动力学基本定律和守恒定律

动力学基本定律和守恒定律
动力学基本定律和守恒定律

第2章 动力学基本定律补充题

1. 一质量为m 的质点以不变速率v 沿T2-2-10图中正三角形ABC

的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大

v . 2. 一质点受力i x F

2

3=(SI)作用, 沿x 轴正方向运动. 在从x = 0到x = 2m 的过程中, 力F 作功为 8 J .

3. 一个质点在几个力同时作用下的位移为:k j i r

654+-=?(SI), 其中一个恒力为: k j i F

953+--=(SI).这个力在该位移过程中所作的功为 67 J .

4. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F +=作用在质点上.在该质点从坐标原点运动到

)2,0(R 位置过程中,力F 对它所作的功为=202R F

5. 质量为m = 0.5kg 的质点在xOy 平面内运动,其运动方程为x = 5t , y = 0.5 t 2 (SI), 从t = 2s 到t = 4s 这段时间内, 外力对质点作的功为 3J .

6. 一长为l ,质量为m 的匀质链条,放在光滑的桌面上,若其长度的1/5悬挂于桌边下,将其慢慢拉回桌面,需做功

mgl 50

1

. 7 一质量为m 的质点在指向圆心的平方反比力2

/r k F -=的作用下,作半径为r 的圆周

运动,此质点的速度

v 械能=E r

k

2-

T2-2-14图

8. 两小球的质量均为m ,小球1从离地面高为h 处由静止下落,小球2在小球1的正下方地面上以初速0v

同时竖直上抛.设空气

阻力与小球的速率成正比,比例系数为k (常量).试求两小球相遇

的时间、地点以及相遇时两小球的速度.

解:两小球均受重力和阻力的作用.小球1向下运动,速度为负,阻力-k v 沿+y 向,所受合力为-k v - mg . 小球2向上运动,速度为正,阻力、重力均沿-y 向,合力亦为-k v –mg ,故两小球的动力学方程具有如下相同的形式

mg k t y m --=v 22d d (1)

由动力学方程(1)有 g m k t --=v v d d 分离变量

t g m

k

d d =--

v v

(2)

对小球1,其初始条件为t = 0 时,v 10 = 0 ,y 10 = h .积分(2)式

??=--t

t g m

d d 1

v v v

得 )e 1(-1t m k

k

mg

--=v (3)

对小球2,其初始条件为t = 0 时,v 20 = v 0 ,y 20 = 0.积分(2)式

??=--t

t g m

k

0d d 2

v v

v v

得 k

mg

k mg t m k

-

+=-02e )(v v (4) 对小球1,由(3)式有 )e 1(d d -1t m k

k

mg

t y --,利用初始条件积分得

t k mg

k

g m h y t m k

--+=)e 1(-221 (5)

对小球2,由(4)式利用初始条件积分得

t k

mg

k mg k m y t m k

--+=)e 1)((-02v (6)

(1) 两小球相遇时, y 1 = y 2 ,由(5)、(6)式可得相遇时间

T2-3-2图

A2-3-2图

)1ln(0

v m kh k m t --

=* (7) (2) 将(7) 代入(5)或(6)式得相遇地点为

)1ln()1(0220v v m kh

k

g m h k mg y -++=*

(8)

(3) 将(7)式分别代入(3)和(4)中可得相遇速度:

001)]1(1[v v v gh

m kh k mg -

=---

=*

(9) m

kh gh k mg m kh k mg -

-=--+=*

)()1)((00002v v v v v (10)

9. 已知一水桶以匀角速度ω 绕自身轴z 转动,水相对圆筒静止,求水

面的形状(z - r 关系).

解: 以水表面任一小体积隔离体m 作为研究对象,m 受力为重力mg 及水对水面m 的作用力N (⊥水面),稳定时无切向力(见A2-3-6图) m 作匀速圆周运动

r a

2

ω-=

Z 方向 0cos =-mg N θ (1) -r 方向 r m N 2

sin ωθ= (2) 由(1)、(2) 式有 r

z g

r

d d t a n 2=

=ωθ 积分有

r r g

z z

z r

d )(

d 0

2

?

