几种不规则图形的解题方法 2

几种不规则图形的解题方法 2
几种不规则图形的解题方法 2

几种不规则图形的解题方法

对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。常用的基本方法有:

1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。

例1:求下图阴影部分的面积(单位:厘米)。

解答:

通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:(平方厘米)

2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。

例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少?

解答:

两个正方形的面积:5×5+4×4=41(平方厘米)

三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米)

阴影部分的面积:41-33=8(平方厘米)

除了以上这两种方法,还有其他的几种方法,同学们不妨了解了解。

3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。

例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?

解答:

阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。

平行四边形ABCD的面积:8×6÷2+8=32(平方厘米)

4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。

例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?

解答:

结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD比三角形CDA的面积大2平方厘米。

(4×4÷2-2)×2÷4=3(厘米)

巧求面积

下图中,平行四边形的面积是40平方米。求阴影部分的面积。(提示:注意△ABE实际是个等腰直角三角形,这样就能求出平行四边形的高。接下来同学们应该没问题了吧?)

阴影部分面积是4.5平方米。

解题提示:

△ABE是等腰直角三角形,所以AE长度是5米,而AE又可以看成平行四边形BC边上的高,所以由此我们可以求出平行四边形边长BC的值。接下来,再往下就容易了吧!

第二讲不规则图形面积的计算(二)精选.

第二讲不规则图形面积的计算(二) 不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B 之间有:S A∪B=S A+S b-S A∩B)合并使用才能解决。 例1 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。 解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。 解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半. 例2 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 解:由容斥原理 S阴影=S扇形ACB+S扇形ACD-S正方形ABCD

例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。 解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD =13π-24=15(平方厘米)(取π=3)。 例4 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。 分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长. =(157-7)×2÷20 =15(厘米)。 例5 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。

小学 不规则图形的面积

多边形的面积 本节内容: 1、减法求面积 2、加法求面积(割补法) 3、等积法求面积(剪拼法) 4、平面图形之间的等量关系的相互转化 我们已经学习过长方形、正方形、平行四边形、三角形、梯形的面积计算,图形以及计算公式如下:

巩固与提升:课前热身 1、两个()的三角形可以拼成一个平行四边形。 A 底相等 B 面积相等 C 等底等高 D 完全相同 解析:平行四边形按对角线切割可以分成两个完全相同的三角形。 2、下面两个完全相同的长方形中,阴影部分的面积相比,甲()乙。 A 大于 B 小于 C 等于 D 无法判断 解析:考察的是等底等高的三角形面积相等。 3、两个三角形等底等高,说明这两个三角形()。 A 形状相同 B 面积相同 C 能拼成一个平行四边形 D 完全相同 解析:考察的还是等底等高的三角形面积相等。

4、一个三角形底不变,高扩大4倍,面积()。 A 不变 B 扩大2倍 C 扩大4倍 D 缩小4倍 解析:面积的变化规律(积的变化规律) 5、把一个平行四边形活动框架拉成一个长方形,那么原来平行四边形与现在长方形相比()。 A 周长不变、面积不变 B 周长变了、面积不变 C 周长不变、面积变了 D 周长变了、面积变了 解析:周长没变,只有高度在发生变化。 6、一个平行四边形,底扩大6倍,高缩小2倍,那么这个平行四边形的面积()。 A 扩大6倍 B 缩小2倍 C 面积不变 D 扩大3倍 解析:考察的还是面积的变化规律(积的变化规律)。

在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。在本讲中,我们将学习如何计算它们的面积。 组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。要正确解答组合图形的面积,应该注意以下几点: 1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的; 3.适当采用增加辅助线等方法帮助解题; 4.采用割、补、分解、代换等方法,可将复杂问题变得简单。

不规则图形面积与周长

学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思 维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。 学科培优数学 “不规则图形面积与周长” 学生姓名授课日期 教师姓名授课时长 知识定位 几何是历届小升初和各杯赛的必考知识点,在奥数中,几何不但具有直观性, 而且变换精巧,妙趣横生。本讲基于一般的规则图形周长与面积之基础上,重点 讲解不规则图形面积与周长的求解方法。针对这些不规则图形,常常通过实施割 补、剪拼等方法将它们转化为基本图形的和、差关系。 由于本讲基于基本图形的变形之上,所以在讲解本讲之前有必要先复习一下常 见几何图形的面积和周长的求解公式。然后通过生活实例或教学模具逐渐引出 本讲专题,使学生领悟分割、拼补、旋转等转换思想。几何问题就像看图说话, 需要掌握其中的玄妙。

