浅谈分块矩阵的行列式及逆矩阵

浅谈分块矩阵的行列式及逆矩阵

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

二、二阶行列式与逆矩阵

二阶行列式与逆矩阵 【学习目标】了解二阶行列式的定义,掌握二阶行列式的计算方法,运用行列式求逆矩阵; 【教材解读】 一、 行列式与矩阵 1. 行列式:我们把a b A c d ??=????两边的“??????”改为“”,于是,我们把a b c d 称为二阶行列式,并称它为矩阵a b A c d ??=???? 2. 3. 矩阵与行列式的区别:矩阵a b A c d ??= ???? 表示一个数表,而行列式a b A c d =是一个数值. 二、 利用行列式求逆矩阵 设a b A c d ??= ???? ,记||a b A ad bc c d ==-.则 1. 矩阵 A 2. 当0A ≠时,1||||||||d b d b A A ad bc ad bc A c a c a A A ad bc ad bc --??-??????--??==??--????????--?? ?? 【典例剖析】 例1. 设4112A -??= ????,判断A 是否是可逆矩阵,若可逆,求出1A -. 例2. 判断下列矩阵是否可逆?若可逆,求出逆矩阵 (1) 1111A -??= ???? (2)101b B ??=???? (3)1111A ??=???? 例3. 已知矩阵234b A ??= ???? 可逆,求实数b 的范围.

【自我评价】 1. 展开下列行列式,并化简 (1)10937-- (2)121m m m m +++ (3)5779 2. 矩阵00a d 可逆的条件为 . 3. 行列式(,,,{1,1,2})a b a b c d c d ∈-的所有可能值中,最大的是 . 4. 若点(2,2)A 在矩阵cos sin sin cos M αααα-??=????对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵.

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

第八讲 矩阵的分块法

第八讲 矩阵的分块法 一、矩阵的分块法 用处:(1)将高阶矩阵用低阶矩阵表示 (2)把每一小块看成元素一样按矩阵的运算来进行运算 (3)分块之后使得矩阵的一些运算简化 分块的标准:(1)能分出一些零子块 (2)能分出一些单位矩阵 (3)分成数量矩阵 二、分块矩阵的运算 简单解释一下即可,不做要求 三、分块对角矩阵 1、定义 2、对应的行列式的求法 3、逆矩阵的求法 例题1、设???? ? ??--=320210002A ,求A ,1-A 四、线性方程组的矩阵表示 1、一般表示 ?????=++=++m n mn m n n b x a x a b x a x a 1 111111 系数矩阵n m m m n a a a a A ?????? ??=11111

未知量矩阵???? ? ??=n x x X 1 常数项矩阵???? ? ??=m b b b 1 2、线性方程组的矩阵表示 将上面的方程组用矩阵表示: ???? ? ??=????? ??????? ??m n m m n b b x x a a a a 1111111 b AX = 例题:设?????=--=-+-=+-02212321 321321x x x x x x x x x ,写出矩阵表达式。 对角矩阵的行列式值和逆矩阵的求法要求必须会。 练习题 1、 求逆矩阵101210002A ?? ?= ? ??? 2、 求逆矩阵1200250000620032A ?? ? ?= ? ??? 3、求x 和y ,使2180341x y -??????+= ??? ?-?????? . 4、 求x ,y 和z ,使110101************x y z --?????? ??? ?-= ??? ? ??? ?-??????

第四讲矩阵的运算和逆矩阵

§2.2 矩阵的运算 1.矩阵的加法定义:设有两个n m ?矩阵)(),(ij ij b B a A ==,那么矩阵A 与B 的和记作A +B ,规定为 n m ij ij b a B A ?+=+)( 设矩阵)(),(ij ij a A a A -=-=记,A -称为矩阵A 的负矩阵.显然有 0)(=-+A A . 规定矩阵的减法为)(B A B A -+=-. 2.数与矩阵相乘定义:数λ与矩阵)(ij a A =的乘积记作A λ,规定为n m ij a A ?=)(λλ 由数λ与矩阵A 的每一个元素相乘。 数乘矩阵满足下列运算规律(设B A ,为同型矩阵,μλ,为数): )(i )()(A A μλλμ= )(ii A A A μλμλ+=+)( )(iii B A B A λλλ+=+)( 3.矩阵与矩阵相乘定义:设)(ij a A =是一个s m ?矩阵,)(ij b B =是一个n s ?矩 那么规定矩阵A 与矩阵B 的乘积是一个n m ?矩阵)(ij c C =,其中),,2,1;,,2,1(,12211n j m i b a b a b a b a c kj s k ik sj is j i j i ij ===+++=∑= 并把此乘积记作AB C =,两矩阵相乘,要求左边距阵的列等于右边矩阵的行,乘积的矩阵的行与左边的行相同,列与右边的列相同。 例3:求矩阵???? ? ??-=???? ??-=043211,012301B A 的乘积BA AB 及. 解 ???? ? ??--=???? ??--=1204638311,50113BA AB 从本例可以看出AB 不一定等于BA ,即矩阵乘法不满足交换律

