简支组合梁抗火设计简化方法

简支组合梁抗火设计简化方法
简支组合梁抗火设计简化方法

第40卷第6期建 筑 结 构2010年6月

简支组合梁抗火设计简化方法

李国强1

, 王卫永2

, 周宏宇

3

(1同济大学土木工程防灾国家实验室,上海200092;2重庆大学土木工程学院,重庆400045;

3上海江欢成建筑设计有限公司,上海200002)

[摘要] 根据现行 建筑钢结构防火技术规范 (CECS200:2006)中简支组合梁抗火承载力验算方法,提出了简支组合梁抗火设计的临界温度法,给出了临界温度的计算方法。对影响简支组合梁临界温度的参数分析研究发现:在确定的荷载比下简支组合梁的钢梁截面、材料强度、有效宽度等对简支组合梁的临界温度的影响较小,而耐火极限和楼板厚度对简支组合梁临界温度影响较大。给出了一般简支组合梁在不同楼板厚度、不同耐火极限下,不同荷载比对应的临界温度,可供工程设计使用。

[关键词] 简支组合梁;荷载比;临界温度;耐火极限

Simplified approach for fire resistance design of simple supported composite beams

Li Guoqiang 1

,Wang Weiyong 2

,Zhou Hongyu

3

(1School of Civil Engineering,Tongji University,Shanghai 200092,China;2School of Civil Engineering,Chongqing University,Chongqing 400045,China;3JIANG S Architects &Engineers,Shanghai 200041,China)Abstract :Based on the fire resistance validation method in current Technical Code on Fire sa fety o f Steel Structure ,critical temperature method for fire resistance design of composite beams is proposed.The calculation method of critical temperature is presented.Parameters affecti ng the critical temperature are analysed.The results show that at a defini te load level,section shape of s teel beams,material properties and effective width have little influence on the critical temperature of simple supported composite beams .However,the fi re duration and depth of slabs have si gni ficant influence on the critical temperature.The critical temperature of normal simple supported composite beams,at various slab dep th and fire duration,is given to provide a reference for engineering.

Keywords :simple supported composite beams;load level;critical temperature;fire duration

作者简介:李国强(1963 ),教授,博导,Email:gqli@https://www.360docs.net/doc/f417920781.html, 。

0 前言

组合梁与钢梁相比,可大大改善梁的抗火性能。

1995年之后,位于英国Cardington 的BRE 火灾研究实验室进行了举世瞩目的六个足尺组合结构的火灾试验,重点研究了组合钢框架在实际结构中的耐火性能,其中包括火灾下组合梁的性能研究。Cardington 试验中有关组合梁的研究首先是由Wang [2]

二维平面模型开

始的,此后Wang [3]通过进一步的理论分析阐述了薄膜拉应力在维持组合楼板刚度和稳定性中的重要作用。之后,Rose 等[4,5]采用三维梁柱有限元法对Cardington 试验中平面框架[6]中的组合梁进行了数值模拟。采用有限元法对组合梁抗火性能分析研究的结果[7 10]有:

(1)不同类型压型钢板对组合梁抗火承载力影响不大,四种典型边界条件的组合梁可简化为简支和固支两种边界条件组合梁进行抗火计算。

(2)在荷载比一定的情况下,混凝土楼板的厚度、栓钉数量、钢梁截面尺寸等因素对组合梁的抗火承载力影响较大。在荷载比一定以及工程常用范围内,混

凝土强度、混凝土翼板的宽度、型钢的强度、楼板中钢筋的直径和强度等因素对组合梁抗火性能的影响并不明显。荷载比和钢梁防火保护层阻热系数(或厚度)是影响组合梁抗火性能的两个重要参数。

(3)由于混凝土的吸热作用,钢梁的温度明显低于无混凝土时的裸钢构件;影响全过程曲线和抗力折减系数的主要参数是梁高和钢梁厚度,而其他参数影响较小。

现行的 建筑钢结构防火技术规范 [11](以下简称 规范 )结合相关的研究成果给出了简支组合梁的抗火验算方法,该方法是基于火灾下简支梁的极限承载力要求,概念明晰、技术先进,可考虑荷载大小、梁的截面形式与尺寸及防火保护层对简支组合梁抗火性能的

影响,且应用较为简便。然而,在火灾下承载力验算时,需要重新计算火灾下简支组合梁的极限承载力,不能参照已知的常温下极限承载力数值。基于此缺点,提出了次梁型简支组合梁(即压型钢板的肋垂直于钢

