自动控制原理 胡寿松

自动控制原理  胡寿松
自动控制原理  胡寿松

第六版前言

第一章自动控制的一般概念

1-1 自动控制的基本原理与方式

1-2 自动控制系统示例

1-3 自动控制系统的分类

1-4 对自动控制系统的基本要求

1-5 自动控制系统的分析与设计工具习题

第二章控制系统的数学模型

2-1 控制系统的时域数学模型

2-2 控制系统的复数域数学模型

2-3 控制系统的结构图与信号流图2-4 控制系统建模实例

习题

第三章线性系统的时域分析法

3-1 系统时间响应的性能指标

3-2 一阶系统的时域分析

3-3 二阶系统的时域分析

3-4 高阶系统的时域分析

3-5 线性系统的稳定性分析

3-6 线性系统的稳态误差计算

3-7 控制系统时域设计

习题

第四章线性系统的根轨迹法

4-1 根轨迹法的基本概念

4-2 根轨迹绘制的基本法则

4-3 广义根轨迹

4-4 系统性能的分析

4-5 控制系统复域设计

习题

第五章线性系统的频域分析法

5-1 频率特性

5-2 典型环节与开环系统的频率特性5-3 频率域稳定判据

5-4 稳定裕度

5-5 闭环系统的频域性能指标

5-6 控制系统频域设计

习题

第六章线性系统的校正方法

6-1 系统的设计与校正问题

6-2 常用校正装置及其特性

6-3 串联校正

6-4 前馈校正

6-5 复合校正

6-6 控制系统校正设计

习题

第七章线性离散系统的分析与校正

7-1 离散系统的基本概念

7-2 信号的采样与保持

7-3 z变换理论

7-4 离散系统的数学模型

7-5 离散系统的稳定性与稳态误差

7-6 离散系统的动态性能分析

7-7 离散系统的数字校正

7-8 离散控制系统设计

习题

第八章非线性控制系统分析

8-1 非线性控制系统概述

8-2 常见非线性特性及其对系统运动的影响8-3 相平面法

8-4 描述函数法

8-5 非线性控制的逆系统方法

8-6 非线性控制系统设计

习题

第九章线性系统的状态空间分析与综合

9-1 线性系统的状态空间描述

9-2 线性系统的可控性与可观测性

9-3 线性定常系统的反馈结构及状态观测器9-4 李雅普诺夫稳定性分析

9-5 控制系统状态空间设计

习题

第十章动态系统的最优控制方法

10-1 最优控制的一般概念

10-2 最优控制中的变分法

10-3 极小值原理及其应用

10-4 线性二次型问题的最优控制

10-5 控制系统优化设计

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

自动控制原理课程设计报告

《自动控制原理》 课程设计报告 姓名:高陆及__________ 学号: 1345533107______ 班级: 13电气 1班______ 专业:电气工程及其自动化学院:电气与信息工程学院

江苏科技大学(张家港) 2015年9月

目录 一、设计目的 (3) 二、设计任务 (3) 三、具体要求 (4) 四、设计原理概述 (4) 4.1校正方式的选择 (4) 4.2集中串联校正简述 (5) 4.2.1串联超前校正 (5) 4.2.2串联滞后校正 (5) 4.2.3串联滞后-超前校正 (5) 4.2.4串联校正装置的一般性设计步骤 (5) 五、设计方案及分析 (6) 5.1高阶系统的频域分析 (6) 5.1.1 原系统的频率响应特性及阶跃响应 (7) 5.1.2使用Simulink观察系统性能 (9) 5.1.3 搭建模拟实际电路 (10) 5.1.4 对原系统的性能分析 (12) 5.2校正方案确定与校正结果分析 (13) 5.2.1 采用串联超前网络进行系统校正 (13) 5.2.3 采用串联滞后—超前网络系统进行校正 (18) 5.2.4 使用EWB搭建校正后模拟实际电路 (23) 六、总结 (26)

一、设计目的 1.通过课程设计熟悉频域法分析系统的方法原理 2.通过课程设计掌握滞后—超前校正作用与原理 3.通过在实际电路中校正设计的运用,理解系统校正在实际中的意义 二、设计任务 控制系统为单位负反馈系统,开环传递函数为) 1025.0)(11.0()(++= s s s K s G , 设计滞后-超前串联校正装置,使系统满足下列性能指标: 1、开环增益100K ≥