知识梳理 一、不规则图形面积与周长 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。它们的面积及周长都有相应的公式直接计算,如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?针对这些图形,我们可以变动图形的位置或对图形进行适当的分割、拼补、旋转等方法将它们转化为基本图形的和、差关系。有时也可利用公式的变形,比如巧用半径的平方。我们知道,要计算圆的面积通常要知道半径,有的时候题目不知道半径,根据其他条件也能求出圆的面积。 一般的,两个可以完全重合的图形的面积相等;图形被分成若干部分时,各部分面积之和等于图形的面积。 通过转换思想,复杂问题经常要化繁为简,从最简单的情况开始,找出其中规律,归纳总结到一般情形。 【授课批注】

初中数学专题辅导:阴影面积求法9种方法(不规则图形)

阴影面积求法 阴影部分的图形一般是不规则图形或没有可直接利用的公式,因此,同学们常感到困难。本文指出:求解这类问题的关键是将阴影部分图形转化为可求解的规则图形的组合。如何转化呢?这里给出常用的9种转化方法。 1. 直接组合 例1. 如下图,圆A 、圆B 、圆C 、圆D 、圆E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( ) A. π B. 1.5π C. 2π D. 2.5π (02年河南省中考) 分析:由于每个扇形圆心角的具体角度未知,故无法直接进行计算。因为五边形ABCDE 的内角和=540°=360°+180°,从而可知所求阴影部分的面积可以重新组合成一个圆和一个半圆的面积,即1.5个圆的面积: ππ5.1)1(5.12=??,选(B )。 2. 圆形分割 例2. 如下图,ΔABC 中,∠C 是直角,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_________2cm (π=3.14159……,最后结果保留三个有效数字)。 (03年济南市中考) 解:在ABC Rt ?中, 所以 cm AB BC BAC ABC 62 1 3060== ?=∠? =∠ 又易证 EBD Rt ABC Rt ???, 。 ,, 所以?=∠=∠?=∠=∠=??12060CBD ABE EBD ABC S S EBD ABC 故所求阴影面积为整个图形的总面积减去空白图形的面积,即 ==) ()=(扇形扇形扇形扇形阴影2 26120 12120S S S S S S S BCD BAE ABC BCD EBD BAE ?-?-+-+??ππ

不规则图形面积的计算(一)

不规则图形面积的计算(一) 我们曾经学过三角形、长方形、正方形、平行四边形、梯形等基本图形(也叫规则图形)的面积计算,但在实际问题中,有些图形的面积是由一些基本图形通过组合、平凑而成的,他们的面积及周长无法用公式直接计算,我们通常称这些图形为不规则图形。 那么,我们怎样计算不规则图形的面积和周长呢? 我们一般是将这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,从而较轻松的解决问题。 【例1】如图,正方形的边长是4,求阴影部分面积 【分析】正方形的对角线将正方形平分,又因所截其直线平行于正方形的边,故阴影和空白处的面积相等。 【例2】如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE。求阴影部分的面积。 【分析】由FG=2GE可知,G点是线段EF的三等分点,故阴影部分的面积是

三角形CEF面积的三分之一。 【例3】如图,平行四边形ABCD的边长BC=10,直角三角形BCE的直角边EC=8,已知阴影部分的面积比三角形EFG的面积大10。求CF的长。 【分析】本题看似没有思路,重要是要理清各个面积之间的联系。 提示语对于求不规则图形的面积,首先要看清题目所给的条件,及通过题目所给条件可以得出什么?一般利用加辅助线,可以通过剪、拼、凑的方法得出答案。, 自己练 1、求下列图形阴影部分面积:单位:厘米

2、解答题: 直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积。 (3)、有一三角形纸片沿虚线折叠到右下图,他的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米。求原三角形面积。 【提高题】求阴影部分面积(字母是为解题方便加的)