?=ω

得 022

)2(z r g

z +=ω

水面是旋转抛物面

10. 如T2-3-9图所示,砂子从h =0.8m 高处下落到以3 m ?s -1的速率水平向右运动的传送带上.取重力加速度g =10 m ?s -2,求传送带给予沙子的作用力.

T2-3-7图

A2-3-7图

解:设单位时间内落到传送带上砂子的质量为p .以t t t d ~+时间内落下的砂子d m 为研究对象,视为质点t p m d d =

根据质点的动量定理,在d m 落到传送带上到与传送带一起运动的过程中

0d d d d v v ?-?==m m t F I

式中

()

101s m 48.01022,s m 3--?=??==?=gh v v ()0v v -=p F

由A2-3-9矢量图可见,F

与水平方向夹角为

533

4

tg tg 01

===-v v α

11. 矿砂从传送带A 落到另一传送带B (如T2-3-10图),其速度的大小11s m 4-?=v ,速度方向与竖直方向成30°角;而传送带B 与水平线成15°角,其速度的大小12s m 2-?=v .如果传送带的运送量恒定,设为1h kg 2000-?=m q ,求矿砂作用在传送带B 上的力的大小和方向.

解:设在极短时间△t 内落在传送带B 上矿砂的质量为m , 即t q m m ?=,如A2-3-10矢量图所示,矿砂动量的增量

()12v v v

m m m -=?

设传送带对矿砂平均作用力为F

,由动量定理,

=??t F ()12v v v m m m -=?

()

75cos 221222112v v v v v v -+=?-=m q t m F

()N 21.275cos 242243600

200022=???-+= 方向由正弦定理确定: ()θsin 75

sin 2v v

m m =? →

29=θ 由牛顿第三定律,矿砂作用在传送带B 上作用力与F

大小相等,方向相反,即大小为

2.21N ,方向偏离竖直方向1°,指向前下方.

A2-3-9图

d v ?m

m d v

t

F d ?

A2-3-10图

(?

T2-3-10图

12. 高为h 的光滑桌面上,放一质量为M 的木块.质量为m 的子弹以速率v 0沿图示方向( 图中θ 角已知)射入木块并与木块一起运动.求:

(1) 木块落地时的速率;

(2) 木块给子弹的冲量的大小.

解:(1) m 和M 完全非弹性碰撞, 水平方向无外力,系统水平动量守恒

v v )(c o s 0M m m +=θ

m 和M 一起由桌边滑下至落地,无外力,只受重力(保守内力)作用,系统机械能守恒

以地面为重力势能零点,

22)(2

1

)()(21V M m gh M m M m +=+++v 由 、 式得m 和M 落地的速率

gh M

m m gh V 2)cos (

22

02++=+=θv v

(2) 对m 用质点的动量定理,M 对m 的冲量的两个分量为

M

m mM m m I x +-=-=θθcos cos 00v v v

θθs i n )s i n (000v v m m I y =--= M 对m 的冲量的大小为

202

02

2)sin ()cos (

θθv v m M

m M I I I y x ++=+=

13 一人从10m 深的井中提水,起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去0.2kg 的水.求水桶匀速地从井中提到井口,人所作的功.

解:如图所示,以井中水面为坐标原点,以竖直向上为y 正方向.因为匀速提水,所以人的拉力大小等于水桶和水的重量,它随升高的位置面变化而变化,在高为y 处,拉力为

kgy mg F -= 式中 ,kg 11)110(=+=m 1

m kg 2.0-?=k . 人作功为

A2-3-14图

v m

(J)

980d )8.92.08.911(d )(d 10

=?-?=-==?

??y y y

kgy mg y F A h

14 有一水平运动的皮带将砂子从一处运到另一处,砂子经一垂直的静止漏斗落到皮带上,皮带以恒定的速率v 水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:

(1) 若每秒有质量为t

M

M d d =?的砂子落到皮带上,要维持皮带以恒定速率v 运动,需要多大的功率?

(2) 若11s m 5.1,s kg 20--?=?=?v M , 水平牵引力多大? 所需功率多大?