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

胡寿松自动控制原理课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。 解:自动控制系统:能够实现自动控制任务得系统,由控制装置与被控对象组成; 受控对象:要求实现自动控制得机器、设备或生产过程 扰动:扰动就是一种对系统得输出产生不利影响得信号、如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。外扰就是系统得输入量。 给定值:受控对象得物理量在控制系统中应保持得期望值 参考输入即为给定值、 反馈:将系统得输出量馈送到参考输入端,并与参考输入进行比较得过程。 2请说明自动控制系统得基本组成部分。 解:作为一个完整得控制系统,应该由如下几个部分组成: ①被控对象: 所谓被控对象就就是整个控制系统得控制对象; ②执行部件: 根据所接收到得相关信号,使得被控对象产生相应得动作;常用 得执行元件有阀、电动机、液压马达等。 ③给定元件: 给定元件得职能就就是给出与期望得被控量相对应得系统输入量(即参考量); ④比较元件: 把测量元件检测到得被控量得实际值与给定元件给出得参考值 进行比较,求出它们之间得偏差、常用得比较元件有差动放大 器、机械差动装置与电桥等。 ⑤测量反馈元件:该元部件得职能就就是测量被控制得物理量,如果这个物理量 就是非电量,一般需要将其转换成为电量。常用得测量元部件有 测速发电机、热电偶、各种传感器等;

⑥放大元件: 将比较元件给出得偏差进行放大,用来推动执行元件去控制被控 对象。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸 管等组成得电压放大器与功率放大级加以放大。 ⑦校正元件: 亦称补偿元件,它就是结构或参数便于调整得元件,用串联或反馈 得方式连接在系统中,用以改善系统得性能、常用得校正元件有 电阻、电容组成得无源或有源网络,它们与原系统串联或与原系 统构成一个内反馈系统。 3请说出什么就是反馈控制系统,开环控制系统与闭环控制系统各有什么优缺点? 解:反馈控制系统即闭环控制系统,在一个控制系统,将系统得输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭得控制系统; 开环系统优点:结构简单,缺点:控制得精度较差; 闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高、 4 请说明自动控制系统得基本性能要求。 解:(1)稳定性:对恒值系统而言,要求当系统受到扰动后,经过一定时间得调整能够回到原来得期望值、而对随动系统而言,被控制量始终跟踪参考量得变化、稳定性通常由系统得结构决定得,与外界因素无关,系统得稳定性就是对系统得基本要求,不稳定得系统不能实现预定任务。 (2)准确性:控制系统得准确性一般用稳态误差来表示。即系统在参考输入信号作用下,系统得输出达到稳态后得输出与参考输入所要求得期望输出之差叫做给定稳态误差。显然,这种误差越小,表示系统得输出跟随参考输入得精度越高。

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

自动控制原理胡寿松第四版课后答案

1-3 解:系统的工作原理为:当流出增加时,液位降低,浮球降落,控制器通过移动气动阀门的开度,流入量增加,液位开始上。当流入量和流出量相等时达到平衡。当流出量减小时,系统的变化过程则相反。 流出量 希望液位 图一 1-4 (1)非线性系统 (2)非线性时变系统 (3)线性定常系统 (4)线性定常系统 (5)线性时变系统 (6)线性定常系统

2 2-1 解: 显然,弹簧力为 kx (t ) ,根据牛顿第二运动定律有: F (t ) ? kx (t ) = m 移项整理,得机械系统的微分方程为: d 2 x (t ) dt 2 m d x (t ) + kx (t ) = F (t ) dt 2 对上述方程中各项求拉氏变换得: ms 2 X (s ) + kX (s ) = F (s ) 所以,机械系统的传递函数为: G (s ) = X (s ) = F (s ) 1 ms 2 + k 2-2 解一: 由图易得: i 1 (t )R 1 = u 1 (t ) ? u 2 (t ) u c (t ) + i 1 (t )R 2 = u 2 (t ) du c (t )

i 1 (t ) = C dt 由上述方程组可得无源网络的运动方程为:

C ( R + R ) du 2 (t ) u (t ) = CR du 1 (t ) u (t ) 1 2 dt + 2 2 + 1 dt 对上述方程中各项求拉氏变换得: C (R 1 + R 2 )sU 2 (s ) + U 2 (s ) = CR 2 sU 1 (s ) + U 1 (s ) 所以,无源网络的传递函数为: G (s ) = U 2 (s ) = U 1 (s ) 1 + sCR 2 1 + sC (R 1 + R 2 ) 解二(运算阻抗法或复阻抗法): U (s ) 1 + R 2 1 + R Cs 2 = Cs = 2 U (s ) R + 1 + R 1 + ( R + R )Cs 1 1 2 1 Cs 2 2-5 解:按照上述方程的顺序,从输出量开始绘制系统的结构图,其绘制结果如下图所示: 依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为: C (s ) = R (s ) G 1 (s )G 2 (s )G 3 (s )G 4 (s ) 1 + G 2 (s )G 3 (s )G 6 (s ) + G 3 (s )G 4 (s )G 5 (s ) + G 1 (s )G 2 (s )G 3 (s )G 4 (s )[G 7 (s ) ? G 8 (s )] 2-6 解:

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

金陵科技学院自动控制原理课程设计

绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (8) 4.1校正前系统的传递函数的特征根 (8) 4.2校正后系统的传递函数的特征根 (10) 五系统动态性能的分析 (11) 5.1校正前系统的动态性能分析 (11) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性 (27) 总结................................... 错误!未定义书签。8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

自控专业设计的方法和步骤

.自控工程设计的任务 自控工程专业设计的任务基本上有以下几个方面: 1.1负责生产装置、辅助工程和公用工程系统的检测、控制、报警、联锁/ 停车, 以及监控/ 管理计算机系统的设计; 1.2负责检测仪表、控制系统及其辅助设备和安装材料的选型设计; 1.3负责监测仪表和控制系统的安装设计; 1.4负责DCS PLC自控系统的配置、功能要求和设备选型,并负责或参加软 件的编制工作; 1.5负责现场仪表的环境防护措施的设计; 1.6负责控制室的设计; 1.7负责生产过程计量系统的设计。 自控工程设计常用的方法是由工艺专业提出条件,自控与工艺专业一起讨论确定控制方案,确定必要的中间储槽及其容量,确定合适的设备余量,确定开、停车以及紧急事故处理方案等。这种设计方法对合理确定控制方案,充分发挥自控专业的主观能动性是有益的。但是在实际设计过程中,尤其对一些新工艺,主要是由工艺专业提出条件并确定控制方案,自控专业进行设计,我们当前基本采用这种方法。 2.自控工程设计的阶段划分和设计内容 当前工程设计的阶段划分,一般分为两个阶段,即初步设计和施工图设计 2.1初步设计 初步设计的主要目的是为了上报有关部门作为审批的依据,并为订货做好必要的准备。它应完成的主要内容为: 设计说明书:给出设计依据、设计原则,提出项目实施的必要性,拟定控制系统的技术方案、仪表选型规定、DCS空制系统的选型及控制策略,并从节能、消防、环境保护以及劳动安全卫生等方面作出设计概述。 工艺控制流程图:在工艺专业流程图的基础上,正确选定所需的检测点及其安装位置,选择必要的被控变量和恰当的操纵变量,绘制于工艺流程图上。图例符号应符合化工部标准《过程检测和控制系统用文字代号和图形符号(HG 20505)》或国标《过程检测和控制流程图用图形符号和文字代号(GB 2625) 》。 主要仪表设备、材料汇总表:汇总所有控制系统所需设备及相应材料,给出名称、数量,为订货以及概算提供依据。 初步设计概算:从建筑工程、设备、安装工程、工器具费等方面进行综合概算。 2.2施工图设计施工图设计是直接应用于施工的图纸设计。当前我们常用的施工图 设计文 件由以下内容组成: 1)图纸目录 2)设计说明书 3)材料表 4)设备明细表 5)工艺专业提资表

自动控制原理课程设计

物理科学与工程技术学院 课程设计说明书 课题名称:自动控制原理 设计题目:自动控制与检测原理 专业班级:11级自动化 学生姓名:袁 学号:1134307138

自动控制系统 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 自动检测 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的 质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标:①实际测定产品(含零、部件)的规定质量特性及其指标的量值。② 根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制 自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统 1 雷达天线伺服控制系统简介 1.1 概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1 所示。

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制原理课程设计 频率法设计串联滞后——超前校正装置

目录 设计任务 (3) 设计要求 (3) 设计步骤 (3) 未校正前系统的性能分析 (3) 1.1开环增益 K (3) 1.2校正前系统的各种波形图 (4) 1.3由图可知校正前系统的频域性能指标 (7) 1.4特征根 (7) 1.5判断系统稳定性 (7) 1.6分析三种曲线的关系 (7) 1.7求出系统校正前动态性能指标及稳态误差 (7) 1.8绘制系统校正前的根轨迹图 (7) 1.9绘制系统校正前的Nyquist图 (9) 校正后的系统的性能分析 (10) 2.1滞后超前校正 (10) 2.2校正前系统的各种波形图 (11) 2.3由图可知校正前系统的频域性能指标 (15) 2.4特征根 (15) 2.5判断系统稳定性 (15) 2.6分析三种曲线的关系 (15) 2.7求出系统校正前动态性能指标及稳态误差 (15) 2.8绘制系统校正前的根轨迹图和Nyquist图 (16) 心得体会 (18) 主要参考文献 (18)

