车联网安全之国密算法与其他算法的区别

车联网安全之国密算法与其他算法的区别
车联网安全之国密算法与其他算法的区别

车联网安全之国密算法与其他算法的区别

概述:

在车联网中,不管是端到云、还是云到车,每个环节、每个节点的信息安全保障都离不开加解密算法的支持,加解密算法的合理使用以及其计算能力直接影响车联网的性能和用户的体验。

今天和大家讨论一下国密算法与其他加解密算法(即国际算法是美国的安全局发布,是现今最通用的商用算法)的差别,以便于车联网的设计者们在不同的环节、节点采用最优的算法,从而提高产品的性价比。

国密算法:

即国产密码算法,是国家密码局制定标准的一系列算法,其中包括了对称加密算法,椭圆曲线非对称加密算法,杂凑算法等,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。在车联网中,目前还没有车厂采用国密算法,但作者认为随着互联网安全作为国家属性的重要度提升,未来国密算法将是车联网安全领域的发展趋势。

与国际算法差别:

SM1是国家密码管理部门审批的分组密码算法,分组长度和密钥长度都为128比特,算法安全保密强度及相关软硬件实现性能与AES相当,该算法不公开,仅以 IP核的形式存在于芯片中;

图1:SM1与AES的比较

SM2算法和RSA算法都是公钥密码算法,SM2算法是一种更先进安全的算法,在我们国家商用密码体系中被用来替换RSA算法。SM2性能更优更安全:密码复杂度高、处理速度快、硬件性能消耗更小。

图2:SM2与RSA的比较

注:

1. 亚指数级算法复杂度低于指数级别的算法。

2. RSA秘钥生成速度较慢。例:主频1.5G赫兹的话,RSA需要2-3秒的,这在车联网中是根本无法接受的,而SM2只需要几十毫秒。

SM3是摘要加密算法,该算法适用于商用密码应用中的数字签名和验证以及随机数的生成,是在SHA-256基础上改进实现的一种算法。SM3算法采用Merkle-Damgard结构,消息分组长度为512位,摘要值长度为256位。

图3:SM3与Sha256的比较

SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性,是专门为无线局域网产品设计的加密算法。

图4:SM4与3DES的比较

另外,SM7,SM9,ZUC祖冲之算法都属于国密算法范畴,但这几种算法不适用于车联网中,所以这里暂不讨论。

以上是车联网众多节点中,为了保证各节点信息通讯安全,可以被适用到的国密算法与相对应的国际算法差别的介绍。

《车联网体系架构分析》

《车联网体系架构分析》 车联网体系结构与解决方案 背景介绍 近年来,随着汽车保有量的持续增长,道路承载容量在许多城市已达到饱和,交通安全、出行效率、环境保护等问题日益突出。在此大背景下,汽车联网技术因其被期望具有大幅度缓解交通拥堵、提高运输效率、提升现有道路交通能力等功能,而成为当前一个关注重点和热点。欧洲、美国、日本等国家和地区较早进行了智能交通和车辆信息服务的研究与应用,xx年3月大唐电信科技产业集团与启明信息技术股份有限公司携手共建车联网联合实验室,4月在重庆建立国内首个“智能驾驶与车联网实验室”等,充分表明当前国内外对车联网研究的迫切性和广泛性。 车联网与物联网 物联网是一个以互联网为主体,兼容各项信息技术,为社会不同领域提供可定制信息化服务的具有泛在化属性的信息基础平台。物联网的概念和内涵随着信息技术的发展和不同阶段人们信息化需求的不断演进,因其接入对象的广泛性、运用技术的复杂性、服务内容的不确定性以及不同社会群体理解和追求上的差异性,很难用已有概念和标准来准确完整地给出权威定义。然而,车联网概念的出现,因其服务对象和应用需求明确、运用技术和领域相对集中、实施和评价标准较为统 一、社会应用和管理需求较为确定,引起了业界的普遍关注,已

被认为是物联网中最能够率先突破应用领域的重要分支,并成为目前的研究重点和热点。 源于物联网的车联网,以车辆为基本信息单元,以提高交通运输效率、改善道路交通状况、拓展信息交互方式,进而实现智能交通管理,使物联网技术这一原本宽泛的概念在现代交通环境中得以具体体现。本文立足物联网基础理论和模型,以构建以信息技术为主导的智能交通系统为背景,对车联网的基本概念、体系结构、通信架构及其关键技术进行研究。 车联网基本概念和分类车联网概念是物联网面向行业应用的概念实现。物联网是在互联网基础上,利用射频识别(radiofrequencyidentification,rfid)、无线数据通信等技术,构造一个覆盖世界上万事万物的网络体系,实现任何物体的自动识别和信息的互联与共享。物联网不刻意强调物体的类型,更多的是强调物理世界信息的获取和交换,以实现当前互联网未触及的物与物信息交换领域。车联网是物联网概念的着陆点,将这个具体的物理世界限定到车、路、人和城市上。车联网利用装载在车辆上电子标签rfid获取车辆的行驶属性和系统运行状态信息,通过gps等全球定位技术获取车辆行驶位置等参数,通过3g等无线传输技术实现信息传输和共享,通过rfid和传感器获取道路、桥梁等交通基础设施的使用状况,最后通过互联网信息平台,实现对车辆运行监控以及提供各种交通综合服务。 从技术角度区分,车联网技术主要有电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术。