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

行列式与矩阵求逆练习综述

第二章行列式与矩阵求逆练习班级: 姓名: 学号 : 一、计算下列行列式: 1.600 300301395200199204 100103= 20000 315214 131000300152001410032 12 32=--=--=--c c c c 解:原式 2.1 2 4 99102201112-= 31 241211 121 241121

12100124121112124110021001200112-==-+=+-++=解:原式 二、确定下列排列的逆序数,并指出是偶排列还是奇排列? 1. 53214 解:逆序数t=7,为奇排列。 2. 18273645 解:逆序数t=12,为偶排列。 三、在6阶行列式中,256651144332651456423321a a a a a a a a a a a a , 这两项应带有什么符 号? 解: ,带正号。 ,逆序数为,带负号; 逆序数为85,665143322514256651144332655642332114651456423321a a a a a a a a a a a a a a a a a a a a a a a a == 四、利用行列式的定义证明: 5 66 000000000000002000230 023402345x x x x x x =-- . 1054321666116651423324155

66 51423324156543216 54321===-==-===-=-=∑t t a x a x a x a x a x a x a a a a a a a a a a a a t j j j j j j t 的逆序数,为排列,,,,,其中((解:由定义,左式 五、利用行列式的性质计算下列各行列式: 1. 216 4 72954 1732152 ----- 90 123 116 2110 01 23011602 12 1523

分块矩阵行列式计算的若干方法(本科毕业原创论文)

分块矩阵行列式计算的若干方法 摘要:矩阵是线性代数中研究的重要对象,也是数字计算中的一个重要工 具,矩阵运算具有整体性和简洁性的特点。我们应该充分注意矩阵运算的一些特殊规律。为了研究问题的需要,适当的对矩阵进行分块,把一个大矩阵看成是由一些小矩阵块为元素组成的,这样可使矩阵的结构看的更清楚,表达和运算更简便的特点。矩阵分块的思想在线性代数证明以及应用中是十分有用的。运用矩阵分块的思想,可使解题更简洁,思路更开阔。本文就将分块矩阵的思想运用到行列式的计算当中来,利用分块矩阵来计算行列式,并且得出一些简便的方法。借助准三角形分块矩阵的行列式值的结果简化高阶行列式的计算。例如,本文讨论了利用分块矩阵计算行列式的︱H ︱= B C D A 方法,即(1)当矩阵A 或 B 可逆时; (2)当矩阵A=B,C=D 时;(3)当A 与C 或者B 与C 可交换时;(4)当矩阵H 被分成 两个特殊矩阵的和时等一些方法去探究分块矩阵行列式计算求值的若干方法。 关键词:分块矩阵;准三角形分块矩阵;可逆矩阵;行列式;计算;单位 矩阵

Several Measures Of Block Matrix In Computing Determinant Zhouxu (Hunan Normal University Mathematics and Applied Mathematics Grade 2004) Abstract :Matrix is the important object which in the linear algebra studies, is also a important tool in the digital computation . The matrix operation with integrity and simplicity of the characteristics. We should pay attention to some special rules of the matrix operation fully.In order to study the issue of the need, we carries on the piecemeal suitably to the matrix,regard a big matrix as some small ones,which integrate it, This will enable the matrix structure more clearly,with the characteristics of expression and computing easier.The thought of dividing matrix into blocks is very important in proving and applying the linear https://www.360docs.net/doc/f38164144.html,e the thought of dividing matrix to blocks can help us to solve problems more pithily and think methods more widely.This thesis uses the blocking matrix method into the calculation of determinant,tries to solve the linear equations . Severa1 more general results are proved through the way aided by the result of the determinants for quasi-triangle piece matrices ,which does not change the nature of the determinnts ,For example, this article discussed the methods of computing ︱H ︱= B C D A with using block matrix. That is:(1)A and B are invertible matrixes;(2)A=B and C=D;(3)AC=CA or BC=CB;(4)matrix H is divided into two particular matrix , And some other ways to explore block matrix determinant for Calculating its value Key words :block matrix; quasi —triangle piece matrices ;inverse matrices ; determinants ; computation ;unit matrix

二阶行列式与逆矩阵

二阶行列式与逆矩阵 教学目标 1. 了解行列式的概念; 2.会用二阶行列式求逆矩阵。 教学重点及难点 用行列式求逆矩阵。 教学过程 一、复习引入 (1)逆矩阵的概念。 (2)逆矩阵的性质。 二、新课讲解. 例1 设A= ???43 ?? ?21, 问A 是否可逆?如果可逆,求其逆矩阵。 例2设A= ???43 ?? ?21,问A 是否可逆?如果可逆,求其逆矩阵。 思考:对于一般的二阶矩阵A=? ??b a ?? ?d c ,是否有:当0≠-bc ad 时,A 可逆;当0=-bc ad 时,A 不可逆?