解:(1) 设t 时刻落到皮带上的砂子质量为M ,速率为v ;

t +d t 时刻,皮带上砂子的质量为M M d +,速率也是v . 根据动量定理,砂子在d t 时间受到的冲量

()()v v v ?=?+-+=M M M M M t F d 0d d d

所以得 M t

M

F ??==v v d d 由牛顿第三定律,砂子对皮带的作用力大小也是F .为维持皮带作匀速运动,动

力源对皮带的牵引力大小也等于F ,且与F

同向,因而,动力源提供的功率为

t

M M F p d d 22v v v =?=?=

(2) 将题中数据代入(1)中结果得水平牵引力大小为 ()N 30205.1d d =?==?=''t

M

M F v

v 所需功率()W 45205.122=?=?=M P v

15. 两物块分别固结在一轻质弹簧两端, 放置在光滑水平面上.先将两物块水平拉开,使弹簧伸长 l ,然后无初速释放.已知:两物块质量分别为m 1,m 2 和弹簧的的劲度系数为k ,求释放后两物块的最大相对速度. 解:选地面参考系,考查(m 1---m 2 ---弹簧)系统

无水平外力,系统动量守恒

设两物块相对速度最大时,两物块的速度分别为v 1、v 2,则在

x 向有 02211=+v v m m

无非保守内力,系统机械能守恒,最大相对速度对应其初势能全部转化为动能,有

T2-3-20图

m

22221122

12121v v m m kl += 联立 、 式可得

)(2112

21m m m kl m +=

v , 2=v 两物块的最大相对速度的大小为

2

12

2112

2

121)(m m kl m m m m m +=

+=-v v v

16. 水平面上有一质量为M 、倾角为θ 的楔块;

下滑.求m 滑到底面的过程中, m 对M 作的功W

解:如A2-3-21(a)图所示,设m 相对于M 的速度为m 相对于地的速度为v 对mM 作的功为

2

21MV W = (1)

在m 下滑、同时M 后退的过程中,以(m + M )为系统,系统在x 向不受外力,动量守恒

0=+x m MV v (2) 对(m + M + 地球)系统,m 与M 之间的一对正压力

作功之和为零,只有保守力作功,系统机械能守恒 m g h MV m y x =++2

222

1)(21v v

(3)

由相对运动关系 V

+'=v v 得

θt a n )

(=-+x y V v v (4)

联立(1)---(4)式解得 )

sin )(1(cos 22θθ

++=m

M

m M Mgh W

设下滑时间为T ,由(2)式, ??=+T

T

x t m t V M

0d d v

0=-m mS MS (5) 位移关系: θtan =+m

S S h

(6) 由(5)、(6)式解得

θ

t a n )1(m

M

h

S +=

17. 地球可看作半径 R = 6400km 的球体,一颗人造地球卫星在地面上空h = 800 km 的圆形轨道上以v 1=7.5 km ?s -1的速度绕地球运行.今在卫星外侧点燃一个小火箭,给卫星附加一个指向地心的分速度v 2 =

0.2 km ?s -1

.问此后卫星的椭圆轨道的近地点和远地点离地面各多少

公里?

解:火箭点燃处即为卫星由圆轨道转为椭圆轨道的转轨点.设此处卫星对地心的位矢为r

,卫星的速度应为21v v v

+=

对卫星,在转轨点所受的力(反冲力和地球引力)和在其他位置所受的力(地球引力)均指向地心,对地心外力矩为零,所以卫星在运动过程中角动量守恒. 对卫星和地球系统,只有万有引力作功,满足机械能守恒.

设卫星在近(远)地点时,位矢为r '

,速度为v ' , 对卫星,由角动量守恒得

v v ''=m

r rm 1 (1)

对(卫星+地球)系统,由机械能守恒定律,有

??

? ??'-+'=??? ??-++r GMm m r GMm m 2222121)(21v v v (2)

卫星作圆周运动时的动力学关系为

2

1

2

12 v v r GM r m r

Mm G =?= (3) 联立式(1)、(2)、(3)得r ′有两个解,分别对应近地点和远地点:

km 70132.05.7)8006400(5.72111=++?=+=

'v v v r r

km 73972.05.7)8006400(5.72112=-+?=-='v v v r r

近地点高度 km 6136400701311=-=-'=R r h

远地点高度 km 997640073972

2=-=-'=R r h

T2-3-22图

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

《能量的转化与守恒》观评课

《能量的转化与守恒》观评课 董剑2018-06-22 10:52 本人听了冯培娟老师执教的《能量的转化与守恒》,受益匪浅。本节课是初中科学功和能章节的重难点,涉及能量在转化和转移中的守恒以及方向性这两方面的知识,具有知识性、抽象性和推理性的特征。冯老师能抓住本节教材的重点和难点,以生为本、以疑为线、以启发为主、以拓展为目标,在课上,老师、学生、听课教师都能快乐的学习和参与,尤其是学生积极的学习状态给听课教师留下了深刻的印象,使本节课的教学取得了较好的效果。一、目标明确,思路清晰 冯老师能从知识、能力、思想情感等几个方面来把握,知识目标有量化要求,能力、思想情感目标也有所要求,体现学科特点;能以新课程的大纲为指导,体现年段、单元教材特点,符合学生年龄实际和认识规律,难易适度。准确地定位出本节课的教学目标:1、通过学生参与活动和探究知识,理解能量守恒定律和能举出生活中能量转化和转移守恒的例子;2、初步形成用能量转化和守恒的观点分析自然现象的意识,了解能量的转化和转移有一定的方向性。由此展开教学,达到预期的教学效果。 二、设计合理,环环相扣 冯老师依据新课程改革《科学课程标准》中教学设计理念:面向全体学生,立足学生发展,突出科学探究等基本理念。“在探究状态下学习”贯穿整个课堂教学,改变了学生被动接受的传统的教学模式。整个课堂设计层次分明、结构紧凑、逻辑严密、前后呼应。三、教学过程,跌宕起伏

(一)创设情境,巧妙激趣 情境是连接学生与书本知识的桥梁,它可以缩短学生与所学知识之间的时空距离,可以帮助教师把学生带入其境,探寻其理。冯老师抓住高年级学生的心理和思维特征,创设了贴近生活的情境:能否使用永动车解决雾霾的天气?学生由此展开讨论,但大部分的学生不明白永动车的工作原理。并以此设置悬念,引入课题,一开始就让学生处在浓厚的学习兴趣中,激发学生学习欲望,让“要求学生学”变成了“学生要求学”。 (二)温故知新,学以致用 本节课的设计是在合理考虑学生对能量转化的已有认知的基础上开展,让学生始终处于积极的思考和探究。回顾压缩气体、气体对外做功、电视机、采用冷敷降体温的生活现象,说明能量转化和守恒的普遍意义。通过学生比较分析这些生活实例在内容上的共同点,进一步让学生认识这样的事实:能的总量保持不变,即能量转化和守恒定律。利用旧知迁移进行新知的学习,并且进行小组交流,利用集体的智慧解决问题。这不仅加深对能的转化和守恒定律的理解、拓展思维的深广度、强化理论联系实际的意识与实践能力,而且发展综合疏理与归纳能力等的目标,促进学生学能的全面发展。 (三)注重探究,方法多样 本节课在教学设计和实际授课中营造了浓厚的探究氛围,冯老师能针对学生的重点、难点、关键点、易错点、知识结合点、思维汇聚点等作为设问设计的主要依据;通过设问,由点到面、由浅入深、由单一走向综合、由显见走向灵活。有学生的独立思考,如:让学生进行猜测“矿泉水瓶的速度为什么会越来越快?”。有交流合作学习和互相补充,如“势能转化为动能和内能,这三者之间有什么关系?”,“依据又是什么?”。有学生参与体验,如

