遥感干旱监测方法

遥感干旱监测方法
遥感干旱监测方法

干旱遥感监测方法研究进展_杨世琦.pdf

第30卷第2期高原山地气象研究Vol30No.2 2010年 6月PlateauandMountainMeteorologyResearchJun.2010 文章编号:1674-2184(2010)02-0075-04 干旱遥感监测方法研究进展 杨世琦1,高阳华1,易佳2 (1.重庆市气象科学研究所, 重庆401147;2.西南大学地理科学学院, 重庆 400715) 摘要:本文对国内外学者在干旱遥感监测方面所做的工作进行了总结。根据选取资料的不同,将国外进行干旱遥感监测的情况归纳为5类,分别介绍了主要方法及其进展。同时,对国内开展干旱遥感监测的情况从空间尺度、时间尺度、监测手段、监测方法等4个方面进行了分析,并讨论了干旱遥感监测在实际应用中存在的问题。 关键词:干旱;土壤含水量;遥感;监测中图分类号:P407文献标识码:Adoi:10.3969/j.iss n.1674-2184·2010.02.017 引言相同像元的NDVI序列资料进行比较,使得NDVI值更具 可比性;Kogan[6]认为一个地区的气候状况,土壤类型质干旱是指由水分收支或供求不平衡所形成的水分短地,植被类型分布以及地形条件都会影响NDVI值的变缺现象,因其出现频率高、持续时间长、波及范围大,对国化;Sugimura[7]研究也表明NDVI值要受到海拔的影响, 民经济特别是农业产生严重影响,历来被人们所关注,已海拔高的地区NDVI值相对较高,考虑地形地貌因素以经成为世界性的重大自然灾害。土壤含水量是判断干旱及联系气象因子变化会使监测结果更加准确。 的重要指标之一,也是旱情监测的基础。土壤含水量的 1.2利用热红外波段获取地表温度日变化幅度和热模获取可分为3类:田间单点实测法、土壤水分模型法和遥型结合估测土壤湿度。 感法[1]。其中遥感法可以快速获得大面积的土壤水分信热惯量随着土壤含水量的增加而增大,利用热红外息,具有宏观、动态、经济的特点,被广泛用于干旱监测。遥感可以观测地表温度,获得热惯量,进而估测土壤湿 1国外研究综述度。如Watson、Phon等[8,9]在地质研究中最早应用热模型;Kahle[10]提出热惯量的概念;Price等[11]简化潜热蒸散 国外采用遥感技术监测土壤含水量始于20世纪70 形式,总结了热惯量法及其遥感成像原理,提出了表观热年代,其方法大致可以分为5类。惯量ATI(ApparentThermalInertia),从而可用卫星提供1.1利用可见光和近红外遥感资料进行监测 , 主要利用的反射率和热红外辐射温差计算热惯量;England等[12] 植被指数和植被状态指数。提出了辐射亮度热惯量(Radio-brightnesThermalIner- 植被指数常用来监测某一时段或生长季的降水和干tia,即RTI)的概念,且认为RTI对土壤水分的敏感性好旱,多为定性结果。如Jackson等[2]利用NDVI监测干旱于ATI;Carlson[13]利用NOAA/AVHRR资料计算土壤有发现,植被指数对短暂水分胁迫不敏感,只有水分胁迫严效水分和热惯量。 重阻碍作物生长时才引起植被指数的明显变化,因而,植 1.3利用微波遥感 , 测量雷达后向散射系数以及测量监被指数不能及时反映植被覆盖下的土壤含水量,在洪涝测土壤水分含量。 区域和裸土区域应用受到限制;Kogan[3]提出植被状态指微波分为主动微波和被动微波,主动微波通过测量数(VCI),并认为VCI优于NDVI。事实上,二者各有优雷达的后向散射系数,被动微波通过测量土壤亮温来估缺点,植被指数受气候、土地利用和地理条件的影响,主测土壤水分。在主动微波遥感领域,合成孔径雷达 要反映植被的绝对生物量和区域干旱程度,而VCI主要(SAR)已成为国际对地观测领域最重要的前沿技术之受天气的影响,只能反映植被覆盖区干旱的相对变化。一。被动微波估测土壤水分主要分成两大块:一是针对为了减少植被指数对大气的依赖,Kanfman等[4]发展了裸露地表的土壤水分反演,另一个是针对植被的土壤水抗大气植被指数(ARVI);Bawa等[5]发现利用多年同期分反演模型。施建成[14]等针对Q/H模型进行了修正, 收稿日期:2010-02-18 资助项目:重庆市科技攻关计划项目CSTC,2009AC0125;科技部“西部开发科技行动”重大项目(2005BA901A01)作者简介:杨世琦, 硕士,工程师,主要从事农业气象,遥感应用等方面的研究。E-mail:yangshiqi@gmail.com

地质灾害监测预警系统方案

省省级预算项目建议书 项目名称:地质灾害监测预警系统 项目编码: 项目单位:省第一测绘院 领导签字(章):预算单位:省国土资源厅 领导签字(章):主管部门:省国土资源厅 领导签字(章): 省财政厅制 二○一○年十一月十日