梁)承载力验算的临界温度法,可根据常温下简支组合梁的荷载比、耐火极限要求和楼板厚度直接得出钢梁的临界温度,然后确定是否采用防火保护和采用多少厚度的防火保护。

1 温度和材料参数确定

火灾下简支组合梁中混凝土楼板内的平均温度可按 规范中给出的表格8 3 1确定,为便于程序计算,给出了表中数据的拟合公式,混凝土楼板的平均温度T c也可以用下面的拟合公式计算:

T c=(113 75-0 05h u)+(16 06-0 1047h u)t -(0 05694-4 444!10-4h u)t2(1)式中:h

u

为混凝土顶板厚度,即指压型钢板肋高以上混凝土板厚度;t为受火时间,即为简支组合梁的耐火极限。

高温下普通混凝土的强度可按照 规范中给出的表格4 2 3确定,表中数据也可拟合成公式,即:

f c T=f c [1+e(T c-569) 157](2)式中,f c为常温下混凝土强度,f c T为温度T c下混凝土强度。

高温下钢材屈服强度可按 规范4 1 3确定。 规范中建议钢梁的温度分成两部分计算,下翼缘和腹板的温度按照四面受火考虑,上翼缘按照三面受火考虑。对于无防火保护的钢构件在标准升温下的升温和构件的形状系数(单位体积的受火面积)有关,采用 规范中6 3给出的钢构件升温计算公式计算了不同形状系数下构件的温度,采用数据拟合的方法得到如下不同形状系数的构件在标准升温下的温度计算公式:

T=A2+

A1-A2

1+(t x0)p

(40?F V?350)(3)

式中:

A1=39 10505-0 07612x-8 8!10-4x2+1 7494!10-6x3

A2=1020 91642+0 07024x+263 36464!0 97077x

x0=8 82743+21 00331exp[(37 9159-x) 62 58403]

p=2 16242-0 0031x-3 1221!10-6x2+1 2749!10-8x3参数t为受火时间;x为构件形状系数 m-1,x=F V; F为构件单位长度的受火面积 m;V为构件单位长度的体积 m2。

2 简支组合梁抗火验算方法

简支组合梁抗火承载力应按下式验算[11]:

M?M+R(4)式中:M为相应荷载产生的跨中最大弯矩设计值,对于承受均布荷载的梁,M=ql2 8;M+R为高温下简支组合梁在正弯矩作用时的抵抗弯矩值,按照 规范8 3 4条计算。3 临界温度计算

根据简支组合梁的截面参数和常温下材料性能,可确定常温下简支组合梁的极限承载力,根据作用在

简支组合梁上的荷载可确定梁的荷载比,即

R=M M u(5) 根据简支组合梁的耐火极限要求,确定混凝土楼板的温度T c,然后给定一个初始受火时间,根据式(3)计算钢梁下翼缘和腹板的初始温度T s1,钢梁上翼缘的初始温度T

s2

,根据各个组件部分的温度可求得相应温度下的强度,然后按照 规范8 3 4计算高温下简支组合

梁的极限承载力M

uT

,若M u T>M,增加受火时间,继续

计算极限承载力,当第一次满足M

uT

?M时,此时的温

度T

s1

即为钢梁的临界温度。图1

为临界温度计算流程。

图1 简支组合梁临界

温度计算流程图

4 影响参数分析

根据计算流程和极限

承载力计算方法,编制了计

算临界温度的程序,用来确

定各种情况下的简支组合

梁临界温度。为了得出简

支组合梁临界温度的变化

规律,对不同荷载比下简支

组合梁的截面参数进行了

研究和分析,包括:钢梁截

面形状,楼板的有效宽度和

厚度,混凝土和钢梁的强度

参数,以及耐火极限。

实际工程中简支组合

梁截面形式千变万化,不可

能计算出各种截面的临界

温度,这里仅对工程中常用的简支组合梁进行了研究。工程中简支组合梁多为次梁型组合梁,常用的钢梁截面形状为H200!100!5 5!8,H250!125!6!9,H300 !175!6 5!9,H350!175!7!11,H400!200!8! 13,H500!200!10!16共6种。压型钢板的肋高约为75mm,肋板以上混凝土的厚度一般为50~100mm,简支组合梁的有效宽度一般为1200~1800mm。耐火极限要求为30,60,90或120min。混凝土强度等级一般为C30~C40,钢材强度为Q235或Q345。