车联网之APP安全

车联网网络安全之APP 安全 背景:我们的生活、工作、学习都正在被数字化、移动化。智能手机的普及推动了手机APP 的快速发展,小到沟通聊天、车票预定,大到银行理财、支付交易,各种APP 层出不穷。人们对APP 的功能性、多样性的积极态度远远超出了对信息安全的担忧,APP 的安全方面并没有得到很好的保证,通过APP 导致的信息安全事件,经常被爆出。正在兴起的车联网也未能幸免,据统计车联网信息安全约50%安全漏洞、风险,来自于车载APP。针对APP 的设计与研发,需要对信息安全高度重视,做到杜渐防萌,确保用户敏感数据的安全。 车载APP 攻击手段 ?静态分析 静态分析指的是对APP 安装文件的安全漏洞检测。首先获得应用程序安装包文件,即APK 文件,然后通过逆向工具(如APKIDE、Dex2Jar 等)进行反编译,将APK 文件逆向为Java 源文件或JAR 文件,对其进行源代码级的解析。 常见的Java 层逆向工具:Android Killer 和APKIDE Android Killer 是一款可以对APK 文件进行反编译的可视化工具,它能够对反编译后的Smali 文件进行修改,并将修改后的文件重新进行打包形成APK 文件。一旦APK 文件被逆向,那么很容易对其进行篡改和注入攻击。 APKIDE 也是可视化的、用于修改安卓APK 文件的工具。该工具集成了ApkTool,Dex2jar,JD-GUI 等APK 修改工具,集APK 反编译、APK 打包、APK 签名为一体,是非常便利的APK 修改工具。

常见的NATIVE 层逆向工具:IDA pro IDA pro 以其强大的功能和众多的插件成为了很多逆向分析师的首选。IDA pro 是商业产品。使用IDA 反汇编二进制文件的目的,是利用工具得到反汇编之后的伪代码,另外,再结合file 、readelf 等指令使用,可以说如虎傅翼,准确还原出源代码并非难事。 以上是Java 层和Native 层逆向的常用方法。静态分析的优点是无需运行代码,无需像动态分析那样改写Android 系统源码,或要求用户对Android 系统进行重定制和安装定制版的ROM,因此静态分析具有速度快、轻量级的优点。但是静态分析的缺点是因为无法真实模拟程序的动态运行,所以存在误报率高的问题。 ?动态分析 由于静态分析难以满足安全人员的分析要求,天生对软件加固、混淆免疫的动态分析技术应运而生。相对于轻量级的静态分析,动态分析则是重量级的程序运行时的分析。在一般情形,需对Android 系统进行重新定制与改写,包括改写安全机制;在原生Android 系统中加入监视器,实时监视数据的流向;在危险函数调用时,检测所需权限等。 常见的动态分析的工具:TaintDroid TaintDroid 是变量级和方法级的污点跟踪技术工具,可对敏感数据进行污点标记,污点数据在通过程序变量、方法、文件和进程间通信等途径扩散时,对其进行跟踪审查。如果污点数据在一个泄露点(如网络接口)离开系统,TaintDroid 就在日志中记录数据标记、传输数据的应用程序和数据目的地,实现对多种敏感数据泄露源点的追踪。 动态分析的优点是,检测精度较高,缺点是需要修改Android 系统源码,形成用户全新裁

物联网信息安全期末考试重点

物联网信息安全期末考试重点 考前九章: 1、单选15x2’ 2、填空7x2’ 3、名词解释5x3’ 4、简答5x5’ 5、论述1x16’(短文500左右) 一、散的知识 1、物联网可划分成哪几个层次? 感知层、传输层、处理层、应用层 2、物联网人与物、物与物之间通信方式? 综合利用有线和无线两者通信 3、物联网核心基础设施是? 网络,传感器,控制器,物理设备 6、安全协议哪些用于应用层?哪些用于传输层? 传输层:IPSEC协议、TLS协议、VPN、安全套接字层协议(SSL)、安全外壳协议(SSH); 应用层:Web安全协议、电子邮件安全协议、门户网站、安全电子交易(SET)。

7、机密性的服务包括哪些? 文件机密性、信息传输机密性、通信流的机密性。 8、防火墙+VPN+入侵检测+访问控制? VPN(Virtual Private NetWork,虚拟专用网络)是一种在公用网络上建立专用网络的技术。整个VPN网络的任意两个节点之间的连接并没有传统专网所需的端到端的物理链路,而是架构在公用网络服务商所提供的网络平台之上的逻辑网络。 VPN可以在防火墙与防火墙或移动的Client间对所有网络传输的内容加密,建立一个虚拟通道,让两者间感觉是在同一个网络上,可以安全且不受拘束地互相存取。 防火墙(Firewall),也称防护墙,是由Check Point创立者Gil Shwed于1993年发明并引入国际互联网(US5606668(A)1993-12-15)。它是一种位于内部网络与外部网络之间的网络安全系统。一项信息安全的防护系统,依照特定的规则,允许或是限制传输的数据通过。 入侵检测(Intrusion Detection),顾名思义,就是对入侵行为的发觉。他通过对计算机网络或计算机系统中若干关键点收集信息并对其进行分析,从中发现网络或系统中是否有违反安全策略的行为和被攻击的迹象。 访问控制是给出一套方法,将系统中的所有功能和数据标识出来,组织起来,托管起来,然后提供一个简单的唯一的接口,这个接口的一端是应用系统一端是权限引擎。权限引擎所回答的只是:谁是否对某资源具有实施某个动作(运动、计算)的权限。返回的结果只有:有、没有、权限引擎异常。