苏教版数学五年级上册《不规则图形面积的估算》说课稿

苏教版数学五年级上册《不规则图形面积的估算》说课稿 一、说内容: 不规则图形面积的估算。 二、说教材:本节教学内容是不规则图形面积的估算。这部分是在部分学生掌握各种简单的平面图形面积和‘分割法’,‘添补法’的基础上进行学习的。例5创设情境,让学生估算树叶的面积,激发学生的想象力和学习兴趣,学生利用“数方格”的方法和把不规则图形看成一个近似规则的图形的方法估算树叶的面积。教材以对话的形式分析估算的过程,简单明了,是学生更容易理解。 说目标: 1、能正确估算不规则图形面积的大小,能用数方格的方法或把他看成一个近似的规则图形 的方法,估算出一些不规则图形的面积。 2、能借助方格估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性, 培养初步的估算意识和估算习惯,体验估算的重要性和必要性。 3、体会数学与现实生活的密切联系,感受数学应用价值。 说重点:利用方格图估计不规则图形的面积。 说难点:把不规则的图形看成规则的图形进行面积估算。 三、说教学情况分析: 在实际生活中,经常会接触到各种各样的不规则图形,有很多图形很难看出难以基本的图形,这就给学生解决问题设置了障碍,需要学生灵运用各种方法去尝试解决问题。 1、创设情境,变“不愿估算”为“喜欢估算”。 在教学中要我努力创设现实、有趣、富有挑战性的情境,让学生在具体的情境中改变对估算的态度。例如:创设树叶的面积计算,激发学生估算图形面积的热情,引发学生探索“多种方法、尝试估算”的欲望。创设“土地面积”的生活情境,焕发学生解决生活问题的意识。这一切情境的呈现,学生对估算产生了极大的兴趣,从而更自觉地投入到探究活动中。 2、感悟方法,变“不会估算”为“创造性地估算”。 估算是一种开放性的创造活动,往往带有许多不确定性。如何根据条件来估算,如何提取主要信息,哪些信息可以忽略不计,这些技能的形成贯穿于学习全过程。在教学中,我根据学生知识水平教给一些基本的估算方法,让他们在实际运用的过程中感悟内化形成较熟练的估算方法。 一、说教学过程与教学资源设计。 1、引入新课 教师:我们先来计算一下课件上的几个几何图形的面积。 学生:树叶的面积没学过。 教师:树叶是一个不规则图形,没有学过,不能算出它的面积,所以不能完成任务。 那么大家有没有兴趣探究一下生活中不规则图形的面积的计算方法呢? (板书课题) 在此我设置拦路虎激发学生提出问题的方式,激发学生的学习兴趣,同时让学生了解规则图形与不规则图形的区别,为新课学习做准备。 二、探究新知 1.探究估计不规则图形面积的方法 (1)数方格估算面积 教师:怎样计算不规则图形的面积呢?为了方便我们研究,我们先来研究这样一个不规则图形。(教师拿出如图的不规则图形)

求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有: 一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了. 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可. 三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|: 4422 1 =??。 四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.

五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便 . 六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。 八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积. 九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原

不规则图形的面积估算

不规则图形的面积 宁波市孙文英小学邵颖 教学内容:人教版2014年9月发布的新教材五上P100. 教材简介: 本课是人教版新教材五年级上册,多边形面积单元的新增内容。是在学生掌握了基本图形面积计算,以及组合图形面积计算之后。新增的估计叶子的面积这一不规则图形面积的估计与计算内容,以此提高学生综合应用的意识和能力。 教材编写特点中,突出了在解决实际问题中,渗透面积估计的策略思想。教材呈现了用数格子的方法估计不规则图形的面积,根据图形特点转化为近似的规则图形估算,为了使估计的结果更为准确,教材提供了更为细化的处理方法。让学生体验单位面积细化的过程,从中积累数学活动经验和方法。 这是课程标准提出的培养估算能力在图形与几何中的应用,也是估算思想的体现,在估计不规则图形面积的过程中提高学生的空间观念。 教学目标: 1、借助数方格的方法计算不规则图形的面积,并能估计它的大小,逐步形成空间观念。 2、结合实际问题的解决,培养用多种策略解决问题,提高学生综合应用的意识和能力。 3、通过实践操作、合作交流,帮助学生积累活动经验,感受数学思想。 教学过程: 一、问题的提出 1、如何计算不规则图形的面积? (1)这片叶子的形状不规则,你能估计一下它的面积吗? (2)借助1平方分米的正方形纸进行对比确定面积范围。 (3)如何进一步估计叶子的面积更接近准确值? (4)学生借助格子图尝试估一估。 二、分析解决问题 1、学生思路展示(实物投影) 学生作品展示,生生互评提炼方法。 (1)数格子的方法