4 1梁的截面尺寸

取耐火极限60min,楼板厚度为80mm,有效宽度为1500mm,钢材Q235,混凝土强度等级为C35,分别对上述6种截面形状的简支组合梁的临界温度进行了计算,结果见图2。从中可以看出,钢梁截面形状对临界温度的影响不大。故计算一般简支组合梁的临界温度时可以取一种典型截面计算。

4 2材料强度

对耐火极限60min,楼板厚度为80mm,有效宽度为1500mm,截面形状为H350!175!7!11,混凝土强度分别为C30和C40,钢材强度为Q235或Q345的简支组合梁临界温度进行了分析,结果见图3和图4

图2 钢梁截面形状对临界温度的影响

图3 混凝土强度对临界温度的影响

从图中可以看出,钢材的强度和混凝土的强度对临界温度的影响也不大。可取C35和Q235情况进行一般简支组合梁临界温度计算。4 3楼板厚度

对耐火极限60min,有效宽度为1500mm,截面形状为H350!175!7!11,混凝土强度为C35,钢材强度为Q235,楼板厚度分别为50~100mm 的简支组合梁临界温度进行了分析,结果列于图5中。从中容易看出,楼板厚度对临界温度的影响比较大,厚度越小,临界温度越低。原因是楼板厚度和楼板的温度有关,厚度越小,温度越高,确定荷载比下钢梁的临界温度就越低。故计算一般简支组合梁的临界温度时需要按照楼板厚度

分别进行计算。

图4 钢材强度对临界温度的影响

图5 混凝土板厚度对临界温度的影响

4 4组合梁有效宽度

对耐火极限60min,楼板厚度为80mm,截面形状为H350!175!7!11,混凝土强度为C35,钢材强度为Q235,楼板有效宽度分别为1200,1500,1800mm 的简支组合梁临界温度进行了分析,结果见图6。从中可以看出,简支组合梁有效宽度对临界温度的影响不大,只有当荷载比较大时才有影响,可取常见有效宽度的平均值1500mm 来计算一般简支组合梁的临界温度。

4 5耐火极限

对楼板厚度为80mm,有效宽度为1500mm,截面形状为H350!175!7!11,混凝土强度为C35,钢材强度为Q235,耐火极限分别为30,60,90和120min 的简支组合梁临界温度进行了分析,结果见图7。

从图中容易看出,耐火极限高于60min 时,对临界温度的影响较大,耐火极限越长,临界温度越低。原因是耐火极限大的简支组合梁混凝土楼板的温度高,在确定的荷载比下钢梁的临界温度就越低。在计算一般简支组合梁的临界温度时需要按照不同的耐火极限要

求分别计算。

图6 组合梁有效宽度对临界温度的影响

图7 耐火极限对临界温度的影响

5 简化设计方法

5 1无防火保护简支组合梁临界温度

根据前面的参数分析可以看出,截面形状、材料强

度、有效宽度对临界温度影响不大,而楼板的厚度和耐火极限对临界温度的影响较大,对一般简支组合梁按照不同的耐火极限要求和楼板的不同厚度进行临界温度计算,结果见表1。表中横线处表示在该荷载比、耐火极限和楼板厚度下简支组合梁的抗火承载力低于荷载效应,即考虑抗火设计时在此耐火极限和楼板厚度下荷载比不能达到该值。

简支组合梁临界温度表 #

表1

耐火时间 min 6090120板厚 m m

507010050701005070110荷载比

0 36906967026286887006066416980 356546726795976566775766066720 46206496565666206545395736490 455916286365355856314975396260 55596066155015536094415056030 555285825914555205883394635790 6497559569393485566?4135560 65463531549?441542??5280 7422497524?393516??5010 75367459501??489??4720 8

?

417

472

?

?

459

?

?

427

工程设计中,可根据简支组合梁的荷载比、楼板厚度和耐火极限的要求查表得出简支组合梁临界温度,

然后计算在规定的耐火极限和标准升温条件下钢梁的温度,若钢梁温度低于临界温度,则该简支组合梁不需要防火保护,反之则需要采用防火保护。

5 2防火保护厚度的确定

采用 规范的方法计算了不同防火厚度和截面形状系数的构件在标准升温下的温度,通过数据分析拟合了有防火保护的构件,在标准升温条件下构件的温度和单位长度综合传热系数B的关系,即:

T s=t(40 7-39 8!0 99985B)+T0

(50?B?8000)(6)式中:B为单位长度综合传热系数,B=( i d i)!(F V); i为防火保护材料的导热系数 W (m#);d i为防火保护的厚度 m;T