信息安全技术物联网数据传输安全技术要求全国信息安全标准化技术

《信息安全技术物联网数据传输安全技术要求》 国家标准编制说明 一、工作简况 1.1任务来源 物联网被认为是下一代IT潮流,设备将能够通过网络传输客户和产品数据。汽车、冰箱和其他设备连接物联网后,都可以产生并传输数据,指导公司的产品销售和创新。同时,消费者也可以使用连接物联网的设备收集自己的信息,比如现在的智能手环可以收集每天走多少步,心跳次数和睡眠质量等数据。 目前,物联网领域标准不一,让物联网市场碎片化。例如智能家居系统使用一套标准,医疗健康系统优势一套标准,甚至同样的领域,厂商的软件也指支持自己的设备。没有厂商愿意生产支持所有设备的通用程序,因此,集成数据和创建无缝的客户体验就成了难题。特别地,物联网安全标准的缺乏也让用户担心不同的设备如何保护客户数据的隐私和安全。隐私和安全是市场的敏感区域,如果物联网不能够保护好数据,很可能陷入危险的境地。” 有鉴于此,为了推进物联网产业在中国快速、健康的发展,2014年12月,全国信息安全标准化技术委员会将“信息安全技术物联网数据传输安全技术要求”课题下达给北京工业大学。 本标准工作组由北京工业大学、中国电子技术标准化研究院、中央财经大学、公安部第三研究所、中国科学院软件研究所、北京邮电大学、西安电子科技大学、无锡物联网产业研究院等组成。 本项目最终成果为:《信息安全技术物联网数据传输安全技术要求》国家标准。 1.2主要工作过程 主要工作过程如下: 1)2015年3-4月,课题组结合各参与单位的意见和实际系统的安全测评,进行任务研究分工,研究国内外相关标准内容,结合实际情况和各成员返回意见对标准草案编制方案进行了初步规划。 2)2015年5月,明确标准研制思路,项目组编制标准草案。 3)2015年6月,组织了标准草案研讨会,讨论已制定内容,根据研讨会各

车联网数据安全传输

基于SSX1019芯片的物联网数据安全传输系统 ——同方车联网信息加密传输技术介绍 GPRS

行业数据现状 1.明文传输 最初设计时,很多行业系统采集的数据是以明文形式传输。 2.易截获 采用公网传输时,数据容易被截获甚至篡改。 3.高成本硬件通道 部分行业为保证安全性,会架设专用的硬件传输通道,然而随着传输距离扩大、采集点数量增多等因素,成本也会随之提高。 4.软加密 采集数据使用软实现方式加密,易被攻击获取加密密钥,从而获取数据明文。 5.原系统安全改造 很多现有采集设备已经在运行中,在按国家要求实施安全性改造时,有可能会重新设计原有采集设备甚至整体设计方案。 6.不熟悉安全性设计 各行业设计人员仅仅了解自己行业领域,通常对国家新要求的安全性传输设计了解甚少,自己开发加入安全部分,可能会拉长整个设计周期、提升研发成本,甚至无法确定项目是否能够顺利完成。 系统架构图 执行采集操作 密文密文 发送采集数据

硬件设备 1.物联网安全网关 2.终端安全模块 物联网安全网关 功能概述: 解密待进入内网的数据;加密待发向外网的数据。

物联网安全网关工作原理 用于与终端安全模块建立安全信道,解析终端安全模块传输过来的IPSEC的客户端设备数据,并将解析得到的数据分发给客户的业务数据控制平台上,也可将业务数据控制平台下发的命令通过安全信道加密传输给指定的终端安全模块,终端安全模块再将数据传送给客户端设备。 终端安全模块 功能概述: 解密来自于公网的数据;加密待发向公网的数据。

安全接入模块搭载SSX1019核心,支持以太网、GPRS 传输的安全接入模块;支持网口、串口通信;内部支持国密算法SM1/SM2/SM3,模块私钥存储在芯片flash内部,受到芯片保护,可以很好的保证客户端设备与业务数据控制平台之间的安全通讯。 接入物联网安全平台的要求 1.业务数据控制平台 普通电脑即可接入物联网安全平台。通过物联网安全平台的网关解密接收客户端设备发来的数据。 2.客户端设备 客户端设备只要硬件上支持串口通信或是以太网通信,即可接入物联网安全平台,实现数据透传。 物联网安全平台优势

国密算法国家商用密码算法简介)

国家商用密码算法简介 密码学是研究编制密码和破译密码的技术科学,起源于隐秘消息传输,在编码和破译中逐渐发展起来。密码学是一个综合性的技术科学,与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。密码学的基本思想是对敏感消息的保护,主要包括机密性,鉴别,消息完整性和不可否认性,从而涉及加密,杂凑函数,数字签名,消息认证码等。 一.密码学简介 密码学中应用最为广泛的的三类算法包括对称算法、非对称算法、杂凑算法。 1.1 对称密码 对称密码学主要是分组密码和流密码及其应用。分组密码中将明文消息进行分块加密输出密文区块,而流密码中使用密钥生成密钥流对明文消息进行加密。世界上应用较为广泛的包括DES、3DES、AES,此外还有Serpent,Twofish,MARS和RC6等算法。对称加密的工作模式包括电码本模式(ECB 模式),密码反馈模式(CFB 模式),密码分组链接模式(CBC 模式),输入反馈模式(OFB 模式)等。1.2 非对称密码 公钥密码体制由Diffie和Hellman所提出。1978年Rivest,Shamir和Adleman提出RAS密码体制,基于大素数分解问题。基于有限域上的离散对数问题产生了ElGamal密码体制,而基于椭圆曲线上的离散对数问题产生了椭圆曲线密码密码体制。此外出现了其他公钥密码体制,这些密码体制同样基于困难问题。目前应用较多的包括RSA、DSA、DH、ECC等。 1.3杂凑算法 杂凑算法又称hash函数,就是把任意长的输入消息串变化成固定长的输出串的一种函数。这个输出串称为该消息的杂凑值。一个安全的杂凑函数应该至少满足以下几个条件。 1)输入长度是任意的; 2)输出长度是固定的,根据目前的计算技术应至少取128bits长,以便抵抗生日攻击; 3)对每一个给定的输入,计算输出即杂凑值是很容易的; 4)给定杂凑函数的描述,找到两个不同的输入消息杂凑到同一个值是计算上不可行的,或给定 杂凑函数的描述和一个随机选择的消息,找到另一个与该消息不同的消息使得它们杂凑到同一个值是计算上不可行的。 杂凑函数主要用于完整性校验和提高数字签名的有效性,目前已有很多方案。这些算法都是伪随机函数,任何杂凑值都是等可能的。输出并不以可辨别的方式依赖于输入;在任何输入串中单个比特