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

机械能守恒定律公式汇总

机械能守恒定律单元公式汇总 做功: W=FS ·COS θ θ为力与位移的夹角 重力做功: G W =mg Δh Δh 为物体初末位置的高度差 重力势能:p E =mgh h 为物体的重心相对于零势面的高度 重力做功和重力势能变化的关系: G W =-Δp E 即重力做功与重力势能的变化量相反 弹性势能: p E =21k 2L L 为弹簧的形变量 弹力做功与弹性势能的关系: F W =-Δp E 即弹力做功与弹性势能的变化量相反 动能定理: 合W =Δk E =21m 22V -2 1m 21V 即合外力做功等于动能的变化量 合外力做功两种求解方式:1)先求合外力合F ,再求合F ·S ·COS θ 2)先求各个分力做功再求和,+++321W W W ....... 机械能守恒定律:条件:只有重力弹力做功 公式:末初E E =即初总机械能等于末机械能 变形公式:Δk E =-ΔP E 即动能的变化量与势能的变化量相反 如果是A 与B 的系统机械能守恒: 1)2211P K P K E E E E +=+即初的总机械能等于末的总机械能 2)Δk E =-ΔP E 即 Δ1k E +Δ2k E =-(Δ1P E +Δ2P E )即总的动能的变化量与总的势能的变化量相反 3)ΔA E =-ΔB E 即 Δ1k E +Δ1P E =-(Δ2k E +Δ2P E )即A 的总机械能变化量与B 的总机械能的变化量相反 能量守恒定律:末初E E =即初总能量等于末的总能量 机械能变化的情况:1)W=Δ机E 即除重力、系统内弹力外其他力做功的多少为机 械能变化量(即其他力给原有系统能量或消耗原有系统能量) 2)摩擦力做功对机械能影响: Q X F =相对f 即摩擦力乘以相对位移等于产生的热量(内能)即机械能的损失

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

初中物理《能量的转化和守恒》教学设计优秀教案

《能量的转化和守恒》教学设计优秀教案 一、教学目标 (一)知识与技能 1.知道能量守恒定律。 2.能举出日常生活中能量守恒的实例。 3.有用能量守恒的观点分析物理现象的意识。 (二)过程与方法 1.通过学生自己做小实验,发现各种现象的内在联系。 2.通过学生讨论体会能量不会凭空消失,培养学生探究物理规律的能力。 (三)情感态度和价值观 1.通过学生自己做小实验,激发学生的学习兴趣。 2.对能量的转化和守恒有一个感性的认识,为建立科学世界观和科学思维方法打基础。 二、教学重难点 本节以能量为线索,通过提问和讨论的方式,让学生对能量的转移和转化有一个感性的认识最后突出能量守恒定律及应用的重要性。能量的转化和守恒是自然科学的核心内容之一,从更深层次上反映了物质运动和相互作用的本质,与日常生活息息相关,学习这部分内容对学生树立科学的世界观、形成可持续发展的意识以及进一步学习其他科学技术,都是十分重要的。本节内容由两部分内容组成,“能量的转化”和“能量守恒定律”。能量守恒定律是本节重点,能量的转化和用能量守恒的观点分析物理现象是本节难点。 三、教学策略 先从学生熟悉的能量入手,比如内能、机械能之间的转化,在扩展到光能、电能、化学能等,同时结合图片来加深学生的理解。能量转化过程示意图需要在学生们充分讨论后再填写,答案不要求统一,合理就行。在学生知道各种能量之间可以相互转化的基础上,组织学生做好探究实验,讲解能量守恒定律时,要突出定律的物理意义,即“转化”和“守恒”。 四、教学准备 多媒体课件、黑塑料袋、水、温度计、太阳能电池、小电扇、钢笔杆、碎纸屑、乒乓球、小球撞击演示器。 五、教学过程 教学环节 教师活动 学生活动 设计意图

机械能守恒定律计算题(基础)

机械能守恒定律计算题(基础练习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀 门关闭时两桶液面的高度分别为h 1和h 2,现将 连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

高中物理动能定理机械能守恒定律公式

高中物理动能定理机械能守恒定律公式高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同(反)方向:W=Fl,功的单位:焦尔(J) 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg(h2-h1) 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。 =EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½m vt2-½mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做 功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小. 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况 下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对

《动量守恒定律》单元测试题(含答案)