填报说明 1、本建议书由项目单位或预算单位负责填写,送隶属的财务主管部门审查后报省财政厅(对于基本建设专项资金、产业技术研发、应用技术研发、信息产业和信息化建设专项资金项目,分别由省有关部门按照项目隶属关系先报送省发展和改革委员会、省科技厅和省信息产业厅,三个部门经审核立项后通知各有关部门,部门再按确定的项目容报财政部门)。 2、需附相应的部门审核、项目可行性报告、立项批准等有关资料。 3、项目情况填报说明 1)项目性质:(1)维持性资金项目。(2)发展性资金项目。 2)项目类型及编号:01、建筑物及基础设施购建;02、专项购置; 03、大型修缮;04、专项业务;05、科技研究与开发;06、信息网络购建;07、信息网络维护;08、大型活动;09、企事业单位补贴;10、个人家庭补助;11、偿债支出;12、产权参股;99、其他专项。 3)项目级次:本级、对下补助(按级次分别单列项目)。 4)项目地点:项目实施地点。 5)单位代码:省级行政事业单位填写预算单位编码;非省级预算单位的承担单位是行政、事业、社会团体的填写组织机构代码,企业填写工商注册码为统一标识。 6)单位性质:行政、事业、其他。 7)单位规格:厅级、副厅级、处级、科级、其他。 8)立项部门:批准立项的主管部门 9)主管部门:项目单位的财务主管部门。 10)主管处室:财政厅各部门预算主管处。 11)支出功能:类、款按最近规定的政府收支分类科目填写。 12)项目执行周期:项目执行的年度数。

国内外干旱遥感监测技术发展动态综述

第7卷 第2期 2009年6月中国水利水电科学研究院学报Journal of China Institute of Water Res ources and Hydropower Research V ol 17 N o 12June ,2009收稿日期:2009204210 作者简介:路京选(1961-),男,陕西人,教授级高级工程师,主要从事3S 技术在水利上的应用研究。E 2mail :lujx @https://www.360docs.net/doc/f414226475.html, 文章编号:167223031(2009)022******* 国内外干旱遥感监测技术发展动态综述 路京选,曲 伟,付俊娥 (中国水利水电科学研究院遥感技术应用中心,北京 100048) 摘要:干旱是我国影响范围最广和造成经济社会损失最为严重的一种自然灾害,干旱缺水已成为制约我国可持续发展的一个瓶颈。及时发现干旱并准确预报旱情发展动态,对抗旱减灾至关重要。本文在简述国内外遥感技术总体发展态势基础上,从干旱监测的遥感数据源开始,系统地总结了目前国内外干旱遥感监测的主要方法以及发展状况,包括土壤含水量的遥感反演法、热惯量法、冠层温度法、植被指数法、微波遥感法等。提出了加强我国干旱遥感监测技术研究的建议,以期推动我国干旱遥感监测的全面应用。 关键词:干旱;遥感;监测;土壤水分 中图分类号:S423;TP79文献标识码:A 受特定的自然地理与气候条件所决定,我国是世界上各种自然灾害频发且非常严重的国家之一,其中以旱灾损失和影响最为严重。近些年来,随着我国人口的不断增长和经济社会的快速发展,干旱灾害日趋严重,干旱发生的频率不断增强,受旱的范围不断扩大,局地性或区域性的干旱灾害几乎每年都会出现。干旱灾害已不只发生在贫水区,丰水区的干旱灾害事件也频繁发生,影响的范围也不仅仅是农业和农村,城市和生态也日益受到干旱灾害的困扰,城乡居民饮用水安全、粮食安全和生态环境安全受到严重威胁。 干旱现象相对于其他气象灾害更为复杂,具有发展缓慢但影响范围广大的特点,有气象干旱、水文干旱和农业干旱之分,及时准确掌握干旱发生的程度与范围成为有效应对干旱灾害的前提。因此,加强干旱灾害的监测与预测预报,是增强抗旱工作主动性和提高防灾减灾能力的一个重要环节。遥感技术以其独有的宏观、快速、大范围、经济等优势,从一开始就被应用于干旱监测中。近年来,国内外在利用遥感手段监测大范围干旱灾害方面取得长足进展,并相继实现了不同程度的业务化运行。本文在简单概述国内外遥感技术总体发展态势基础上,从干旱监测的遥感数据源开始,较为系统地总结了目前国内外干旱遥感监测的主要方法,以期推动我国干旱遥感监测的全面应用。 1 国内外遥感技术总体发展态势 自上世纪初莱特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用,此后在地质、工程建设、地图制图、农业土地调查等方面得到了广泛应用。人造卫星把遥感技术推向了全面发展和广泛应用的崭新阶段,从1972年第一颗地球资源卫星发射升空以来,美国、法国、俄罗斯、欧空局、日本、印度、中国等国家和地区都相继发射了众多对地观测卫星。随着传感器技术、航空航天技术和数据通讯技术的不断发展,现代遥感技术已经进入一个能动态、快速、多平台、多时相、高分辨率地提供对地观测数据的新阶段。光学传感器的发展进一步体现为高光谱分辨率和高空间分辨率特点,光谱分辨率已达纳米级,波段数已达数十甚至数百个,目前的商用卫星空间分辨率已达分米级。为协调时间分辨率和空间分辨率这对矛盾,各种小卫星群计划正在成为现代遥感的另一发展趋势,例如可用6颗小卫星在2~3d 内完成一次对地重复观测,可获得优于1m 的高分辨率影像。除此之外,机载和车载遥感平台, — 562—

地质灾害监测预警系统方案

地质灾害监测预警系统方案

目录 第一章项目概述 (3) 1.1项目背景 (3) 1.2建设目标 (3) 1.3需求描述 (4) 第二章总体架构 (5) 2.1系统架构 (5) 2.2预警发布 (6) 2.2.1发布权限 (6) 2.2.2预警发布内容 (6) 2.2.3预警信息发布对象 (7) 2.3预警发布方式 (7) 2.4预警发布通信方案 (7) 第三章详细实现 (8) 3.1概述 (8) 3.2系统架构 (8) 3.3水雨情监测系统 (10) 3.3.1中心监控平台 (12) 3.3.2前端采集设备 (13) 3.4无线预警广播系统 (16) 3.4.1预警中心系统 (16) 3.4.2预警终端 (17) 3.4.3预警信息发布流程 (17) 3.4.4预警组网方式 (18) 3.4.5相关设备的准备及安装 (22) 3.5LED发布系统 (23) 第四章总结 (26)