学生数出整格和半格的数量进行估计。根据学生的反馈,适当引导学生用区间的方式去思考图形面积的最大值和最小值,有一个大致的范围。 进一步估计,可以把不满一格的看成半格来算。 (2)转化的方法 根据学生展示的转化成的长方形和平行四边形等图形来估计的情况,进行比较分析,怎样估得更接近? 2、进一步分析与思考 如果想进一步估计出叶子的面积有什么好办法?把1平方厘米的小格再进行细分,那么又会怎样呢?在1平方厘米的格子的基础上再进行细分,让学生感受单位面积细分与估计结果的关系。 比较我们估计得过程,让学生根据三次估计的图进行分析比较,感受随着单位面积的细化估计结果更接近准确面积。随着整格面积不断增加,估计结果也更接近。 3、小结 回顾我们刚才解决问题的过程,你有哪些经验可以和同学们分享? 三、综合解决问题 1.专项练习 (1)估一估脚掌的面积(每个小正方形的边长为1厘米) 你猜猜是多大孩子的脚掌啊?那你能估一估这个脚掌的面积有多大? (婴儿的脚掌:24——50平方厘米) (出示两个长方形,是最大值和最小值)看看这两个长方形,你有什 么发现? 猜一猜,下面两种脚印会是谁的呢? ① 120~150平方厘米② 240~320平方厘米 前者是幼儿园小朋友的,后者是我们小学生的。 2.解决问题 这个游泳池的占地面积大约是多少呢? 面积在280平方厘米左右。

专题训练(三) 不规则图形面积的五种求法

专题训练(三) 不规则图形面积的五种求法 求与圆有关的面积时,有时候可以直接运用公式求出,但大多数都要通过转化后再求其面积,常用的方法有:作差法、等积变形法、平移法、割补法等. ? 类型一 利用“作差法”求面积 1.如图3-ZT -1,在⊙O 中,半径OA =6 cm ,C 是OB 的中点,∠AOB =120°,求阴影部分的面积. 图3-ZT -1 2.如图3-ZT -2,△OAB 中,OA =OB =4,∠A =30°,AB 与⊙O 相切于点C ,求图中阴影部分的面积.(结果保留π) 图3-ZT -2 3.如图3-ZT -3,在⊙O 中,弦AB 所对的劣弧长是圆周长的1 3,其中圆的半径为4 cm . (1)求AB 的长; (2)求阴影部分的面积. 图3-ZT -3

? 类型二 利用“等积变形法”求面积 4.如图3-ZT -4所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CD =2 3,则阴影部分图形的面积为( ) 图3-ZT -4 A .4π B .2π C .π D .2π3 5.如图3-ZT -5,E 是半径为2 cm 的⊙O 的直径CD 延长线上的一点,AB ∥CD 且AB =1 2 CD ,求阴影部分的面积. 图3-ZT -5 ? 类型三 利用“平移法”求面积 6.如图3-ZT -6是两个半圆,点O 为大半圆的圆心,AB 是大半圆的弦且与小半圆相切,且AB =24,求图中阴影部分的面积. 图3-ZT -6