物联网信息安全知识点

第一章 物联网的安全特征: 1,感知网络的信息采集、传输与信息安全问题。 2,核心网络的传输与信息安全问题。3,物联网业务的安全问题。 物联网从功能上说具备哪几个特征 1,全面感知能力,可以利用RFID、传感器、二维条形码等获取被控/被测物体的信息。 2,数据信息的可靠传递,可以通过各种电信网络与互联网的融合,将物体的信息实时准确的传递出去。 3,可以智能处理,利用现代控制技术提供智能计算方法,对大量数据和信息进行分析和处理,对物体实施智能化的控制。 4,可以根据各个行业,各种业务的具体特点形成各种单独的业务应用,或者整个行业及系统的建成应用解决方案。 物联网结构应划分为几个层次 1,感知识别层 2,网络构建层 3,管理服务层4,综合应用层 概要说明物联网安全的逻辑层次 物联网网络体系结构主要考虑3个逻辑层,即底层是用来采集的感知识别层,中间层数据传输的网络构建层,顶层则是包括管理服务层和综合应用层的应用中间层+ 物联网面对的特殊安全为问题有哪些 1,物联网机器和感知识别层节点的本地安全问题。2,感知网络的传输与信息安全问题。3,核心网络的传输与信息安全问题。4,物联网业务的安全问题。信息安全:是指信息网络的硬件软件及其系统中的数据受到保护,不易受到偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠的运行,信息服务不中断。(上课时老师让抄下来的) 物联网的信息安全问题将不仅仅是技术问题,还会涉及许多非技术因素。下述几个方面的因素很难通过技术手段来实现: (1)教育:让用户意识到信息安全的重要性和如何正确使用物联网服务以减少机密信息的泄露机会; (2)管理:严谨的科学管理方法将使信息安全隐患降低到最小,特别应注意信息安全管理; (3)信息安全管理:找到信息系统安全方面最薄弱环节并进行加强,以提高系统的整体安全程度,包括资源管理、物理安全管理和人力安全管理; (4)口令管理:许多系统的安全隐患来自账户口令的管理; 物联网结构与层次 ①感知识别层:涉及各种类型的传感器、RFID标签、手持移动设备、GPS终端、视频摄像设备等;重点考虑数据隐私的保护; ②网络构建层:涉及互联网、无线传感器网络、近距离无线通信、3G/4G通信网络、网络中间件等;重点考虑网络传输安; ③管理服务层:涉及海量数据处理、非结构化数据管理、云计算、网络计算、高性能计算、语义网等;重点考虑信息安全; ④综合应用层:涉及数据挖掘、数据分析、数据融合、决策支持等。重点考虑应

车联网技术全面解析及主要解决方案盘点

车联网技术全面解析及主要解决方案盘点 车联网(IOV:Internet of Vehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。 【慧聪汽车电子网】 车联网概念解析 2004年中国提出“汽车计算平台”计划,防范汽车工业“空芯化”现象;巴西政府强制所有车辆2014年前必须安装类似“汽车身份识别”的系统并联网;欧洲、日本的ITS(智能交通系统)计划中也都有“车联网”的概念;印度甚至要求所有黄包车都装上GPS与RFID;2011年初,中国四部委联合发文,对“两客一危”运营类车辆提出了必须安装智能卫星定位装置并联网的强制性要求……这些都是车联网的雏形。 美国国家网络可信身份标识战略白皮书NSTIC则是一个里程碑,它要求所有移动终端、包括汽车都必须安装“安全ID芯片”;美国DOT进一步要求,2012年所有运营类车辆都必须遵从M911。显而易见,车联网已经不只是一个汽车业信息化的问题了,而已经上升到了国家信息安全和国家战略层面,很多国家已经开始立法实施了。 什么是车联网 车联网(IOV:InternetofVehicle)是指车与车、车与路、车与人、车与传感设备等交互,实现车辆与公众网络通信的动态移动通信系统。它可以通过车与车、车与人、车与路互联互通实现信息共享,收集车辆、道路和环境的信息,并在信息网络平台上对多源采集的信息进行加工、计算、共享和安全发布,根据不同的功能需求对车辆进行有效的引导与监管,以及提供专业的多媒体与移动互联网应用服务。 从网络上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。 值得注意的是,目前GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。笔者以为,简单基于这样的技术来发展车联网,对国家战略领先和技术创新是非常不利的,会造成整体落后国际竞争的被动局面。 什么是GID IOV最核心的技术之一是根据车辆特性,给汽车开发了一款GID(GlobalID,相对于RFID)终端。它是一个具有全球泛在联网能力的通信网关和车载终端,是车辆智能信息传感器,同时也具有全球定位和全球网络身份标识(网络车牌)功能。 GID将汽车智能信息传感器、汽车联网、汽车网络车牌三大功能融为一体,具体表现为: 车辆状态的信息感知功能:GID与汽车总线(OBD、CAN等)相连,内嵌多种传感器,可感知和监控几乎所有车辆的动态与静态信息,包括车辆环境信息和车辆状态诊断信息等; 泛在通信功能:GID具有V2V、V2I和自组网(SON、移动AdHoc、AGPS等)的能力,具有车内联网以及多制式之间的桥接与中继功能,具备全球通信、全球定位与移动漫游能力;