第一章项目概述 1.1 项目背景 泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流具有突然性以及流速快,流量大,物质容量大和破坏力强等特点。发生泥石流常常会冲毁公路铁路等交通设施甚至村镇等,造成巨大损失。 泥石流一般发生在半干旱山区或高原冰川区。这里的地形十分陡峭,泥沙、石块等堆积物较多,树木很少。一旦暴雨来临或冰川解冻,大大小小的石块有了足够的水分,便会顺着斜坡滑动起来,形成泥石流。而我国是一个多山的国家,山丘区面积约占国土面积的三分之二。据调查,全国所有的县级行政区中,有75%在山区,而这75%的山区县级行政区聚集了全国56%的人口。由于山丘区居住的人口数量多、密度大、分布广,以及典型的季风气候导致的降雨时空分布不均和复杂的地形地质因素等,每年汛期,随着暴雨或冰川融化,极易形成泥石流。居住在山丘区的广大群众的生命财产安全都将面临山洪、泥石流和山体滑坡等灾害的严重威胁,其中7400万人直接受到影响。 地质灾害的防御策略是“以防为主,防重于抢”,防御防治的方法是既要采取工程措施,提高工程防治标准,也要采取非工程措施,建立综合预防减灾体系,提高防灾抗风险能力。 综上所述,建立地质灾害监测预警系统,是防治山洪、泥石流、山体滑坡等地质灾害的一项重要的非工程性措施。 1.2 建设目标 完整的地质灾害监测预警系统应同时具备:水雨情监测系统、LED灾情发布系统、无线预警广播系统。 水雨情监测系统应能够实时监测现场的地质数据,气候数据等,为预警信息的发布提供数据依据,并由LED灾情发布系统和无线预警广播系统进行预警发布。当地质灾害发生时,系统能有效地发布预警信号,提示当地民众及时防范或撤离。

施工期监测预警方案

长阳土家族自治县向家坡滑坡治理工程施工期预警方案 一、工程概况 1.1工程概况 向家坡滑坡位于清江左岸,为一中型土质滑坡,滑坡纵向上地形较缓,总体地形坡度18°左右。后缘高程170m,呈N10°E向延伸,长约40m,形成“舌尖”,为弧圈状陡坎地形,坎高2-3m,坡度40-55°。上、中部为缓坡,总体坡度15-20°,经后期人工改造形成坎状地形,陡坎展布方向与坡面走向基本一致,陡坎长10-30m不等,坎高2-4m,坡角50-60°,陡坎地带多修建干砌石挡墙支护,雨季常见垮塌现象,规模一般不大,方量十几至几十方不等,坎间平台一般宽10-15m,主要为经济林木和旱地,分布高程130-170m;下部为一较宽缓平台,南北长约160m,东西宽约30-50m,坡度约5°,分布高程120-130m;前缘为城镇建设形成的陡坡,坡度50-60°,坡高约20m,临空条件好。从横向上看,滑坡中部高两侧低。 二、应急救援的任务与目标 2.1应急救援的任务 本应急救援体系的设立就是为了建立统一指挥、职责分明、运转有序、反应迅速、处臵有力的应急机制,及时有效地处理现场发生的突发事件,最大限度地减小人员伤亡和财产损失。 2.2应急救援的目标 应急救援的目标就是要在突发事件出现时从事件的报告、预案启动、现场救援、善后工作等各程序有条不紊。对突发事件处理随时在

掌控之下。 三、应急救援的组织机构 3.1应急救援领导小组 项目部设应急救援领导小组,下设三个应急响应分级。 应急救援领导小组由纵横两系统组成。 纵向组织机构如下: 组长:贾赫 副组长:刘建国、陈涛、王家新 成员:陈明、张友才、黄焱、胡胜国 横向由三级机构组成 构成如下: 一级:决策领导组 二级:技术支持组、通讯联络组、抢险抢修组 三级:消防保卫组、医疗救治组、后勤保障组 纵横组织机构做到纵向到底,横向到边,反映迅速。 3.2救援组织的分工职责 组长职责: 1)指导工程的部分停工,并与领导小组的关键人员配合指挥现场人员撤离,并确保任何伤害者都能得到足够的重视。 2)与场外应急机构取得联系及对紧急情况的作业安排。保证通信畅通。 3)在场周围实行交通管制,协助场外应急机构开展服务工作。