7.如图3-ZT -7,AB ,CD 是⊙O 的两条互相垂直的直径,O 1,O 2,O 3,O 4分别是OA ,OD ,OB ,OC 的中点.若⊙O 的半径是2,求阴影部分的面积. 图3-ZT -7 ? 类型四 利用“旋转法”求面积 8.2017·济宁如图3-ZT -8,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( ) 图3-ZT -8 A .π6 B .π3 C .π2-12 D .1 2 9.当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷.如图3-ZT -9是某汽车的一个雨刷的转动示意图,雨刷杆AB 与雨刷CD 在B 处固定连接(不能转动),当杆AB 绕点A 转动90°时,雨刷CD 扫过的面积是图中阴影部分的面积,已知CD =80 cm ,∠DBA =20°,AC =115 cm ,DA =35 cm ,试从以上信息中选择所需要的数据,求出雨刷扫过的面积. 图3-ZT -9

小学五年级逻辑思维学习—不规则图形面积与周长

小学五年级逻辑思维学习—不规则图形面积与周长 知识定位 几何是历届小升初和各杯赛的必考知识点,在奥数中,几何不但具有直观性,而且变换精巧,妙趣横生。本讲基于一般的规则图形周长与面积之基础上,重点讲解不规则图形面积与周长的求解方法。针对这些不规则图形,常常通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系。 由于本讲基于基本图形的变形之上,所以在讲解本讲之前有必要先复习一下常见几何图形的面积和周长的求解公式。然后通过生活实例或教学模具逐渐引出本讲专题,使学生领悟分割、拼补、旋转等转换思想。几何问题就像看图说话,需要掌握其中的玄妙。 知识梳理 一、不规则图形面积与周长 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。它们的面积及周长都有相应的公式直接计算,如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?针对这些图形,我们可以变动图形的位置或对图形进行适当的分割、拼补、旋转等方法将它们转化为基本图形的和、差关系。有时也可

利用公式的变形,比如巧用半径的平方。我们知道,要计算圆的面积通常要知道半径,有的时候题目不知道半径,根据其他条件也能求出圆的面积。 一般的,两个可以完全重合的图形的面积相等;图形被分成若干部分时,各部分面积之和等于图形的面积。 通过转换思想,复杂问题经常要化繁为简,从最简单的情况开始,找出其中规律,归纳总结到一般情形。 【授课批注】 不规则图形有时也称为组合图形,其重点在于掌握转换这一伟大思想,很多较复杂的问题都是以简单的基本图形为基础的,当然也都可以根据几何图形的特征,通过分割、割补、平移、翻折、对称、旋转等方法,化复杂为简单,变组合图形为基本图形的加减组合。 【重点难点解析】 1.一般图形问题的面积和周长公式。 2.巧求周长与面积的基本方法。 3.理解并掌握割补、平移等数学思想方法。 【竞赛考点挖掘】 1.杯赛考试中出现的几何问题多数需要进行适当的转换。 2.辅助线的巧妙利用能够有效提高做题速度。 3.割补法、平移法、旋转法、差不变等解题技巧。 例题精讲 【题目】计算右面图形的周长(单位:厘米)。

不规则图形的面积计算

不规则图形的面积计算 在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法来思考。下面介绍几种常见的面积计算的解题思路. 一、“大减小” 例1.求下图中阴影部分的面积(单位:厘米) 解析:阴部部分的面积=“大减小” =两正方形面积-空白部分面积 =(4×4+3×3)-(4+3)×4÷2 =11平方厘米 二、“补” 例2.四边形ABCD是一个长10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米,求CF的长。 解析:假设三角形EFC为图1,四边形ECBA为图2,三角形ADE为图3。给1、3同时补上2,它们的面积差不会发生改变 图形3的面积-图形1的面积=10

(图形3+图形2)-(图形1+图形2)= 即长方形ABCD的面积-三角形ABF的面积=10 那么,三角形ABF的面积=60-10=50=AB×BF÷2 可算出 BF=10厘米,所以CF=10-6=4厘米 例3.如图,四边形ACEF中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF的面积 解析:分别延长AF、CE,交于B点 在三角形ABC中,很明显,它是个等腰直角三角形,面积=8×8÷2=32平方厘米 在三角形EFB中,很明显,它也是一个等腰直角三角形,面积=2×2÷2=2平方厘米 所以,S四边形ACEF=S△ABC-S△EFB=32-2=30平方厘米 三、“移” 例4.如图所示(1图),四边形ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求路的面积。 解析:小路是曲折的,不规则图形,可用采用“移”的思路来解决 把图1下面空白部分往上、往左移,使它与上面空白部分连接在一起,就成了图2中的空白部分,是一个长方形,长是20-2=18米,宽是14-2=12米,这个长方形的面积=18×12=216平方米,小路的面积=大长方形的面积-空白长方形的面积=20×14-216=64平方米 例5.如图,AE=ED,AF=FC,已知三角形ABC的面积是100平方厘米,求阴影部分的面积