河南 商业银行金融IC卡国密改造安全建设方案

河南某商业银行金融IC卡国密改造安全建设方案 一、项目背景 2011年3月,中国人民银行发布了《关于推进金融IC卡应用工作的意见》,全面启动我国金融IC卡迁移,要求2015年起银行业金融机构发卡的银行卡均应为金融IC卡。2014年11月3日,人民银行印发了《关于进一步做好金融IC卡应用工作的通知》,要求自2015年4月1日起,各发卡银行新发卡的金融IC卡应符合PBOC3.0规范,相较于PBOC2.0规范,PBOC3.0规范的核心内容是支持国密算法。 河南某商业银行金融IC卡国密改造国内第一家按照PBOC3.0规范建设的商业银行IC卡系统,主要针对发卡系统、受理系统、核心交易系统、密钥管理系统及ATM、POS机等交易终端进行支持SM2/SM3/SM4等国密算法的改造,用来开展金融IC卡借贷记、电子现金、电子钱包相关业务。 金融IC卡国密改造的核心在于安全体系建设,需要解决如何运用国密算法保证卡片的发卡和交易过程的安全。 二、需求分析 江南天安根据PBOC3.0规范要求,以及该银行的业务实际,对改银行金融IC卡国密算法改造做了安全分析,安全体系建设主要有如下几点需求: 1、需要建设符合PBOC3.0规范的密钥管理系统,保证密钥生命周期的安全。 2、需要提供一整套的应用国产密码算法的金融IC卡发卡的安全解决方案。 3、需要为金融IC卡的交易过程中涉及的各业务系统提供基于国产密码算法的安全服务。 三、解决方案 江南天安根据PBOC3.0规范要求,以及该银行的业务实际,项目中应用江南天安金融IC 卡安全支撑系统,保证了国密算法在金融IC卡发卡和交易过程的应用,为金融IC卡业务应用的安全性奠定了基础:

基于物联网的信息安全体系

作者:刘宴兵,胡文平,杜江 摘要:物联网是计算机、互联网与移动通信网等相关技术的演进和延伸,其核心共性技术、网络与信息安全技术以及关键应用是物联网的主要研究内容。物联网感知节点大都部署在无人监控环境,并且由于物联网 是在现有的网络基础上扩展了感知网络和应用平台,传统网络安全措施不足以提供可靠的安全保障。物联 网安全研究将主要集中在物联网安全体系、物联网个体隐私保护模式、终端安全功能、物联网安全相关法 律的制订等方面。 关键字:物联网;安全结构;射频识别;隐私保护 英文摘要:Internet of Things (IoT) is seen as the evolution of related technologies and applications such as Internet and mobile networks. Future research into IoT will focus on generic technology, information security, and critical applications. Sensor nodes in IoT are deployed in an unattended environment, and the IoT platform is extended on the basis of the sensor network and application platforms in the existing infrastructure. So traditional network security measures are insufficient for providing reliable security in IoT. Future research into IoT security will focus on security architecture, privacy protection mode, law-making, and terminal security. 英文关键字:Internet of things; security architecture; radio frequency identification; privacy protection 基金项目:信息网络安全公安部重点实验室开放课题(C09608);重庆市自然科学基金重点项目(2009BA2024);重庆高校优秀成果转化资助项目(Kjzh10206) 每一次大的经济危机背后都会悄然催生出一些新技术,这些技术往往会成为经济走出危机的巨大推力。2009年,3G在中国正式步入商业化阶段,各大电信运营商、设备制造商、消费电子厂商都将目光集中在 3G市场的争夺。随着3G时代的到来,涌现的一些新技术解决了网络带宽问题,极大地改变了网络的接入方式和业务类型。其中物联网被认为是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,代表 了下一代信息技术的方向。 物联网除与传统的计算机网络和通信网络技术有关外,还涉及到了许多新的技术,如射频技术、近距离通 信和芯片技术等。物联网正以其广泛的应用前景成为人们研究的热点,同时,云计算作为一种新的计算模式,其发展为物联网的实现提供了重要的支撑。

车联网之信息安全

车联网之信息安全 概述:伴随着车联网技术的飞速发展,其所面临的信息安全威胁日渐凸显,已引起学术 界、工业界和政府部门的高度关注。作为在智能交通车载中具有典型性和先进性的车联网,较之传统的互联网,因其应用环境更加特殊、组网更复杂、管理更困难,其安全威胁更突 出。 根据不同的通信节点,可将其通信模式分为车与车(V2V)通信,车与路(V2I)通信,车与其他节点的混合通信(V2X)。车联网的出现让汽车使用者可以随时随地享受互联服务带来的便捷,同时也伴生了一系列安全问题:从数据角度出发,包括数据采集、数据运算、数据传输、数据使用、数据保存提出车联网的安全架构,重点从APP 应用、算法、链路连接、安全存储、车域网、车载自组网和车载移动互联网安全,7 个方面分析和面临的安全威胁。 重要性:安全可以说是一切事物的基础,没有安全作为保障,一切都是空谈,车联网也不例外。 车联网可以使我们更容易的在车辆中获取各种信息,可以使我们提前知晓前方路况,同时车联网也是安全自动驾驶实现的重要前提。尽管车联网将给我们未来的汽车生活带来无尽的便利,但是不可否认的是车联网也会给我们带来一系列的新增风险和潜在威胁。如果车联网不安全了,可想而知,后果是很严重的,互联网被黑客攻击,导致大面积电脑瘫痪,如果车联网被黑客攻击了,往小了说,会造成严重的交通都塞,整个区域交通瘫痪;往大了说,电影《速度与激情8》里操作整个停车场所有车辆的镜头并非不可能出现。 现状: 近年来,车联网信息安全事件频发,国内外专家、学者与致力于车联网安全邻域的工程师们 不断挖掘安全漏洞,竭尽全力完善漏洞技术。 o 2015 年两位美国黑客远程破解并控制了克莱斯勒的JEEP 汽车,克莱斯勒因此召回了140 万辆汽车,损失巨大;