遥感在干旱监测中的应用技术

TECHNOLOGY WIND 在对人类造成严重威胁的多种自然灾害中,干旱灾害是发生最频繁、危害最广泛的灾害之一。大规模的干旱往往可以使大范围的农业长期绝收。干旱发生频率较大现代遥感技术的发展和应用,为人类准确有效地监测干旱灾害的发生和发展并评估其影响,提供了强有力的手段。干旱遥感监测的本质是监测土壤水分含量,通过土壤含水量的多少和分布来反映干旱的程度和分布范围,对农业生产具有直接的指导作用。 1干旱卫星遥感监测原理 利用气象卫星的可见光和红外探测资料开展干旱灾害遥感监测,目前国内运用较多比较成熟的监测模式主要有土壤热惯量模式和植被指数模式。土壤热惯量模式是利用气象卫星昼夜两次探测资料,计算土壤的热惯量,进而推算出土壤湿度,该监测模式有局限性,在实际应用中存在不少的困难。植被指数模式主要包括植被供水指数法和距平植被指数法。植被长势受到诸多因素的影响,但在发生干旱灾害的季节里,土壤水分含量的多少对植被长势的影响却起着关键性的作用,利用极轨气象卫星第一、第二两个通道的反射光谱数据可以定义出归一化植被指数。当植被遭受干旱灾害时,土壤对植被的水分供应不足,植被长势将受到影响,卫星遥感监测的植被指数将降低,同时植被的冠层温度也因没有足够的水分供蒸发而升高。因此,采用植被指数模式可以有效地监测有植被覆盖区域受干旱危害的程度。 2卫星遥感监测干旱技术方法和应用 NOAA 系列极轨气象卫星携带的改进甚高分辨率辐射计(AVHRR )具有监测范围广、实时性强、便于长期动态监测等特点。 由植被的反射特征可知,在近红外波段植被具有较高的反射率,而NOAA 卫星AVHRR 的第二通道的探测波长为0.7~1.1微米,处在近红外波段,适用于植被遥感。经投影变换、地标定位等预处理后的AVHRR 资料以辐射计数值形式保存,在定标处理时,根据各通道的直方统计结果截取最大地表信息区域进行定标处理,生成8bit 的反照率、亮温图像文件。根据光谱分析选取适当阈值分别对CH 1、CH 2二通道数据进行云和水体剔除,即可进行干旱指标计算。参考降水量及土壤湿度实测值,直接将不同等级的干旱与遥感资料进行对比分析,确定干旱的遥感监测指标。 3植被供水指数法 植被供水指数法定义为归一化植被指数与叶面温度的比值。表达式为: VSWI=NDVI/Ts NDVI=( CH2-CH1)/(CH2+CH1)其中,Ts 为植被冠层温度,NDVI 为归一化植被指数,CH2与CH1为近红外与红外波段地表反射率。 应用这种方法的基本程序是:建立一个具有地理坐标经纬度的格网图,将NOAA /AVHRR 扫描带使用范围内,每一像元点的NDVI 值逐日计算出,并记录在格网图上相对应的地点。同时制订一个合成周期,在图的整个合成周期内,将每个像元点的NDVI 值逐日加以比较,保留具有最大的NDVI 值的像元点以这样的方法最终得到的一张合成图,使合成图提供的信息最接近于当时作物的真实状况利用最大值合成技术,可以定期地得到某一区域NOAA/AVHRR 多时相的合成图。将该区域连续得到的多张植被指数图加以比较,可实现区域性植被状况的 动态监测。利用某一地点长期连续获取的NDVI 数据,还可绘制成该点的NDVI 曲线图。同一地点不同年份的曲线图相互比较,可发现该地点NDVI 值的年际变化,进而揭示植被生长状况的年际变化。目前已有不少国家和地区利用NOAA/AVHRR 数据进行过干旱监测的实践,收到了较好的效果。 4实例 在美国历史上,1988年的大旱使得美国作物产量锐减。美国农业部外国农业状况评估室利用NOAA /AVHRR 数据对这场大面积的干旱进行了接近实时的监测和评价。他们的主要作法是: 1)用NDVI=(CH2-CH1)/(CH2+CH1)公式并将CH2-CH1>25.0的像元定义为“绿色像元”。2)设计一个地理参照格网(事实上前些年已设计好并已应用),每一格网单元的面积为463×463km 2。3)记录1988年4月作物出苗直到10月作物开始衰老期间每日四个州范围内的NOAA/AVHRR 数据,并按照地理参照格网,将每一格网单元中的每日的绿色像元数目累加,得出该日该格网单元的植被指数数目—VIN 。4)将1988年4-10月期间每一格网单元的每日VIN 值连续,绘制成代表当地作物生长状况的VIN 曲线图。5)将四个州的1988年VIN 曲线与前些年的VIN 曲线比较,对1988年的VIN 曲线进行定性解译。1988年的AVHRRVIN 曲线清楚地显示了玉米地带1988年生长季节早期的旱情,特别是在该地带的东部。 (a)1988年6月初的作物状况 (b)1988年7月束至8月初的作物状况 图1与1987年相比,四个主要作物生产州1988年作物生产状况AVHRRVINs 解译结果/略差×差*差得多 图2(a )到2(f )是四个州表现作物长势变化的六个格网单元的VIN 曲线的例子。根据图中所示的6月异常低的VIN 值和与干旱气象预报,可断定7月初至中旬,不良的作物状况将持续,推断后来得到证实。 图2部分有指示意义的VIN(NVI)曲线图 NOAA /AVHRR 数据具有大面积覆盖、高频率更新、且便于长期连续积累的独特优势,但它的分辨率相对粗糙,因此,特别适合用于大规模的区域性、大陆性乃至全球性的包括干旱在内的动态监测。利用连续多年的数据积累可对地表植被及其生长环境的变化进行长期连续的监测,并可进一步对作物进行估产。 [摘要]在对人类造成严重威胁的多种自然灾害中,干旱灾害是发生最频繁、危害最广泛的灾害之一。大规模的干旱往往可以使大范围的农业长期绝收。干旱发生频率较大现代遥感技术的发展和应用,为人类准确有效地监测干旱灾害的发生和发展并评估其影响,提供了强有力的手段。干旱遥感监测的本质是监测土壤水分含量,通过土壤含水量的多少和分布来反映干旱的程度和分布范围,对农业生产具有直接的指导作用。[关键词]干旱监测;卫星遥感遥感在干旱监测中的应用技术 杜兰侠 1 单洁 1 尼仲涛 2 (1.山东煤田地质局第四勘探队,山东潍坊261000;2.潍坊鲁煤工程机械厂,山东潍坊261206) 应用科技 25