小升初几何图形部分(教师版)

: 时间:15分钟满分5分姓名_________ 测试成绩_________ 1 (05年101中学考题) 求下图中阴影部分的面积: \ 2 (06年清华附中考题) 从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是_________平方厘米. 3 (06年三帆中学考试题) " 有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体(见左下图).这60个小长方体的表面积总和是______平方米. 4 (06年西城八中考题) 右上图中每个小圆的半径是1厘米,阴影部分的周长是_______厘米.( =) ) 5 (05年首师附中考题)

一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个 【附答案】 … 1 【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 所以阴影面积:π×4×4÷4-4×4÷2=。 2 【解】最大正方体的边长为6,这样剩下表面积就是少了两个面积为6×6的,所以现在的面积为(8 ×7+8×6+7×6) ×2-6×6×2=220. [ 3 【解】原正方体表面积:1×1×6=6(平方米),一共切了2+3+4=9(次),每切一次增加2个面:2平方米。所以表面积: 6+2×9=24(平方米). 4 【解】可见大圆的半径是小圆的3倍,所以半径为3,那么阴影部分的周长就等于7的小圆的周长加 上1个大圆的周长,即7×π×2+π×6=20π。 - 5 【解】:共有10×10×10=1000个小正方体,其中没有涂色的为(10-2)×(10-2)×(10-2)=512个,所以至少有一面被油漆漆过的小正方体为1000-512=488个。 第二讲小升初专项训练几何篇(二 1 与圆和扇形有关的题型 【

几种不规则图形面积的解题方法

对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。常用的基本方法有: 1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。 例1:求下图阴影部分的面积(单位:厘米)。 解答: 通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为: (平方厘米) 2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。 例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少? 解答: 两个正方形的面积:5×5+4×4=41(平方厘米) 三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4) ÷2=33(平方厘米) 阴影部分的面积:41-33=8(平方厘米) 除了以上这两种方法,还有其他的几种方法,同学们不妨了解了

解。 3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。 例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少? 解答: 阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。 平行四边形ABCD的面积:8×6÷2+8=32(平方厘米) 4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。 例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少? 解答: 结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE 比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD 比三角形CDA的面积大2平方厘米。 (4×4÷2-2)×2÷4=3(厘米)

不规则图形面积的计算及详细讲解

第一讲不规则图形面积的计算(一) 习题一(及详细答案) 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN (阴影部分)的面积. 3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积. 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积. 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少? 7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.

8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长. 习题一解答 一、填空题: 二、解答题: 3.CE=7厘米. 可求出BE=12.所以CE=BE-5=7厘米. 4.3.提示:加辅助线BD ∴CE=4,DE=CD-CE=5-4=1。 同理AF=8,DF=AD-AF=14-8=6, 6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=(米),长方形的长为=(米).

中考不规则图形面积的求法资料讲解

中考不规则图形面积 的求法

不规则图形面积的求法 (九年级中考复习) 求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。 一、等积替换 (1)三角形等积替换 依据:等底等高的三角形面积相等或全等的三角形面积相等。 例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分点.,求阴影部分的面积. 解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ??=(同底等高的三角形面积相等) ∴==扇形阴影OCD S S ππ3 23602602=?? 例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的 半圆与BC 切于M 点,求阴影部分面积. 解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。连结OM 交 BD 于E; 则△OED ≌△MEB ∴MEB OED S S ??= (全等三角形面积相等) ∴==扇形阴影OMD S S 4 3601902ππ=?? (2)弓形等积替换 依据:等弧所对的弓形面积相等。 A 图2

