于译码器的译码输入信号. (三)习题与思考题 1. 简要说明MCS-51 单片机的扩展原理。

第11章 MCS-51单片机系统扩展-第1部分 - 1

第十一章 MCS-51单片机系统扩展 11.1 8051/8751的最小系统 80C51片内有4KB的程序存储器,因此,只需要外接晶体振荡器和复位电路就可构成最小系统。 图11-1 最小单片机系统 最小系统的特点如下: (1)由于片外没有扩展存储器和外设,P0、P1、P2、P3都可以作为用户I/O口使用。但P0口作为用户I/O口使用时,需要加上拉电阻。 (2)片内数据存储器有128字节,地址空间00H~7FH,没有片外数据存储器。 (3)内部有4KB程序存储器,地址空间0000H~0FFFH,没有片外程序存储器,EA应接高电平。 (4)可以使用两个定时/计数器T0和T1,一个全双工的串行通信接口,5个中断源。 80C51虽有4个I/O口P0~P3,但在大多数应用系统中,真正用作I/O 口线的只有P1口的8位位线和P3口的某些位线。因此,在I/O接口引脚不够,或在片内的存储器资源还不能满足要求时,需要进行如下的扩展: (1) 外部I/O接口的扩展;【例如74LS164、74LS165等】 (2) 外部程序存储器的扩展; (3) 外部数据存储器的扩展。

11.2 系统扩展结构 单片机采用总线结构,使扩展易于实现,单片机系统扩展结构如图11-2所示。 图11-2 80C51单片机的系统扩展结构 从图11-2可以看出,系统扩展主要包括存储器扩展和I/O接口部件扩展。存储器扩展包括程序存储器扩展和数据存储器扩展。 系统扩展是以单片机为核心,通过总线把单片机与各扩展部件连接起来。因此,首先要利用单片机的I/O口构造系统总线。系统总线按功能通常分为3组,如图11-2所示。 (1)地址总线AB(Address Bus):用于发送CPU发出的地址信号,以便进行存储单元和I/O接口芯片中的寄存器的选择。 地址总线宽度为16位,由P0口经地址锁存器(通常用74LS373)提供地址低8位,P2口直接提供地址高8位,地址信号是由CPU发出的单方向信号。 存储器芯片的地址线的数目由芯片的容量决定。容量(Q)与地址线数目(N)满足关系式:2N Q 。存储器芯片的地址线与单片机的地址总线(A0~A15,P0口为低8位(需用74LS373锁存),P2口为高8位)按由低位到高位的顺序顺次相接。 一般来说,存储器芯片的地址线数目少于单片机地址总线的数目,因此连接后,单片机的高位地址线(P2口)应该有剩余。剩余的地址线一般作为译码线,译码器的输出与存储器芯片的片选信号线(CS或CE)相接。片选

MCS-51单片机存储器的扩展_百度文库.

第八章 MCS-51单片机存储器的扩展 第一节 MCS-51单片机存储器的概述 (一学习要求 1、熟悉 MCS-51 单片机的系统总线及系统总线扩展结构 2、掌握常用的片选方法:线选法和全地址译码法。(二)内容提要 1、三总线的扩展方法 单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。为此,应扩展其功能。 MCS-51单片机的扩展性能较强,根据需要,可扩展。三总线是指地 址总线、数据总线、控制总线。 1)地址总线 MCS-51 单片机地址总线宽度为 16 位,寻址范围为 64K。 地址信号: P0 作为地址线低 8 位, P2 口作为地址线高 8 位。 2)数据总线 MCS-51 单片机的数据总线宽度为 8 位。 数据信号: P0 口作为 8 位数据口, P0 口在系统进行外部扩展时与低 8 位地址总线分时复用。 3)控制总线 主要的控制信号有 /WR 、 /RD 、 ALE 、 /PSEN 、 /EA 等。

2、系统的扩展能力 MCS-51 单片机地址总线宽度为 16 位,因此它可扩展的程序存储器和数据存储器的最大容量是64K(216)。 1)线选法 线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。缺点是外扩器件的数量有限,而且地址空间是不连续的。 2)全地址译码法 由于线选法中一根高位地址线只能选通一个部件,每个部件占用了很多重复的地址空间,从而限制了外部扩展部件的数量。采用译码法的目的是减少各部件所占用的 地址空间,以增加扩展部件的数量。 3)译码器级连 当组成存储器的芯片较多,不能用线选法片选,又没有大位数译码器时,可采用多个小位数译码器级连的方式进行译码片选. 4)译码法与线选法的混合使用 译码法与线选法的混合使用时,凡用于译码的地址线就不应再用于线选,反之,已用于线选的地址线就不应再用于译码器的译码输入信号. (三)习题与思考题 1. 简要说明MCS-51 单片机的扩展原理。

LCD1602工作原理及与51单片机的接口电路

1602LCD 分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别 1602LCD 主要技术参数: 显示容量:16×2 个字符 芯片工作电压:4.5—5.5V 工作电流:2.0mA(5.0V) 模块最佳工作电压:5.0V 字符尺寸:2.95×4.35(W×H)mm 引脚功能说明 1602LCD 采用标准的 14脚(无背光)或 16脚(带背光)接口,各引脚接口说明如表 10-13所示: 编号符号引脚说明编号符号引脚说明 1 VSS 电源地 9 D 2 数据 2 VDD 电源正极 10 D 3 数据 3 VL 液晶显示偏压 11 D 4 数据 4 RS 数据/命令选择 12 D 5 数据 5 R/W 读/写选择 13 D 6 数据 6 E 使能信号 14 D 7 数据 7 D0 数据 15 BLA 背光源正极 8 D1 数据 16 BLK 背光源负极 表 10-13:引脚接口说明表 第 1 脚:VSS 为地电源。 第 2 脚:VDD接 5V正电源。 第 3 脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个 10K 的电位器调整对比度。 第 4 脚:RS 为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。 第 5 脚:R/W 为读写信号线,高电平时进行读操作,低电平时进行写操作。当 RS和 R/W 共同为低电平时可以写入指令或者显示地址,当 RS 为低电平 R/W 为高电平时可以读忙信号,当 RS 为高电平 R/W为低电平时可以写入数据。 第 6 脚:E端为使能端,当 E 端由高电平跳变成低电平时,液晶模块执行命令。 第 7~14脚:D0~D7为 8 位双向数据线。 第 15脚:背光源正极。 第 16脚:背光源负极。 LCD寄存器的选择