A. B. 3M M +m 使沙袋向右摆动且最大摆角仍为 30°.若弹丸质量是沙袋质量的 倍,则以下结论中正 一单选题(每小题 4 分,共 40 分。) 1.下列说法正确的是( ) A .动量为零时,物体一定处于平衡状态 B .动能不变,物体的动量一定不变 C .物体所受合外力大小不变时,其动量大小一定要发生改变 D .物体受到恒力的冲量也可能做曲线运动 2.一个玻璃杯放在桌面平放的纸条上,要求把纸条从杯子下抽出,如果缓慢拉动纸条, 则杯子随纸条移动,若快速抽拉纸条,则杯子不动,以下说法中正确的是( ) A .缓慢拉动纸条时,杯子受到冲量小 B .缓慢拉动纸条时,纸对杯子作用力小,杯子也可能不动 C .快速拉动纸条时,杯子受到的冲量小 D .快速拉动纸条时,纸条对杯子水平作用力小。 3.为了模拟宇宙大爆炸的情况,科学家们使两个带正电的重离子被加速后,沿同一条 直线相向运动而发生猛烈碰撞。若要使碰撞前的动能尽可能多地转化为内能,应设 法使离子在碰撞前的瞬间具有:( ) A .大小相同的动量 B .相同的质量 C .相同的动能 D .相同的速率 4.汽车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列 说法正确的是( ) A .汽车牵引力逐渐增大 B .汽车输出功率不变 C .在任意两相等的时间内,汽车动能变化相等 D .在任意两相等的时间内,汽车动量变化的大小相等 5.甲、乙两人站在光滑的水平冰面上,他们的质量都是M ,甲手持一个质量为 m 的球,现 甲把球以对地为 v 的速度传给乙,乙接球后又以对地为 2v 的速度把球传回甲,甲接到球后, 甲、乙两人的速度大小之比为( ) 2M M +m M -m M 2(M +m ) M C. D. 6.如图所示,一沙袋用无弹性轻细绳悬于 O 点.开始时沙袋处于静止,此后弹丸以水 平速度击中沙袋后均未穿出.第一次弹丸的速度为 v1,打入沙袋后二者共同摆动的最 大摆角为 30°.当他们第 1 次返回图示位置时,第 2 粒弹丸以水平速度 v2 又击中沙袋, 1 40 确的是( ) A .v1∶v2=41∶42 B .v1∶v2=41∶83 C .v2=v1 D .v1∶v2=42∶41 7.一轻杆下端固定一个质量为 M 的小球上,上端连在轴上,并可绕轴在竖直平面内运 动,不计一切阻力。当小球在最低点时,受到水平的瞬时冲量 I 0,刚好能到达最高 点。若小球在最低点受到的瞬时冲量从 I 0 不断增大,则可知 ( )

能量的守恒与转化

能量的转化和守恒教学设计 一、课标要求: 1.通过实例了解能量及其存在的不同形式 2.能简单描述各种各样的能量和我们生活的关系 3. 通过实例认识能量可以从一个物体转移到另一个物体,不同形式的能量可以互相转化。 二、教学重点 1. 各种形式的能的转化 2. 能量守恒定律 教学难点 1.区别能量转移和能量转化 2.能量守恒定律的具体应用 三、学情分析本节内容是在学生认识生活中常见的电能、机械能、光能、内能、化学能等常规能源的基础上,对生活中常见能量转化与转移进行粗略的分析与总结,学生很容易把转化的方向弄反;容易把能量守恒理解为局部的 四、教学过程 (一)能量的转化 (1)自然界存在着多种形式的能量。 (2)在一定条件下,各种形式的能量可以相互转化和转移 演示1:划火柴 演示2:用铁锤敲打铁丝 方法点拨:在判断能量是如何转化时,可先找出是哪一种形式的能量减少了,哪一种形式的能量增加了,增加的那一种形式的能量就是由减少的那一种形式的能量转化而来的。 在自然界中能量的转化也是普遍存在的。例子分析: 1. 小朋友滑滑梯; 2. 在气体膨胀做功的现象中; 3. 在水力发电中; 4. 在火力发电厂; 5. 电流通过电热器时; 6. 电流通过电动机。有关能量转化的事例同学们一定能举出许多,请同学分析课件中的图片的能量转化… (二)能量的转移 演示3:把铁丝放在酒精灯上加热;运动的甲钢球撞击静止的乙钢球,甲球的机械能转移到乙球。在这种转移的过程中能量形式没有变。 (三)能量守恒定律 演示3:滚摆实验 问:滚摆越滚越低的过程中,机械能发生了什么变化?减少的机械能到哪里去了呢? 大量事实证明,在普遍存在的能量的转化和转移过程中,消耗多少某种形式的能量,就得到多少其他形式的能量。 科学工作者经过长期的实践探索,直到19世纪,才确立了这个自然界最普遍的定律——能量守恒定律:… 讲解:尽管有的时候,物体某种形式的能量,可能转移到几个物体或转化成