结论:如果矩阵A=? ?? b a ?? ?d c 是可逆的,则0≠-bc ad 。 表达式 bc ad -称为二阶行列式,记作 c a d b ,即 c a d b =b c a d -。ad bc -也称为行列式a b c d 的展开式。符号记为:detA 或|A| ① 反之,当 ≠-bc ad 时,有 ??? ?? ?-A c det det A d ?? ?? ? ? det A a det A b -?? ?b a ?? ?d c = ?? ?b a ?? ?d c ?? ? ???-A c det det A d ? ??? ??det A a det A b -=1001?? ? ??? 。 【可逆矩阵的充要条件】 定理:二阶矩阵A=? ?? b a ?? ?d c 可逆,当且仅当0≠-bc ad 。 当矩阵A=? ?? b a ?? ?d c 可逆时,1-A =?? ? ???-A c det det A d ? ??? ??det A a det A b -。 1.计算二阶行列式: ① 31 42 ② 2 2 1 3 λλ-- 2.判断下列二阶矩阵是否可逆,若可逆,求出逆矩阵。 ①A =0110?? ?-?? ②B =1100?? ??? 三、课堂小结

分块矩阵的方法,技巧与应用

分块矩阵的方法、技巧与应用 内容摘要有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的 一样。特别在运算中,把这些小矩阵当作数一样处理。这就是矩阵的分块。设A 是一个m*n 矩阵 11 121212221 2 n n m m mn a a a a a a A a a a ?????? =???? ?? 用若干横线将它分成s 块,若干竖线将它分成r 块,于是有*r s 的分块矩阵 1112121 2121 2 s s r r rs A A A A A A A A A A ?????? =???? ?? 其中 ij A 表示一个矩阵。 关键词矩阵,分块矩阵,逆矩阵,准对角矩阵 1. 导言 在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题。本文将主要介绍分块矩阵的一些初等变换的方法技巧,就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面进行一些基本研究。 2. 1.分块矩阵的简介 矩阵分块为矩阵运算带来便利,最常用的矩阵分块是2*2块

A B C D ?? ??? , 其中A 为*m m 矩阵块,D 为*n n 矩阵块。 例:在矩阵 2 1210000010012101 10 1E A A E ?? ? ?? ?== ? ?-?? ??? 中,2E 代表2级单位矩阵,而 11211A -??= ???,0000O ??= ??? 在矩阵 11 1221221032120124111 15 3B B B B B ?? ? -?? ?== ? ?-?? ?-?? 中, 111012B ?? = ?-?? ,123201B ??= ???, 211011B ??= ?--?? ,224120B ?? = ??? . 在计算AB 时,把A ,B 都看成事由这些小矩阵组成的,即按2阶矩阵来运算,于是 2 11 1211 12 12212211121 112220E B B B B AB A E B B A B B A B B ??????== ??? ? ++??????

证明行列式和矩阵等于零的几种经典方法

前言: 一、线代的特点: 1、内容抽象 2、概念多 3、符号多 4、计算原理简单但计算量大 5、证明简洁但技巧性强 6、应用广泛 二、学习中要注意的问题 1、不要急于求成,不要急于做难题。要分层次,扎扎实实的学习 2、熟练掌握基本内容。 基本概念(定义、符号) 基本结论(定理、公式) 基本计算(计算行列式、解线性方程组、求逆矩阵等) 基本证明和推理方法 3、自己动手推证书中的每个结果 尽量体会结论、证明的思想方法 用自己喜欢的方式写出简要总结 4、贯穿前后,注意发现线代课内容的重要规律。 提出问题的规律(存在、个数、结构、求法) 变换和标准形式(如行列式和上三角行列式) 问题相互转化 5、要多与同学讨论,虚心向别人请教问题。要经常提出问题,思考问题,乐于同别人交流 该方法引至李永乐老师的讲义,由KJ1234CN整理 一、行列式等于零的证明方法 例题1:A^2=A,A≠E,证明|A|=0(复习全书理工类P364例1.35) 由于书上已经有详尽的解题方法(四种),KJ不再复述,KJ在此只强调证法二 在这里有一种常见的错误解法 由A^2=A,有A(A-E)=0,∵A≠E∴(A-E)≠0,∴A=0 ∴|A|=0 其错误在于没有搞清楚矩阵的运算规则,AB=0,若B≠0不能推出A=0。 例如 [1 1][ 1 1] [1 1][-1 -1]=0,但是A、B都不等于0 (KJ废话:该种方法由错误的方法解出了正确的答案,很多人在做题过程中经常只对答案而不管过程,考试的时候也使用他用过的错误的方法,结果出来的分数与他估计的相去甚远,其原因我想也就在与此!他们没有细细体味书上的解题过程,也没有反省自己的解题方法与书上的不同之处。KJ奉劝大家,在看书时,对于例题一定要先做后看,并对和书上的不同的解题方法细细体会,辨别对错) 二、矩阵等于零的证明方法 例题2:A是m*n的矩阵,B是n*p的矩阵,R(B)=n。证明当AB=0时,A=0 证法一:<方法>矩阵的秩等于0,则矩阵等于0