基于特征空间的遥感干旱监测方法综述

第27卷第1期长 江 科 学 院 院 报 Vol .27 No .1 2010年1月Journal of Yangtze River Scientific Research I nstitute Jan .2010 收稿日期:2009207202 基金项目:农业科技成果转化资金项目(05EF N216800404);长江科学院博士启动课题(YJJ0910/KJ02)作者简介:李 喆(19802),男,湖北监利人,工程师,理学博士,博士后,主要从事水旱灾情监测、生态环境监测与评估、数字流域、“3S ”技 术在水利中的应用研究工作,(电话)027*********(电子信箱)lizhe@mail .crsri .cn 。 文章编号:1001-5485(2010)01-0037-05 基于特征空间的遥感干旱监测方法综述 李 喆 1,2 ,谭德宝2,秦其明3,崔远来 1 (1.武汉大学水利水电学院,武汉 430070;2.长江科学院空间信息技术应用研究所,武汉 430010; 3.北京大学地球与空间科学学院,北京 100871) 摘要:遥感干旱监测是干旱监测中一个很有潜力的发展方向,其中研究比较多的是遥感特征空间法。为此介绍了几种具有代表性的遥感特征空间方法,并将其分为3大类,即LST 2NDV I 特征空间法、N I R 2Red 特征空间法和N I R 2 S W I R 特征空间法。深入地分析它们的基本原理、方法和适用范围,对各类干旱监测方法存在的问题和发展趋势进 行了探讨,指出下一步的研究方向。关 键 词:特征空间;干旱监测;遥感中图分类号:TP79 文献标识码:A 1 概 述 干旱主要分为气象干旱、农业干旱、水利干旱和社会经济干旱,其中最为基础的是农业干旱。决定农业干旱的一个重要因素是土壤水分。土壤水分是描述地气能量变换和水循环的重要参数,也是研究地表植被水分供应正常与否的关键变量。土壤水分的时空分布及其变化对地表水热平衡、蒸散发、土壤温度、农业墒情和区域干旱状况等都会产生显著的影响。 干旱监测一直是科学界公认的难题。常规观测方法多采用基于测站的定点监测,需要投入大量的人力、物力和财力,而且只能获得少量的点上观测信息,难以及时地获得大面积土壤水分和作物长势信息,使得大范围旱情监测和评估缺乏时效性和代表性。遥感技术具有覆盖范围广、空间分辨率高、重访周期短、数据获取快捷方便等优点,已经成为干旱监测领域一个很有潜力的研究方向。根据土壤在不同光谱波段呈现不同的辐射特性,遥感干旱监测主要分为可见光2近红外、热红外和微波遥感3大类型,出现了众多的模型和方法。可见光2近红外方法借助于土壤反射率随土壤水分增加而降低的特点,综合考虑植被生长状况和水分胁迫状况估算土壤含水量,得到了距平植被指数法 [1] 、土壤水分光谱法 [2] 等。由于土壤光谱特征容易受到表面粗糙度、土壤质地结构、有机质含量等的影响,该类方法监测精度十分有限。热红外遥感依据水分平衡与能量平衡的 基本原理,通过土壤表面发射率(比辐射率)和地表 温度之间的关系估算土壤水分,得到了热惯量法 [325] 、植被蒸散法 [6] 和作物缺水指数法 [7] 等。这 类方法需要较多的地面同步气象观测资料,而且容易受到地表植被状况、地形地貌等因素的干扰,计算复杂。微波遥感基于土壤介电常数、后向散射系数和土壤水分含量之间的关系,数理模型严密,监测精度较高,可以穿透云层遮挡进行全天时、全天候观测,但容易受到地形坡度坡向、地表粗糙度、植被生长状况等干扰,监测成本非常高[8] 。 陆地表面温度(LST )、归一化差值植被指数(NDV I )和反照率(albedo )等是反映地表生态物理 状况的重要参数,这些要素的综合应用能够准确地反映地表干旱和水分状况。因此,可见光2近红外、热红外和微波遥感相结合是目前农业干旱遥感监测的一个重要发展方向 [9] 。其中,研究较为深入的是 遥感特征空间法。本文综述了几种具有代表性的遥感特征空间方法,将其分为3大类:LST 2NDV I 特征空间法、N I R 2Red 特征空间法和N I R 2S W I R 特征空间法,深入分析它们的基本原理、方法和适用范围,对各类干旱监测方法存在的问题和发展趋势进行了探讨,指出下一步的研究方向。 2 LST 2NDV I 特征空间法 2.1 温度植被干旱指数 在LST 2NDV I 特征空间的基础上,Price [10] 提出

农业干旱监测预报指标及等级标准

附件1 农业干旱监测预报指标及等级标准 农业干旱指标包括土壤相对湿度、作物水分亏缺指数距平、降水距平、遥感植被供水指数。上述指标从不同角度反映出农业干旱的程度,但存在各自的优势和劣势。土壤水分的优势在于能直观地反映旱地作物农田水分多少,但无法进行水田旱情监测,同时也忽略了蓄水量对干旱的抑制作用;作物水分亏缺指数距平虽能反映作物水分的满足程度,但在气候干燥的区域需水量偏大,且灌溉作用无法考虑;降水距平虽能直观反映出雨养农业的水分供应状况,但不能表征降水对作物利用的有效性;遥感方法虽直观,但在云和植被状况影响下,存在较大的不确定性。因此,需要发挥各种指标的优势,根据所处区域的土壤、气候、植被特点等加权集成综合农业干旱指数作为农业干旱监测预报的指标。 一、农业干旱综合指数计算与等级划分 农业干旱综合指数是对土壤相对湿度、作物水分亏缺指数距平、降水距平、遥感植被供水指数4种农业干旱指标的加权集成,计算方法如式(1): ∑=? = n i i i w f DRG 1(1)

其中,DRG为综合农业干旱指数,f1、f2……f n分别为土壤相对湿度、作物水分亏缺指数距平、降水距平、遥感干旱指数等; W1、W2……W n为各指数的权重值,可采用层次分析法确定,也可由专家经验判定。 农业干旱综合指数的等级划分如表1。 表1 农业干旱等级 序号干旱等级综合农业干旱指数 1 轻旱1<DRG≤2 2 中旱2<DRG≤3 3 重旱3<DRG≤4 4 特旱DRG>4 二、各种单指标的计算方法 1.土壤相对湿度 土壤相对湿度直接反映了旱地作物可利用水分的状况,它与环境气象条件、作物生长发育关系密切,也与土壤物理特性有很大关系,对于不同作物品种、同种作物的不同发育阶段、不同质地土壤,作物可利用水的指标间存在一定差异。考虑作物根系发育情况,在旱地作物播种期和苗期土层厚度分别取0-10厘米与0-20厘米,其它生长发育阶段取0-50厘米。 土壤相对湿度的计算如(2)式:

气象干旱监测与预测方法与设计方案

图片简介: 本技术介绍了一种气象干旱监测与预测方法,属于气象干旱监测与预测的技术领域。包括以下步骤:从权威机构网站获取某时间段的降水遥感影像数据;将遥感影像数据转换为降水量;以连续30天组成一个月尺度的计算时段,将所述计算时段内每天的降水量相加,即可得到所述计算时段的降水量,分别计算所述计算时段与历年同期的降水量,并计算得到月尺度降水量距平百分率;制作目标区域的月尺度降水量距平百分率分布图。本技术能够根据气象部门发布的天气预报信息获取未来各天的天气状况和温度范围,计算未来各天预计的降水量距平百分率,从而达到对未来各天进行定量化干旱预测的目的。 技术要求 1.一种气象干旱监测与预测方法,其特征在于,包括如下步骤: S1、从权威机构网站获取某时间段的降水遥感影像数据; S2、将遥感影像数据转换为降水量; S3、以连续30天组成一个月尺度的计算时段,将所述计算时段内每天的降水量相加,即可得到所述计算时段的降水量,分别计算所述计算时段与历年同期的降水量,按以下公式计算得到月尺度降水量距平百分率:

其中,PA是某时段降水量距平百分率,单位为%;P是计算时段降水量,单位为毫米(mm);是计算时段同期平均降水量,单位为毫米(mm);n是同期降水量的个数;Pi是计算时段第i年降水量,单位是毫米(mm); S4、制作目标区域的月尺度降水量距平百分率分布图; S5、根据国标《气象干旱在在》划分的标准和计算得出的PA计,在分布图上在在不同在在旱在的分布范围,并旱计不同在在旱在面积和占比在况,实现目标区域的旱在定量化监测; S6、从气象部门获取目标区域及其周边区域的天气预报数据,包括未来多天的天气状况和气温计化范围; S7、根据《天气状况与旱在计化计查找表》和《日平均温度与旱在计化计查找表》,分别将各天的天气状况和日平均温度转换成相应的天气类型旱在计化计和温度旱在计化计,将天气类型旱在计化计与温度旱在计化计相加,得到目标区域及其周边区域各天的旱在总计化计; S8、根据目标区域及其周边区域各天的旱在总计化计制作各天的目标区域旱在计化分布图; S9、将第N天的月尺度降水量距平百分率PA与第N+1天的旱在计化计相加,得到第N+1天的PA预测计;将第N+1天的PA预测计与第N+2天的旱在计化计相加,得到第N+2天的PA预测计;依此类推,分别得到N+3……在未来各天的PA预测计; S10、按照国标《气象干旱在在》划分的标准,根据PA计分别旱计分旱未来各天的旱在等在及分布范围,实现未来各天的旱在定量化预测。 2.如权利要求1所述的气象干旱监测与预测方法,其特征在于,所述步骤S1中,所述权威机构网站为美国国家航空和宇宙航行局服务网站。 3.如权利要求2所述的气象干旱监测与预测方法,其特征在于,所述步骤S4中,所述月尺度降水量距平百分率分布图的制作方法包括以下步骤: A1、提取出目标周边区域的降水影像数据,依据目标周边区域的矢量边界进行数据裁剪;

农业干旱遥感监测研究进展

农业干旱遥感监测研究进展 杨绍锷,闫娜娜,吴炳方 (中国科学院遥感应用研究所,北京100101) 收稿日期:2009-02-19 修订日期:2009-03-25 基金项目:中国科学院知识创新工程重大项目(KSCX -Y W-09-01)。国家科技支撑计划项目(2008BADA8B02-1)。作者简介:杨绍锷(1980~),男,汉族,广西浦北人,中国科学院遥感应用研究所博士生,研究方向为农业旱情监测及农业估产。E -m ail:yangshe88@https://www.360docs.net/doc/f414226475.html, 通讯作者:吴炳方,w ubf@https://www.360docs.net/doc/f414226475.html, 摘要:农业干旱给社会经济及人民生活造成严重影响,关于农业旱情监测的研究受到了学者们的广泛关注。遥感技术的发展为准确、及时进行旱情监测提供了新的机遇。本文综述了近年来国内外采用遥感方法监测农业旱情的研究进展,包括土壤湿度、作物形态、作物生理等农业旱情指标的遥感反演,指出了在实际应用中存在的一些问题,并提出了进一步改进的思路。 关键词:农业干旱;遥感;监测 doi:10.3969/j.issn.1000-3177.2010.01.021 中图分类号:T P79 文献标识码:A 文章编号:1000-3177(2010)107-0103-07 1 引 言 干旱是世界范围内普遍发生的一种复杂的自然现象,其波及范围广,持续时间长,是农业生产和人类生活中最严重的自然灾害之一。由于所关注的领域不同,干旱通常被分为4类:农业干旱,外界环境因素造成作物体内水分亏缺影响作物正常生长发育;气象干旱,由于降水和蒸发的收支不平衡所造成的异常水分短缺;水文干旱,降水与地表水或地下水收支不平衡造成的水分短缺;社会经济干旱,自然系统与人类社会经济系统的水资源供需不平衡造成的水分短缺。应当注意农业干旱与气象干旱的联系和区别,当发生气象干旱时,不一定发生农业干旱;而当发生农业干旱时,也不一定发生气象干旱。农业干旱的发生与气象、地形、土壤、底墒、灌溉措施、种植结构、品种抗旱能力等众多因素相关,被认为是这4类干旱现象中最复杂的一种。 农业干旱,即作物体内水分亏缺,主要是由于土壤供水与作物需水不平衡造成,这取决于土壤的供水能力和作物的生理需求。判断是否发生农业干旱必须从供需两方面考虑,传统的农业旱情监测主要基于地面站点的土壤墒情数据,其准确性、代表性、完整性有限。遥感技术的发展为农业旱情监测提供了新的途径,其优势在于能够及时、客观地获取大范 围的地表综合信息,同时监测土壤供水和作物需水状况,使其已成为区域旱情监测的重要手段。 2 土壤湿度的遥感监测 土壤湿度在农业、生态、水文、气象等众多研究领域中都是一个重要参数,土壤湿度的遥感反演受到各领域的关注,已对多种方法进行了研究探讨,其中微波遥感法和热惯量法被认为是较具潜力的土壤湿度遥感反演方法。 2.1 微波遥感法 物体的微波发射率主要取决于其介电特性。水的介电常数约为80,而干土的介电常数仅为3~5,土壤的湿度大小直接影响着土壤的介电常数,这使得微波回波对土壤湿度非常敏感。由此可建立土壤湿度与后向反射系数的统计经验函数,通过遥感数据获取的后向反射系数反演土壤湿度。由于微波遥感法具有全天时、全天候、穿透能力强等优点,已成为当前遥感研究的一个热门课题。 微波遥感可分为被动微波遥感和主动微波遥感两种。通常被动微波遥感成本低,时间分辨率高,但空间分辨率低;而主动微波遥感成本高,空间分辨率高,但时间分辨率低。无论被动微波遥感或主动微波遥感,其反演结果都受到地表粗糙度和植被的影响。如何降低或消除地表粗糙度和植被的影响,是 103