例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和. 解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4, 得∠A =45°且AC =42,AD =BD =CD =22 ∴A D BnD S S 弓形m 弓形= ∴CDB 11S CD BD 2222422 S ?????阴影==== 例4、点A、B、C、D是圆周上四点,且AB +CD =AC +BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。 解:作⊙ O 的直径BE 连结AE ,则∠BAE =90°,AB AE =+半圆; 又∵AB +CD =AC +BD =1AB CD AC BD 2(+++)=半圆, ∴AE =CD ,所以A E C D S m n S 弓形弓形=,AE=CD=4。 ∴BE 2=AE 2+AB 2 ∴ BE=228445+= ∴ 2 RT ABE O 1451S S S 84101622ππ????? ? ???阴影半圆=-=-=- 二、整体思想(各部分的面积无法求得,但各部分面积的和或差可求得) 例5、如图5所示,一个同心圆环中,大圆的弦AB与小圆 相切于C,且AB=6,求圆环的面积 分析:按照常规思路,圆环的面积等于大小圆的面积之差, 而两圆的半径大小未知,好像是无法求得;但 ()2222S S S R R r r πππ圆环大圆小圆=-=-=-,这里我们需要的两圆 半径差的平方,而不是两圆的半径。 图

小学1—6年级图形求面积的10种方法

小学1-6年级必会图形求面积的10个方法,考试必知! 六年级学习1周前 们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、 圆和扇形等图形,一般称为基本图形或规则图形,图形的面积及周长 都有相应的公式直接计算。 如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1:如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积。 一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 例2:如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。 一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。 解:

S△ABE=S△ADF=S四边形AECF=12 在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF的面积为2×2÷2=2。 所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形。 总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。 常用的基本方法有 1相加法 这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。 例如:求下图整个图形的面积。 一句话:半圆的面积+正方形的面积=总面积 2相减法 这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。 例如:下图,求阴影部分的面积。

第一讲不规则图形面积的计算(一)

第一讲不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,它们的面积及周长都有相应的公式直接计算。 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1 如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米。求阴影部分的面积。 A B C 解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个

“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 1×10×10=50; 因为S△ABG= 2 1(10+12)×12=132; S△BDE= 2 1(12-10)×12=12。 S△EFG= 2 又因为S甲+S乙=12×12+10×10=244, 所以阴影部分面积=244-(50+132+12)=50(平方厘米)例2如下图,正方形ABCD的边长为6厘米,△ABE、 △ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。 解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD面积的三分之一。也就是: 1×6×6=12。 S四边形AECF=S△ABE=S△ADF= 3 在△ABE中,因为AB=6,所以BE=4,同理DF=4,因此,CE=CF=2,所以△ECF的面积为2×2÷2=2。 所以S△AEF= S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如下图那样重合。求重合部分(阴影部分)的面积。

不规则几何图形面积计算方法

不规则几何图形面积计算方法 有一次坐车,曾与一位大学一年级的学生坐邻座。 问她现在还学不学数学,她说正学呢,学微积分。 问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。 我将手拍在我们前面座椅的靠背上,问:“用您高中以前的知识,您怎么求我的手掌印的面积?” 她马上说:“这没有办法求。我们求面积都就是求的规则图形的面积。这个没有办法求。” 她没有用过新课程下的数学教材。对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。 新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。对于感兴趣的学生,教师还可以引导她们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。根据经验,学生还可能认识到方格分得越细,不足近似值与过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。[1]”大方格不能 上文说“根据经验,学生还可能认识到……”,似乎就是编写者“一厢情愿”的猜度。我们瞧到下面的材料,想来您会体会到编写者这样设计的意义与价值。这就是一位教师在上课中的实录节选。 例2[2] 求一块不规则图形的面积. 这与数学中的常规问题就是不同的,我们在数学中面对的一般都就是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢?我们把它交给学生,竟然得到了如下一些成果: 方法1 将图形放在坐标纸上,也即将图形分割,瞧它有多少个“单位面积”. 方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近. [1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社, [2]试谈以人为本的三维课堂教学,http://www、6318、cn/jyzx/Print、asp

五年级不规则图形面积计算

五年级不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分 别是10厘米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:

∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米 和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. B C

相关文档
最新文档