《物联网信息安全》期考试题(A卷)

《物联网信息安全》期考试题(A卷) 一、单向选择题(每小题3分,共计30分) 1.下列那个不是物联网的基本特征。() A. 全面感知 B. 可靠传送 C. 射频识别 D. 智能处理 2. 下列哪种不属于RFID系统的安全问题。() A.RFID标识访问安全 B. 信息传输信道安全 C. RFID信息获取安全 D. RFID读写器安全 3. 下列不属于信息安全服务组织能力的是() A.组织的管理能力 B. 信息安全服务资质管理能力 C. 服务小组的能力 D. 服务人员的能力 4. 下列哪种攻击类型不是对物联网信息感知层的攻击()。 A. 拒绝服务攻击; B. 选择性转发攻击; C.Sinkhole和hello攻击;D. Sybil攻击和Wormhole攻击; 5. 物联网的容灾评价指标不包括() A.系统恢复所需的空间; B. 系统恢复时间; C. 灾难发生方案所需的费用; D. 建立及维护一套容灾方案所需的费用; 6. 物联网数据备份系统的组成不包括() A.目标B.工具C.设备D.数据 7. 蓝牙的网络安全模式不包括() A、接入层模式 B、非安全模式

C、业务层安全模式 D、链路层模式 8. 物联网应用层信息安全的访问控制不包括()。 A 身份认证 B 授权 C 文件保护 D 访问策略 9. 物联网黑客攻击的步骤不包括() A. 端口扫描 B. 搜集信息 C. 探测分析系统的安全弱点 D. 实施攻击 10. 物联网入侵检测的步骤不包括() A . 信息收集 B . 信息保护 C. 数据分析 D. 响应 二、填空题题(每小题3分,共计30分) 1. 物联网的信息功能模型包括、、和信息施效。 2. 物联网面临的信息安全主要包括:__、 __、 ___ 、传输网络安全和信息服务安全以及RFID安全等。 3. 物联网感知层的任务是。 4. 物联网信息感知的信息安全问题解决思路和方法主要由所决定。 5. 加密技术中最关键的问题是。 6. 物联网数据备份的类型主要包括:、、、 按需备份和排除5种方式。 7. 蓝牙安全体系中主要用到了3种秘钥,分别为、和。 8. 物联网应用层信息安全的访问控制的3要素分别为:、和。 9. 防火墙使用的基本技术包括:、和。 10. 漏洞扫描检测主机是否存在漏洞的方法有:和两种方法。 二、判断题(对的打“√”,错误的打“×”,每小题2分,共计10分) 1. 目前关于物联网的定义在业内已经达成了一致的意见。() 2. 物联网面临的信息安全问题与计算机网络所面临的信息安全相同。() 3. 物联网的体系架构包括感知层、网络层和应用层。() 4. 信息安全服务是整个物联网环境成熟度的一个衡量指标。() 5. 物联网信息感知的主要安全隐患是网络部署的开放性和无线电网络的广播特性。

车联网网络安全与传统网络安全的区别及挑战

车联网网络安全与传统网络安全的区别及挑战 1. 车联网网络安全范畴 车联网作为物联网在交通领域的典型应用,内容丰富,涉及面广。基于“云”、“管”、“端”三层架构,车联网主要包括人、车、路、通信、服务平台5 类要素。其中,“人”是道路环境参与者和车联网服务使用者;“车”是车联网的核心,主要涉及车辆联网和智能系统;“路”是车联网业务的重要外部环境之一,主要涉及交通信息化相关设施;“通信”是信息交互的载体,打通车内、车际、车路、车云信息流;“服务平台”是实现车联网服务能力的业务载体、数据载体。车联网网络安全的范畴根据车联网网络安全的防护对象,分为智能汽车安全、移动智能终端安全、车联网服务平台安全、通信安全,同时数据安全和隐私保护贯穿于车联网的各个环节,也是车联网网络安全的重要内容。 2. 车联网网络安全与传统网络安全的关系 1 )安全防护对象 传统网络安全防护的对象往往是具有较强计算能力的计算机或服务器。而车联网以“两端一云”为主体,路基设施为补充,包括智能汽车、移动智能终端、车联网服务平台等对象,涉及车-云通信、车-车通信、车-人通信、车-路通信、车内通信五个通信场景。涉及的保护对象众多,保护面广,任何一环出现安全问题都有可能造成非常严