矩阵与行列式

第一章 矩阵与行列式 释疑解惑 1. 关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会 把用中括号或小括号所表示的矩阵如a c b d ?? ??? 写成两边各划一竖线的行列式如a c b d ,或把 行列式写成矩阵等。还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。n 阶行列式是2 n 个数(元素)按特定法则对应的一个值,它可看成n 阶方 阵 111212122212n n n n nn a a a a a a A a a a ????? ?=???????? 的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特 定的一个数值, det A 、A 或n D ,即 111 det n ij k k k A A a a A ==== ∑ (如二阶方阵 a d A b c ??= ???所对应的行列式是这样一个新的对象: a d ac bd b c =-)。也正 因为于此,必须注意二者的本质区别,如当A 为n 阶方阵时,不可把A λ与A λ等同起来, 而是 n A A λλ =,等等。 2. 关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵 m n A ?是用数λ乘矩阵m n A ?中每一个元素得到的新的m n ?矩阵;二矩阵相乘与前述这两种 线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。 3. 关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。要记住方阵可逆的充要条件为 A ≠以及关系式 * A A A E =,二者有着重要与广泛的应用。要弄清A 的伴随方阵是矩阵()ij A a =的各元素 代数余子式为元素的矩阵的转置,否则会出错。要会用两种方法求逆阵,从而会用逆阵求解线性方程组及各种矩阵方程。 4. 关于矩阵的初等变换:首先要懂得矩阵的三种初等变换的算法,明白一个矩阵经过一次初等变换并非完全不变,变换前后的矩阵间只是一种特殊的所谓等价关系(如(,)~E i j A A ,而不是(,),E i j A A =等等)。还要能将行列式性质中提公因子、交换两 行(列)与用常数乘某行(列)加到另一行(列)上去后的结果弄清楚,并可与相应方阵的初等变换进行对比。重要的是知道初等变换不改变矩阵的秩。 5. 关于矩阵的秩:矩阵的秩是由解线性方程组引入的一个新概念,对它要逐步加深理解。为此,首先应弄清什么是矩阵的行阶梯形:其一个“台阶”(非零行)只有一行,即任一行的首非零元素下面(同列)的元素全为零,不能把两行的首非零元素位于同一列视为一个“台阶”,而全为零的一行也是一个台阶,且要位于非零行下方。这里,要求会用矩阵的行初等变换法和计算子式法两种方法求可逆方阵的逆阵。

行列式和矩阵从概念到运算的联系与区别 江兵兵

行列式与矩阵从概念到运算的联系与区别 江兵兵 (天水师范学院数学与统计学院甘肃天水74100) 摘要:行列式与矩阵是两个相对独立的基本理论结果,是两个完全不同的概念, 那么它们之间有着怎样的联系与区别,本文通过详细举例论证对行列式与矩阵从其概念的定义到有关运算方面的联系与区别做了详细说明,使读者对行列式与矩阵有了进一步的认识,达到灵活熟练的运用相关知识解决有关问题。 关键字:行列式;矩阵;概念;运算;转置 The determinant and the relationship and difference matrix from concept to operation Jiang Bingbing (School of Mathematics and Statistics tianshui Normal University, Tianshui 74100) Abstract:determinant and matrix is basic theory of two relatively independent as a result, are two entirely different concepts, so the relationship and difference between them have how, for example demonstrated in this article, through detailed determinant and matrix from the definition of the concept to the operation made detailed aspects of the relation and distinction between, make readers to have further understanding of the determinant and matrix, to achieve flexible use of related knowledge skilled to solve the problem. Key words: the determinant; Matrix; Concept; Calculations; transpose

相关文档
最新文档