知识讲解机械能守恒定律基础

机械能守恒定律 编稿:周军审稿:吴楠楠 【学习目标】 1.明确机械能守恒定律的含义和适用条件. 2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题. 4.知道验证机械能守恒定律实验的原理方法和过程. 5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 要点一、机械能 要点诠释: (1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。 (2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统. (3)机械能是标量,但有正、负(因重力势能有正、负). (4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义. (5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. (6)重力做功的特点: ①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W=mgh.. ③重力做功与重力势能的关系:PG WE??△. 要点二、机械能守恒定律 要点诠释: (1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式. 当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种: ①1122kPkP EEEE???,即初状态的动能与势能之和等于末状态的动能与势能之和. ②Pk EE??△△或Pk EE??△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A=-△E B,即A物体机械能的增加量等于B物体机械能的减少量. 后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解. ①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化 ②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在:

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总 机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。这个规律叫做机械能守恒定律。 机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。这只能在一些特殊的惯性参考系如地球参考系中才成立。如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。 机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。 从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。 当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。 机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。 2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

7基础练习题(机械能守恒定律)

基础练习题(机械能守恒定律) 1.课外活动时,王磊同学在40 s的时间内做了25个引体向上,王磊同学的体重大约为50 kg,每次引体向上大约升高0.5 m,试估算王磊同学克服重力做功的功率大约为(g取10 N/kg)() A.100 W B.150 W C.200 W D.250 W 解析:每次引体向上克服重力做的功约为W1=mgh=50×10×0.5 J=250 J 40 s内的总功W=nW1=25×250 J=6 250 J 40 s内的功率P=W≈156 W。 答案:B 2.如图所示,质量为m的物体P放在光滑的倾角为θ的斜面体上,同时用力F向右推斜面体,使P与斜面体保持相对静止。在前进水平位移为l的过程中,斜面体对P做功为() A.Fl B.mg sin θ·l C.mg cos θ·l D.mg tan θ·l 解析:斜面对P的作用力垂直于斜面,其竖直分量为mg,所以水平分量为mg tan θ,做功为水平分量的力乘以水平位移。 答案:D 3.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫作动车,把几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,如图所示。假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。若1节动车加3节拖车编成的动车组的最大速度为160 km/h;现在我国往返北京和上海的动车组的最大速度为480 km/h,则此动车组可能是() A.由3节动车加3节拖车编成的 B.由3节动车加9节拖车编成的 C.由6节动车加2节拖车编成的 D.由3节动车加4节拖车编成的 解析:设每节车的质量为m,所受阻力为kmg,每节动车的功率为P,已知1节动车加3节拖车编成的动车组的最大速度为v1=160 km/h,设最大速度为v2=480 km/h的动车组是由x节动车加y节拖车编成的,则有xP=(x+y)kmgv2,联立解得x=3y,对照各个选项,只有选项C正确。 答案:C 4. 如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为g。在他从上向下滑到底端的过程中,下列说法

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

能量的转化与守恒教案[能量的转化与守恒]

能量的转化与守恒教案[能量的转化与守恒] 能量的转化与守恒导学案 课前预习 读课本,解答下列问题: 1、自然界中有哪些能量?它们分别对应于哪些运动形式? 2、各种能量之间都可以直接转化吗? 3、能量既不会,它只会从一种形式个物体到另一个物体,而在和的过程中,能量的总量。这就是能量守恒定律。 课堂导学 教学目标 ☆与技能 1.知道能量守恒定律。

2.能举出日常生活中能量守恒的实例。 3.有用能量守恒的观点分析物理现象的意识。 ☆过程与方法 1.通过学生自己做小实验,发现各种现象的内在联系,体会各种形式能量之间的相互转化。 2.通过学生讨论体会能量不会凭空消失,只会从一种形式转化为其他形式,或从一个物体转移到另一个物体。 ☆情感、态度与价值观 1.通过学生自己做小实验,激发学生的学习兴趣。 2.对能量的转化和守恒有一个感性的认识,为建立科学世界观和科学思维方法打基础。 3.通过学生讨论锻炼学生分析问题的能力。