重的后果。大量的车联网终端往往存在计算能力、存储能力受限等问题,甚至还有可能暴露在户外、野外,为车联网网络安全防护带来更大的困难与挑战。 2 )攻击手段和防御方法 传统安全和车联网安全常见的攻击手段有篡改、伪造、拒绝服务,但在车联网中,因车辆节点通常快速移动,网络拓扑高速动态变化,且存在错综复杂的V2V,V2I,V2N 等各种传输介质(无线或有线)、协议(TCP/IP 和广播)、结构(分布式和集中式)的网络等,使得车联网攻击一般针对信息的网络架构的安全完整性和时效性。为应对常见的攻击,传统安全和车联网一般采取设置网络防火墙,入侵防御等防火措施,对于车联网安全而言,首先要根据其不同的场景以及功能要求,采取有针对性的防御措施,形成“检测-保护-响应-恢复”的车联网网络安全体系。 3 )安全后果 传统网络安全事件往往集中在网络服务中断、信息泄露、数据完整性破坏等方面,但对于车联网来说,出现网络安全事件,轻则会造成汽车失窃、数据泄露,严重情况下甚至会失去汽车的控制权,危害驾驶员及乘客生命安全。 3.车联网网络安全技术产业发展 车联网的网络安全防护并非仅指车辆本身信息安全,而是一个包含通信、云平台和外部新兴生态系统的整体生态安全防护,同时安全防护需要长期进行,需要定期对整个生态做安全检测以便发现潜在的风

车联网解决方案(智能终端)

车联网解决方案(智能终端) 深圳车联网解决方案公司《酷点网络》提供车联网智能终端开发,app开发,汽车协议解码、汽车电子开发、汽车电控系统改装专用模块。 模块将汽车CAN总线数据解析后通过UART输出,供用户二次开发。模块体积小巧,易集成于用户系统,同时使用UART输出极易于二次开发。 功能描述I 可采集汽车OBD接口CAN总线上的所有原始数据,并将数据解析出其具体意义(汽车内部电控系统的各项传感器数值)后通过串口输出,供用户读取、解析、开发等使用。用户可以通过串口指令或模块自动发送的方式,将读取到的汽车内部运行数据通过串口直观的输出。功能描述II 用户无需深入了解汽车CAN总线或CAN数据,只需将模块集成到用户开发设备的硬件系统中,就能将用户自身的产品(各种单片机、PC串口、GPS、DVD、PND等设备)与汽车CAN 总线快速连接,可以非常方便、快速的实现自身产品二次开发及功能扩展。 功能描述III 模块目前可支持标准的ISO15765协议、OBD II汽车故障诊断功能,支持DTC诊断请求、故障码输出、故障码清除。 模块集成自动打火启动、熄火休眠功能,系统休眠时消耗电流为微安级,满足低功耗标准。还可自动识别带发动机自动启停功能的车辆,即使汽车在怠速状态发动机自动停止也不会误认为汽车熄火而停止工作。 性能特点 ●标准OBD II接口支持 ●覆盖所有主流汽车CAN协议 ●CAN总线信息主动转换到串口发出(可定制发送命令读取参数) ●车辆点火自动唤醒,车辆熄火自动休眠 ●自动匹配带“发动机自动启停”功能的车辆 ●支持瞬时油耗、平均油耗及耗油量数据 ●支持车辆故障码诊断,两条指令即可完成故障码的读取和清除 ●支持实时故障码扫描 ●支持急加速、急减速等驾驶习惯统计 ●模块化设计,高集成度 ●车辆级抗干扰设计 ●车联网定制“解决方案” ●接口协议数据简单易用●孔型焊盘设计,超小尺寸16mm*10mm

基于国密算法和区块链的移动端安全eID及认证协议设计

基于国密算法和区块链的移动端安全e lD 及 认证协议设计 ------------------------胡卫、吴邱涵、刘胜利2,付伟1-------------------------- (1.海军工程大学信息安全系,湖北武汉430033 ; 2.北京航天飞行控制中心,北京100094) 摘要:当前,我国二代居民身份证的读取设备获取渠道多样,价格低廉,很容 易被不法分子利用以获取公民的身份隐私信息,并实施诈骗、违规办理信用卡等犯罪 行为。此外,一些需要对公民进行实名制验证的单位大都采取基于中心的认证方式, 并且以明文方式大量地存储用户实名信息,存在隐私泄露的风险。 SM 2算法相较于传 统认证方案中使用的R S A 算法和国际标准的E C C 算法具有安全性更高、存储空间更 小、签名速度更快的特点,可以应用在当今广泛使用的智能手机等移动终端上。区块 链技术具有去中心化、难篡改的特点,可以解决基于中心的认证方式中存在的单点失 败和多认证授权机构(C A )信任难的问题。针对用户隐私泄露问题,文章基于SM 2 算法和区块链技术,并结合二维码、面部识别等技术,对传统身份认证服务系统进行 了改进,提出了一种移动端的安全电子身份证系统,详细设计了基于 SM 2算法和区 块链的身份认证协议。 关键词:SM 2算法;区块链;身份认证;移动终端 中图分类号:T P 309文献标识码:A 文章编号:1671-1122 (2018) 07-0007-09 中文引用格式:胡卫,吴邱涵,刘胜利,等 .基于国密算法和区块链的移动端安全elD 及认证协议设计[J]. 信息网络安全,2018,18(7): 7-15.英文引用格式: HU Wei,WU Qiuhan,LIU Shengli,et al. Design of Secure elD and Identity Authentication Agreement in Mobile Terminal Based on Guomi Algorithm and Blockchain[J], Netinfo Security, 2018, 18 (7): 7—15./--------------------- n C t in f o s e c u r it y _________________________________________________________________________________________________________/2018年第7期技术研究国■ doi :10.3969/j.issn.1671-1122.2018.07.002 Design of Secure elD and Identity Authentication Agreement in Mobile Terminal Based on Guomi Algorithm and Blockchain HU Wei1, WU Qiuhan1, LIU Shengli2, FU Wei1(1. Department of I nformation Security, Naval University o f E ngineering, W-uhan H ubei 430033, China ; 2. Beijing Aerospace Control Center, Beijing 100094, China)Abstract: Currently, there are many accesses to gain the card readers of the second generation of resident identity cards, which are inexpensive and easy to be misused by the criminals to obtain citizens’ identity privacy information so that they can use it to commit fraud, illegally open up credit cards and other crimes. Besides, when people are checking in the hotels or opening an account in the banks, these institutions which need to verify citizens’ 收稿日期:2018—4—18 基金项目:国家自然科学基金[61672531];海军工程大学自主立项项目[20161607] 作者简介:胡卫( 1979—),男,湖北,副教授,博士,主要研究方向为密码学、信息安全、隐私保护;吴邱涵( 1995—),女,湖北, 硕士研究生,主要研究方向为信息安全、隐私保护;刘胜利( 1976—),男,河南,硕士,主要研究方向为信息安全;付伟( 1978—), 男,湖北,副教授,博士,主要研究方向为分布式计算、云计算、信息安全。 通信作者:吴邱涵627971660@https://www.360docs.net/doc/f416358562.html, 7