遥感技术在干旱监测中的应用

龙源期刊网 https://www.360docs.net/doc/f414226475.html, 遥感技术在干旱监测中的应用 作者:刘洋 来源:《现代农业科技》2017年第05期 摘要本文概述了遥感技术在干旱监测中应用的原理,接着探讨了遥感技术应用于灾害监 测中的特点,最后重点分析了其应用途径。 关键词遥感技术;干旱监测;特点;防旱减灾;应用 中图分类号 S127 文献标识码 A 文章编号 1007-5739(2017)05-0210-01 Abstract This paper summarized the application principle of remote sensing technology in drought monitoring,and discussed the characteristics and application approaches of remote sensing technology in disaster monitoring. Key words remote sensing technology;drought monitoring;characteristics;disaster prevention and mitigation;application 干旱遥感监测主要是对地表中的土壤含水量进行监测,而土壤中的水分是描述地气能量变化和水循环的重要参数。土壤水分的时空分布及其变化对地表蒸发、散发、土壤温度、农业墒情都会产生不同程度的影响,总之就是对地表水热平衡产生影响。反之,如果地表水热平衡发生变化就可以将土壤内的水分变化反映出来,进而反映干旱情况。当前,对干旱的监测主要是基于地表水热变化引起的土壤或植被的变化,找出反映土壤或植被水热性的因子,利用这些因子建立起干旱模型,通过分析相关因子在不同时空的差异性达到监测干旱的目的。 1 遥感技术在干旱监测中的应用原理 通过气象卫星的可见光和红外探测资料开展遥感技术干旱灾害监测。植被在生长过程中受很多因素的影响,但是干旱灾害在出现的过程中,土壤内含水量的多少直接对植被生长造成影响,植被在吸收和反射气象卫星的可见光和近红外光时的反应不尽相同,吸收和反射的多少直接受植被类型、植被生长情况及生态背景的影响,利用极轨气象卫星第一、第二2个通道反射出的光谱数据可以很容易地得出归一化植被指数。一旦植被遭受到干旱灾害时,植被生长过程中的水分不足,将会对植被的长势产生影响,此时遥感技术监测到的植被指数也会降低,因没有足够的水分供植被进行蒸发,此时的植被冠层的温度会升高。由此可以看出,使用植被指数模式可以很好地监测到植被覆盖区域受干旱危害的程度[1-2]。 2 遥感技术应用于灾害监测的特点 2.1 信息量大、效率高

遥感干旱反演方法汇总

遥感干旱反演方法汇总 (2012-07-03 08:27:42) 转载▼ 分类:遥感技术 标签: 遥感干旱监测 干旱反演方法 植被指数法 温度法 杂谈 干旱作为一种缓变的现象,其严重程度也是逐渐积累的结果,这就为干旱的监测和早期的预警带来了方便和可能。干旱监测方法分为地面监测方法和空间监测方法。地面监测方法是利用地面点的数据,通过统计分析进行干旱监测。而灾害的发生具有明显的空间和时间特性。空间特性是说灾害的发生总是落在某一个地域范围内,受影响的是一个面而不是一个点;时间特性是指灾害的发生具有明显的季节性与不同尺度的周期性。因而,传统的地面监测方法不能及时的对旱情信息进行快速、准确预报。空间监测方法是随着卫星遥感技术的发展而来并逐渐趋于成熟,通过测量土壤表面反射或发射的电磁能量,探讨遥感获取的信息与土壤湿度之间的关系,从而反演出地表土壤湿度。此法监测土壤湿度不仅可以得到土壤湿度在空间上的分布状况和时间上的变化情况,而且可以进行长期动态监测,具有监测范围广,速度