80C51单片机内部结构和工作原理

第2章80C51单片机内部结构和工作原理 本章要点 80C51系列单片机内部结构 外部引脚功能 存储空间配置和功能 片内RAM结构和功能 特殊功能寄存器的用途和功能 程序计数器PC的作用和基本工作方式 I/O端口结构、工作原理及功能 时钟和时序 复位电路、复位条件和复位后状态 低功耗工作方式的作用和进入退出的方法 §2-1 内部结构和引脚功能 一、 二、引脚功能 40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。

⒈电源: ⑴VCC - 芯片电源,接+5V; ⑵VSS - 接地端; ⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊控制线:控制线共有4根, ⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ①ALE功能:用来锁存P0口送出的低8位地址 ②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 ⑵PSEN:外ROM读选通信号。 ⑶RST/VPD:复位/备用电源。 ①RST(Reset)功能:复位信号输入端。 ②VPD功能:在Vcc掉电情况下,接备用电源。 ⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。 ①EA功能:内外ROM选择端。 ②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋I/O线 80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。 P3.0 ——RXD:串行口输入端; P3.1 ——TXD:串行口输出端; P3.2 ——INT0:外部中断0请求输入端; P3.3 ——INT1:外部中断1请求输入端; P3.4 ——T0:定时/计数器0外部信号输入端; P3.5 ——T1:定时/计数器1外部信号输入端; P3.6 ——WR:外RAM写选通信号输出端; P3.7 ——RD:外RAM读选通信号输出端。 §2-1 存储空间配置和功能 80C51的存储器组织结构可以分为三个不同的存储空间,分别是: ⑴64KB程序存储器(ROM),包括片内ROM和片外ROM; ⑵64KB外部数据存储器(外RAM); ⑶256B内部数据存储器(内RAM) (包括特殊功能寄存器)。 80C51存储空间配置图 一、程序存储器(ROM) 地址范围:0000H~FFFFH,共64KB。其中:

51单片机AD89电路设计程序+原理图

AD0809在51单片机中的应用 我们在做一个单片机系统时,常常会遇到这样那样的数据采集,在这些被采集的数据中,大部分可以通过我们的I/O口扩展接口电路直接得到,由于51单片机大部分不带AD转换器,所以模拟量的采集就必须靠A/D或V/F实现。下现我们就来了解一下AD0809与51单片机的接口及其程序设计。 1、AD0809的逻辑结构 ADC0809是8位逐次逼近型A/D转换器。它由一个8路模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成(见图1)。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 2、AD0809的工作原理 IN0-IN7:8条模拟量输入通道

ADC0809对输入模拟量要求:信号单极性,电压范围是0 -5V,若信号太小,必须进行放大;输入的模拟量在转换 过程中应该保持不变,如若模拟量变化太快,则需在输入 前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A, B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5 1 1 0 IN6 1 1 1 IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。 3、ADC0809应用说明 (1). ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。 (2).初始化时,使ST和OE信号全为低电平。 (3).送要转换的哪一通道的地址到A,B,C端口上。 (4).在ST端给出一个至少有100ns宽的正脉冲信号。 (5).是否转换完毕,我们根据EOC信号来判断。

51单片机存储器结构介绍

MCS-51单片机存储器结构 从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令,以产生不同的存储器空间的选通信号。 【程序内存ROM】 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM; EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口 0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 【内部数据存储器RAM】 物理上分为两大区:00H ~ 7FH(低128单元用户RAM 和高128单元SFR区) 作用:作数据缓冲器用。

一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。(对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的EA端必须接地。强制CPU从外部程序存储器读取程序。)对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC 值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。 0013H—001AH 外部中断1中断地址区。 001BH—0022H 定时/计数器1中断地址区。 0023H—002AH 串行中断地址区。 可见以上的40个单元是专门用于存放中断处理程序 的地址单元,中断响应后,按中断的类型,自动转到各 自的中断区去执行程序。从上面可以看出,每个中断服 务程序只有8个字节单元,用8个字节来存放一个中断 服务程序显然是不可能的。因此以上地址单元不能用于 存放程序的其他内容,只能存放中断服务程序。但是通 常情况下,我们是在中断响应的地址区安放一条无条件 转移指令,指向程序存储器的其它真正存放中断服务程 序的空间去执行,这样中断响应后,CPU读到这条转移指 令,便转向其他地方去继续执行中断服务程序。 右图是ROM的地址分配图: 从图中大家可以看到,0000H-0002H,只有三个存储单 元,3个存储单元在我们的程序存放时是存放不了实际意义的程序的,通常我们在实际编写程序时是在这里安排一条ORG指令,通过ORG指令跳转到从0033H开始的用户ROM区域,再来安排我们的程序语言。从0033开始的用户ROM区域用户可以通过ORG指令任意安排,但在应用中应注意,不要超过了实际的存储空间,不然程序就会找不到。

相关文档
最新文档