车联网安全之TLS

车联网安全之TLS1.3比TLS1.2更安全在哪里 概述: 车联网中,云与端通信时信息安全大多是通过TLS(Transport Layer Security)协议来保证的。TLS中文意思为传输层安全性协议,其前身为安全套接层(Secure Sockets Layer,缩写SSL)安全协议。使用TLS的目的是为车联网通信提供安全及数据完整性保障。该协议由两部分组成: TLS记录协议(TLS Record)和 TLS握手协议(TLS Handshake)。较低的层为TLS记录协议,位于某个可靠TLS 记录协议的传输协议 (例如 TCP) 上面。现在普遍采用的方案都是TLS1.2,由于技术和成本的限制,据了解目前还没有车厂采用TLS1.3协议,是否在未来车联网信息安全技术的选择上会有所改变呢,我们不妨从技术角度对TLS1.2与TLS1.3进行一下分析。 TLS作用: ?所有信息都是加密传播,第三方无法窃听。 ?具有校验机制,一旦被篡改,通信双方会立刻发现。 ?配备身份证书,防止身份被冒充。 ?注:TLS 记录协议负责消息的压缩、加密以及数据的认证。 TLS的位置: 图1:TLS在通信链路中的位置

从图中可以看到,SSL/TSL层的加入,建立了一个安全连接(对传输的数据提供加密保护,可防止被中间人嗅探到可见的明文;通过对数据完整性的校验,防止传输数据被中间人修改)和一个可信的连接(对连接双方的实体提供身份认证)。 TLS1.2的握手(云与端数据通信协议) 下面介绍一下,TLS 1.2协议的密钥交换流程,以及其缺点。 RSA密钥交换步骤如下: 1:client发起请求 (Client Hello) 。 2:server回复certificate。 3:client使用证书中的公钥,加密预主密钥,发给 server (Client Key Exchange) 。 4:server 提取出预主密钥,计算主密钥,然后发送对称密钥加密的finished。 5:client计算主密钥,验证finished,验证成功后,发送ApplicationData了。 缺点:RSA密钥交换不是前向安全算法(私钥泄漏后,之前抓包的报文都能被解密)。 图2:TLS1.2的握手图解 注:图2是单向认证,TLS1.2是支持双向认证的。

车联网解决方案 - 华为解决方案

车联网解决方案 早期的功能型车联网,无法满足车企在全球不同区域的用户使用场景和个性化出行服务的需求,以至于造成客户续约率低、建设/运营成本高、装配率低下等问题。最典型的问题为:没有统一平台,不同车型接入不同的业务平台,割裂的烟囱式系统,维护复杂,管理成本高;平台能力不足,无法满足高并发、高频率接入需求,20万车辆就已经出现严重性能瓶颈;系统已经运行了多年,系统老旧,难以叠加新的业务,扩展困难。 同时,在新能源车的迅速发展、互联网企业对汽车制造及无人驾驶技术的探索,大众对共享经济的接受度以及国家监管政策颁发等因素的共同作用下,汽车行业开始制定新四化(网联化、电动化、共享化、自动化)的战略,并通过实现自身产品与服务的数字化转型与多样化市场需求接轨。

车企数字化转型成功的一大关键是构建一个生态型数字云平台,通过平台聚合生态开发者、行业应用合作伙伴,在全球市场环境下满足跨国销售其产品和服务,共同向车主及车辆使用者提供个性化出行服务需求,并满足当地政府强制性监管的要求。 华为车联网解决方案 华为车联网解决方案主要基于OceanConnect 物联网平台,并依托华为全球公有云、或者和运营商的合营云,以云服务的方式提供。OceanConnect 物联网平台的定位是:帮助车企在数字化转型过程中,将车内的信息以安全、可靠、高效的方式传递到云端,形成以车为核心的数字化资产,再开放给丰富的上层应用,同时具备C-V2X/AI等未来演进能力。

解决方案亮点 面向上层应用(车联网应用平台和第三方应用),提供丰富的业务使能套件,比如出行服务、保养服务、车队管理、分时租赁、UBI等;面向未来,提供预测性维护,ADAS 分析、AI(比如个人助理)、车路网协同服务、故障定界等能力的支持。 提供丰富的开发API,帮助应用开发者降低开发成本,满足业务灵活定制及个性化,实现新业务快速上线;提供全球一体化的车辆接入和管理能力,比如车辆的安全接入和鉴权、双方通信的双向证书加密、设备管理、远程控制、FOTA/SOTA等能力;支持千万级别的终端接入,200万消息并发处理;通道端到端加密,确保用户信息安全。 车厂通过控制基础平台来掌握核心技术资产和数据资产;同时,提供IoT大数据分析能力,将应用数据的价值最大化,包括车辆运行状况、位置追踪和驾驶行为分析等等。

相关文档
最新文档