学习重点:能的转化和守恒定律,强调能的转化和守恒定律是自然科学中最基本定律。学习运用能的转化和守恒原理计算一些物理习题。 学习难点:运用能的转化和守恒定律对具体的自然现象进行分析,说明能是怎样转化的。器材:黑色的塑料袋,温度计,小电机,太阳能电池,碎纸屑,乒乓球等 新课导学 一、引入新课 我们知道刀具在砂轮上磨削时,刀具发热是因为通过摩擦力做功,机械能转化为内能。在暖气片上放有一瓶冷水,过一段时间后水变热,这是通过热量传递使这瓶水内能增加。这些实例中,物体的内能为什么增加了?是凭空产生的还是由其他形式能转化来的?在学生讨论 的基础上,引出本课的课题 二、能的转化 1、想想做做:按照书中的操作,观察发生的现象,说一说发生了那些能量的转化。

高中物理电学公式 高中物理动能定理机械能守恒定律公式

高中物理电学公式高中物理动能定理机械能守恒定律公式 动能定理和机械能守恒定律公式是高中物理的重点内容和难点知识,同时在高考中占有很大的比重。下面小编给高中同学带来物理动能定理以及机械能守恒定律公式,希望对你有帮助。高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同方向:W=Fl,功的单位:焦尔 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。=EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=?mvt2-?mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK学好高中物理的方法 三个基本基本概念要清楚,基本规律要熟悉,基本方法要熟练。在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。 独立做题要独立地,保质保量地做一些题。独立解题,可能有时慢一些,有时要走弯路,但这是走向成功必由之路。 物理过程要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 上课上课要认真听讲,不走神。 笔记本上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。 学习资料学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。 时间时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。

最新高考物理动量守恒定律基础练习题

最新高考物理动量守恒定律基础练习题 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得 ,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】

能量的转化和守恒习题含答案

能量的转化和守恒 一、选择题 1、下列关于能量的转化和守恒的说法中错误的是() A. 高山上滚下的石块越来越快,说明重力势能转化为动能 B. 酒精燃烧时,将化学能转化为内能 C. 发电机发电时,将机械能转化为电能 D. 人们对太阳能的开发和利用,说明能量可以凭空产生 2、一个人用同样大小的水平方向的力拉木箱,分别在光滑和粗糙两种水平地面 前进相同的距离.关于拉力所做的功,下列说法中正确的是() A.在粗糙地面上做功较多 B.在光滑地面上做功较多 C.物体运动快的,做功较多 D.两次做功一样多 3、关于功和功率,下列说法正确的是() A、机器做功少,功率一定小 B、功率小的机器做功不一定慢。 C、功率大的机器做功一定快 D、功率大的机器一定比功率小的机器做功多 4、甲物体的比热大于乙物体的比热,若() A.甲、乙质量相等,则甲吸收的热量一定多 B.甲、乙吸收的热量相等,则乙升高的温度一定多 C.甲、乙质量相等,它们升高的温度相同,则甲吸收的热量一定多 D.甲、乙质量相等,它们放出的热量也相等,则甲降低的温度一定多 5.能量转化是非常普遍的现象,下列关于能量转化的叙述正确的是()

A.洗衣机甩干衣服时,将内能转化为机械能 B.电池放电的过程,将电能转化为化学能 C.炉灶中烘焙燃烧时,将内能转化为化学能 D.用电热水器烧水时,将电能转化为内能 6、质量较小的鸽子与质量较大的大雁在空中飞行,如果它们的动能相等,那么 () A.大雁比鸽子飞得快 B.鸽子比大雁飞得快 C.大雁比鸽子飞得高 D.鸽子比大雁飞得高 7.“神六”升空和飞行员安全返回,意味着我国航天技术又有了新的突破。火 箭发射时能量的转化情况主要是() A.太阳能转化为机械能 B.电能转化为机械能 C.化学能转化为机械能 D.机械能转化为化学能 8.下列说法正确的是() A.功率大的机械,机械效率一定高 B.在相同的时间内做功多的机械,功率一定大 C.机械效率高的机械一定省力 D.做有用功多的机械,机械效率一定高 9.下列各项中,其中没有做功的是() A.叉车举起货物 B.直升机吊起架电线的铁塔 C.马拉动原木 D.李刚用力推但没有推动大石块 10.下列情况中能量转化关系表述不正确的是() A.木柴燃烧时,化学能转化为内能

相关文档
最新文档