一、设计任务 已知单位负反馈系统的开环传递函数0 ()(0.11)(0.011) K G S S S S =++,试用频率 法设计串联滞后——超前校正装置。 (1)使系统的相位裕度045γ> (2)静态速度误差系数250/v K rad s ≥ (3)幅值穿越频率30/C rad s ω≥ 二、设计要求 (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 (2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? (3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的 动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交 点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、设计步骤 开环传递函数0 ()(0.11)(0.011) K G S S S S = ++ 1、未校正前系统的性能分析 1.1开环增益0K 已知系统中只有一个积分环节,所以属于I 型系统 由静态速度误差系数 250/v K rad s ≥ 可选取 v K =600rad/s s rad K S S S K S S H S SG K s s V /600) 101.0)(11.0(lim )()(lim 00 ==++==→→

自动控制原理毕业设计论文

摘要 电厂锅炉主汽温具有大延迟、大惯性、非线性等特点,传统的PID控制很难取得满意的控制品质,本文在线性PID的基础上,引入跟踪微分器及非线性模块,构造出一种新型的非线性PID控制器,进而提出了汽温非线性PID控制方案,对其进行仿真,并进行了抗干扰能力和鲁棒性测试。结果表明相比于线性PID,非线性PID具有更好地控制品质,并且具有较强的抗干扰能力和鲁棒性。 尽管线性理论不仅在理论上完善,在各种国防和工业控制中也已成功地应用,但是随着现代科学技术的发展和现代工业对控制系统性能要求的不断提高,线性反馈控制已经很难满足各种实际需要。大多数控制系统往往是非线性的,采用近似的线性模型虽然可以更全面、更容易地分析系统的各种性能,却很难刻画出系统的非线性本质,所设计的控制器也很难达到系统的性能要求。线性系统的动态特性已不足以解释许多常见的实际非线性现象。早期的非线性系统分析与设计没有自身的理论体系,对非线性系统的处理主要是采用将非线性特性分段线性化,然后使用线性控制理论分析与设计。 关键词:非线性PID控制器;电厂锅炉主汽温;使用Matlab仿真

Power plant boiler main steam temperature with large delay, large inertia and nonlinear characteristics of the traditional PID control is difficult to obtain satisfactory control quality, this article on the basis of the linear PID, the introduction of tracking differentiator and nonlinear module, a new kind of nonlinear PID controller is constructed, and steam temperature of nonlinear PID control scheme is presented, simulation, and the anti-jamming ability and robustness test. The results show that compared with the linear PID, nonlinear PID has better control quality, and has strong anti-jamming ability and robustness. Although linear theory not only perfect in theory, in a variety of national defense and also has been successfully used in industrial control, but with the development of modern science and technology and the continuous improvement of modern industrial control system performance requirements, the linear feedback control has been difficult to meet various practical needs. Most often is the nonlinear control system, an approximate linear model can be more comprehensive, more easily analysis various performance of the system, but it is difficult to depict a nonlinear nature of the system, the designed controller is difficult to meet the requirements of the performance of the system. Dynamic characteristics of a linear system is not enough to explain the actual nonlinear phenomena of the many common. Nonlinear system analysis and design of the early without its own theoretical system, handling of the nonlinear system is mainly used to nonlinear piecewise linearization, and then use the linear control theory analysis and design. Key words: nonlinear PID controller; Power plant boiler main steam temperature; Using matlab simulation

胡寿松自动控制原理课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。 解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程 扰动:扰动是一种对系统的输出产生不利影响的信号。如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。外扰是系统的输入量。 给定值:受控对象的物理量在控制系统中应保持的期望值 参考输入即为给定值。 反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。 2 请说明自动控制系统的基本组成部分。 解:作为一个完整的控制系统,应该由如下几个部分组成: ①被控对象:所谓被控对象就是整个控制系统的控制对象; ②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常 用的执行元件有阀、电动机、液压马达等。 ③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量); ④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值 进行比较,求出它们之间的偏差。常用的比较元件有差动放大 器、机械差动装置和电桥等。 ⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量