快,成本低等特点。 遥感分为可见光、红外波段和微波波段,不同波段的遥感对干旱监测的原理不同。在可见光与近红外波段,不同湿度的土壤具有不同的地表反照率,通常湿土的地表反照率比干土低。可见光和红外波段遥感正是利用地表温度获得土壤热惯量,从而进行估测土壤湿度。此方法虽然比较成熟,但是可见光与近红外遥感容易受云,气溶胶等天气状况的影响,此局限性严重影响了其监测精度。 微波遥感是近代兴起来一项新技术,相对于可见光和红外波段的遥感,微波波段遥感对土壤水分更加敏感。不受光照条件限制,具有全天候观测的能力,其分辨精度最高可达到几十厘米,而且微波的低频波段对冰,雪,森林,土壤具有一定穿透的能力。在一定程度上缓解了天气状况的干扰。由于土壤介电特性与土壤含水量密切相关,微波遥感通常采用土壤介电特性进行表征。土壤的介电常数随土壤变化而变化,表现于卫星遥感图像上将是灰度值和亮度温度的变化。微波遥感监测干旱又分为主动法和被动法两种。主动微波遥感主要根据地表的回波信号进行土壤湿度预测。具有较高空间分辨率,但受地表粗糙度,植被影响大。被动微波遥感监测面积大,周期短,受粗糙度影响小,并且对土壤水分更为敏感,算法更为成熟,可以应用于大面积地区干旱监测。

广东省农业旱灾遥感监测

第3期,总第77期 国 土 资 源 遥 感No .3,2008 2008年9月15日RE MOTE S EN SI NG FOR LAND &RE S OURCES Sep .,2008 广东省农业旱灾遥感监测 高懋芳1,张虹鸥2,秦晓敏3,覃志豪1,4,周霞2,杨秀春1 (1.中国农业科学院农业资源与农业区划研究所,北京 100081;2.广东省环境科学与技术公共实验室,广州 510650; 3.山东省土地勘测规划院,济南 250014; 4.南京大学国际地球系统科学研究所,南京 210093) 摘要:研究了基于遥感与G IS 的广东省农业旱灾遥感监测方法,建立了农业旱情遥感监测评估模型。该模型结合 MODIS 遥感数据、地面气象观测资料以及当地基础地理信息系统数据,分析评价了2006年5~10月广东省每旬的 农业旱情发展变化过程,结果与2006年广东农业旱情发展变化趋势吻合程度很好,表明这一监测方法能够用来有 效地监测评价广东省农业旱情发展时空变化。 关键词:广东省;农业旱灾;旱情监测;遥感;MODIS 中图分类号:TP 79 文献标识码:A 文章编号:1001-070X(2008)03-0094-06 收稿日期:2007-10-25;修订日期:2008-03-06 基金项目:广东省环境科学与技术公共实验室开放基金(060201)、广东省科技计划项目(2006B21001006)、国家自然科学基金项目/我国农业旱灾机理与监测方法研究0(30571078)及科研院所社会公益研究专项/我国农业旱灾监测评价技术集成研究0(2005D I A3J032)共同资助。 0 引言 广东省的干旱非常严重,2004年发生了半个世 纪以来最严重的农业旱灾,受灾面积7280k m 2,成灾 3200km 2,直接经济损失超过35亿元。空间遥感技 术的发展使大面积观测地表成为可能,如何利用遥感 与地理信息系统进行实时的旱情监测,并提出有效的 应对措施,对农业生产有很重要的意义 [1]。目前,国内外用于农业旱灾遥感监测的方法有很多,从原理上可分为两大类[2,3]:一类是基于土壤 水分的变化会引起土壤光谱反射率的变化,主要用 于裸地或低植被覆盖区域;另一类则基于干旱会引 起植物生理过程的变化,从而改变叶片的光谱属性, 并显著地影响植被叶冠的光谱反射率,主要用于植 被覆盖较好的区域。早在1965年,Bo wers 等 [4,5]就发现裸地土壤湿度增加会引起土壤反射率降低;W atson 等 [6,7]最早成功地应用了热惯量模型;Jack 2son 等[8]提出了作物缺水指数的概念;申广荣等[9]在G I S 支持下,建立了黄淮海平原旱情监测系统;另外还有多种基于植被指数或地表温度的干旱遥感监测方法,如距平植被指数(AV I)[10]和温度植被旱情指数(TVDI)[11]等。虽然可用于农业旱灾监测的方法有很多,但大都只是试验性的研究,难以实现业务化运行[12],主要存在的问题有两个:一是单一的指数法进行旱情监测, 精度有限,无法保证全国范围内的适用性;二是一些 指数虽然可以相对精确地做出监测,但是计算过程复杂,需要的地表参数比较多,而且不容易获得,只适合于小区域的研究,不适合长期的业务化运行以及每旬的汇报。因此,探索一套相对精准的、适合长期业务化运行的广东省农业旱灾监测方法非常必要。本研究以MOD I S 数据为主,计算出广东全省范围内每天的植被供水指数,并进行旬合成,得到每旬内遥感旱情监测结果;同时,结合地面实时观测的气象资料以及地形,地表覆盖等基础数据建立G I S 数据库,通过多因素的综合评价得出旱情监测结果。1 研究区概况广东省地处中国大陆最南部,地貌类型复杂多样,地势总体北高南低。广东南北跨热带和亚热带,是全国光、热和水资源比较丰富的地区之一。由于受季风气候的影响,降水的季节分布很不均匀,4~9月的汛期降水占全年的80%以上;年际变化也比较 大,多雨年降水量为少雨年的2倍以上。广东省地 质构造复杂,在粤北石灰岩地区,地下溶洞暗河多, 渗漏严重,水分难以蓄存。全省土壤类型以红壤为 主,蓄水能力差,淋溶作用强烈,易受干旱危害。 由于降水分布不均以及特殊的地质地貌结构, 广东省成为旱灾多发地区。以南岭为主的粤北山地 阻挡了北部锋面雨的深入,使降水自北向南明显减

相关文档
最新文档