为构件初始温度,可取20#。

根据式(6),将钢构件的温度T s换成钢梁下翼缘

和腹板的临界温度T

c r

,导出防护保护厚度的算式:

d i=

225!10-5 i

55 3-15ln[40 7-(T c r-T0) t]

F

V

(7)

当需要采用防火保护时,可根据钢梁的临界温度和形状系数按式(7)确定防火保护的厚度。

6 算例和比较

6 1组合梁基本信息

混凝土顶板厚度100mm,有效宽度1500mm,压型钢板为HG 344,波高76mm,混凝土强度等级C30,H型钢梁截面为350!150!8!12,Q235钢材,梁跨度4m,两端简支,荷载设计值为90kN m。耐火极限为90min。防火保护导热系数为0 1W m#。

6 2 规范方法

首先计算作用在简支组合梁上的荷载产生的跨中最大弯矩:

M=ql2 8=90!42 8=180kN%m

假定没有防火保护,根据 规范表8 3 1查得楼板的温度为510#,计算得钢梁下翼缘和腹板的形状系数为216,上翼缘的形状系数为97,根据形状系数查 规程附表F 1得钢梁下翼缘和腹板的温度为1004#,上翼缘的温度为1001#,此种情况下极限承载力M uT=0,显然小于荷载效应M。故需要采用防火保护。

假定防火涂料厚度为19mm,根据 规范6 3、附表F 2,查得90min时下翼缘和腹板临界温度为648#,上翼缘的温度为385#,根据楼板上下翼缘和腹板的上述温度,按照 规范8 3 4计算出简支组合梁的极限承载力为196kN%m。满足极限承载力要求,故防火保护厚度可取为19mm。

6 3本文的方法

首先计算作用在简支组合梁上的荷载产生的跨中最大弯矩M=180kN%m。计算该简支组合梁常温下的极限承载力为462kN%m,求出荷载比R=180 462= 0 39,根据耐火极限,楼板厚度和荷载比查表1得钢梁临界温度为654#,根据临界温度,钢梁的形状系数按照式(7)求得防火保护约19 2mm。

6 4结果比较

根据上两节的计算结果可知: 规范方法求得的钢梁临界温度约为648#,本文求得的临界温度为654#,非常接近。 规范方法求得的防火保护厚度为19mm,本文求得的防火保护厚度为19 2mm,基本相同。可见本文的简化方法十分准确。

7 结语

对影响简支组合梁临界温度的参数分析认为:一定荷载比下简支组合梁中钢梁截面、材料强度、有效宽度等对临界温度的影响不大,而耐火极限和楼板的厚度对简支组合梁临界温度影响较大。

在参数分析的基础上,提出了简支组合梁抗火验算与设计的临界温度法,给出了简支组合梁不同荷载比下临界温度表格,当需要采用防火保护时,根据临界温度可直接求得防火保护的厚度,通过算例验证了方法用于简支组合梁抗火设计和验算的可靠性。

参考文献

[1]聂建国,余志武.钢 混凝土组合梁在我国的研究及应用[J].土

木工程学报,1999,32(2):3 8.

[2]WANG W C,LENNO N T,MOO RE D B.The behavior of s teel fra mes

subject to fire report[J].J.Construct.Steel Research,1995,35(3):

291 322.

[3]WANG Y C.Tensile membrane action i n slabs and i ts applicati on to

the Cardi ngton fire tests[C] Proceeding of the Second Cardington

Conference,BRE,1996.

[4]ROSE P S,BAILEY C G,BURGESS I W,et al.The infl uence of

floor slabs on the structural performance of the Cardi ngton frame in fire

[C] Structure in the New Millenni um.Rotterdam:Balkema,1997.

[5]ROSE P S,BURGESS I W,PLANK R J,et al.The i nfluence of floor

slabs on the s tructural behavi or of composite frames in fi re.Reports

[J].J Construct Steel Research,1998,46(1 3):1 3.

[6]BAVER Y P N R.Cardington large buildi ng tes t facility:construction

details of the fi rs t buildi ng[R].British Steel Proceeding,1993.

[7]周宏宇,李国强,王银志.影响组合梁抗火性能的两个因素分

析[J].建筑钢结构进展,2006,8(8):40 45.

[8]李国强,王银志,王孔藩.考虑结构整体的组合梁极限抗火性

能分析[J].力学季刊,2006,27(4):726 732.

[9]周宏宇,李国强,王银志.简支组合梁抗火性能参数研究[J].