是非电量,一般需要将其转换成为电量。常用的测量元部件有 测速发电机、热电偶、各种传感器等; ⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被 控对象。如电压偏差信号,可用电子管、晶体管、集成电路、 晶闸管等组成的电压放大器和功率放大级加以放大。 ⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反 馈的方式连接在系统中,用以改善系统的性能。常用的校正元 件有电阻、电容组成的无源或有源网络,它们与原系统串联或 与原系统构成一个内反馈系统。 3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点? 解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统; 开环系统优点:结构简单,缺点:控制的精度较差; 闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。 4 请说明自动控制系统的基本性能要求。 解:(1)稳定性:对恒值系统而言,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。而对随动系统而言,被控制量始终跟踪参考量的变化。稳定性通常由系统的结构决定的,与外界因素无关,系统的稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

武汉科技大学自动控制原理专业课程设计样本

武汉科技大学自动控制原理专业课程设计

二○一四~二○一五学年第一学期信息科学与工程学院课程设计报告书 课程名称:自动控制原理课程设计学时学分:1周1学分 班级:自动化12级01班 学号: 姓名: 指导教师:柴利 2014年12月

一.课程设计目的: 综合运用本课程的理论知识进行控制系统分析及设计,利用MATLAB 作为编程工具进行计算机实现,复习与巩固课堂所学的理论知识,提高了对所学知识的综合应用能力,并从实践上初步了解控制系统的分析设计理论与过程。 二.设计任务与要求: 1设计题目: 已知单位负反馈系统被控制对象的开环传递 函数 )11.0()(+=s s K s G k 用串联校正的频率域方法对系统进行串联校正 设计。 任务一:用串联校正的频率域方法对系统进行串 联校正设计,使闭环系统同时满足如下动态及静态性能指标: (1)在单位斜坡信号t t r =)(作用下,系统的稳态误差005.0≤ss e ;

(2)系统校正后,相位裕量0''45)(>c ωγ。 (3)系统校正后,幅值穿越频率50'>c ω。 任务二:若采用数字控制器来实现任务一设计的控制器,给出数字控制器的差分方程表示或离线传递函数(Z 变换)表示。仿真验证采用数字控制器后闭环系统的性能,试通过仿真确定满足任务一指标的最大的采样周期T. (注:T 结果不唯一)。 2设计要求: 1) 分析设计要求,说明串联校正的设计思路(滞 后校正,超前校正或滞后-超前校正); 2) 详细设计(包括的图形有:串联校正结构图, 校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图); 3) M ATLAB 编程代码及运行结果(包括图形、运 算结果); 4) 校正实现的电路图及实验结果(校正前后系统 的阶跃响应图-MATLAB 或SIMULINK 辅助设计); 5) 校正前后的系统性能指标的计算。 三.串联校正设计方法:

自动控制原理设计

自动控制原理 课程设计报告 一.设计内容 某单位反馈系统的开环传递函数可以写为: ) 2)(1()(++= s s s K s G 试确定系统的开环增益K ,并分析系统的性能,要求:系统闭环极点中有一对共轭复数极点;系统阻尼比5.0=ξ。 设计步骤: 1.用Matlab 绘制此三阶系统的精确根轨迹图,并与概略根轨迹图比较 2.利用根轨迹图与ξβarccos =线的交点确定共轭复极点; 3.确定第三个闭环极点及开环增益K ;

4.参照教材第四章,表4-4“性能指标估算公式表”计算系统的调节时间t s和超调量σ%; 5.用Matlab画出此三阶系统的单位阶跃响应曲线以验证第4步计算的t s和σ%指标; 6.根据主导极点法,可以将此三阶系统在当前K值下降阶为二阶系统。试推导此二阶系统的传递函数,绘制其单位阶跃响应曲线,计算t s和σ% ;将响应曲线与性能指标同原三阶系统相比较; 7.完成上述设计过程之后,将设计结果整理成设计报告,要求有轨迹曲线和响应曲线、计算结果、Matlab程序及相关的分析对比,并在报告中谈谈你对根轨迹法用于控制系统分析与设计的认识与感想。 二.设计过程 1.用Matlab绘制此三阶系统的精确根轨迹图,过程如下: num=1; >> den=conv([1,0],conv([1,1],[1,2])); >> rlocus(num,den);

概略根轨迹图如下,与matlab绘制图比较,虽不精确,但能看出其分离点,渐近线和根轨迹条数。

βarccos =线的交点确定共轭复极点。过程如下:num=1; >> den=conv([1,0],conv([1,1],[1,2])); >> rlocus(num,den); >> sgrid(0.5,[]);

相关文档
最新文档