钢结构,2005,20(6):92 96.

[10]毛小勇,肖岩.标准升温下轻钢 混凝土组合梁的抗火性能研究

[J].湖南大学学报,2005,32(2):64 70.

[11]CECS200:2006建筑钢结构防火技术规范[S].北京:中国计划

出版社,2006.

JPH-373井钻井工程设计(有导眼)

鄂尔多斯盆地杭锦旗东胜气田锦58井区JPH-373井钻井工程设计 中国石油化工股份有限公司华北油气分公司 二○一七年八月

鄂尔多斯盆地杭锦旗东胜气田锦58井区JPH-373井钻井工程设计 设计单位:华北油气分公司石油工程技术研究院设计人: 初审人: 审批单位:华北油气分公司 审核人:梁文龙 审批人: 中国石油化工股份有限公司华北油气分公司 二○一七年八月

设计审批意见 原则同意该设计,同时提出以下要求,请一并执行。 1、本井施工斜导眼完后,着陆点深度均要根据地层变化作相关调整。为加快作业 进度对回填部分斜导眼的轨迹符合率在满足中靶前提下不做严格要求;钻穿导眼目的层后,可根据快速钻进需要改变钻井方式和钻具组合。 2、二开下技术套管间隙较小,井队和固定队应根据实钻情况制定完善的通井、下 套管及固井措施;钻井过程中出现漏失的,下套管前通井需堵漏并做不低于3MPa的承压试验,否则不能下套管,确保固井质量符合要求,特别注意下完套管后固井前循环钻井液排量要控制在环空返速在1.2m/s以上。 3、技术套管固井前钻井队充分作好井眼准备工作,通井正常后方可进行下套管作 业,水泥浆性能试验要取现场水质进行检测。 4、本井完井管柱结合实钻情况和投产方式另行通知。 中国石油化工股份有限公司华北油气分公司 2017年8月

目录 1.设计依据 (1) 2.地质概况 (2) 3.井身结构及套管程序 (6) 4.井眼轨道设计 (8) 5.测量方案及轨迹计算方法 (13) 6.钻井设备及管理要点 (14) 7.钻具组合及强度校核 (16) 8.钻井完井液设计 (21) 9.钻头及钻井参数设计 (26) 10.钻开水平段目的层技术措施 (27) 11.井身质量要求 (27) 12.固井设计 (28) 13.油气井压力控制 (33) 14.复杂情况对策 (47) 15.健康、安全与环境管理要点 (49) 16 弃井要求 (52) 17 风险识别及削减措施 (54) 18.施工进度预测 (57) 19.钻井主要材料计划 (57) 20.资料提交 (58) 附录1:工程应急预案 (59)

先简支后连续梁桥

近年来,随着钢铰线、锚固体系的不断更新和 发展,以及其他新技术的应用,使先简支后连续梁桥得到更大的发展。 一、先简支后连续梁桥发展概况 先简支后连续梁桥的广泛应用始于上世纪80年代中期。随着交通运输的发展,为减少桥上伸缩缝,使行车更舒适、安全,现在采用最多的梁桥结构形式有两种:一种为桥面连续的简支梁桥,伸缩缝最大间距达100米左右;另一种为先简支后连续梁桥,此种结构伸缩缝最大间距可达500米,相对桥面连续简支梁桥,缩缝更少。 先简支后连续梁桥作为一种连续梁桥,具有造价低,整体性好,建筑高度低,刚度大,桥面接缝少,质量容易控制等优点。由于支点处采用了现浇湿接缝的技术措施,可通过现浇段混凝土宽度,底面坡度等满足斜、弯、坡桥的变梁长及支座顶变高度的构造要求,此结构更适合斜、弯、坡桥。 二、先简支后连续梁桥的应用范围及分类 先简支后连续梁桥,主要应用于跨径在13~35米,吊装重量小于70吨的中小跨径桥梁。 先简支后连续梁桥,按桥墩支座多少分为两种:桥墩单排支座和桥墩双排支座连续梁桥;按预应力度划分为全预应力和部分预应力连续梁桥。 先简支后连续双排支座梁桥,由于采用双排永久支座,施工方便,连续处开裂后修补容易,湿接缝处剪力小等优点;

缺点是结构受力不明确,支座易产生托空和上拔力。 先简支后连续单排支座桥,优点是结构受力明确,支座不托空;缺点增加了临时支座和结构体系转换,湿接缝处剪力较大。 先简支后连续全预应力梁桥,此结构优点是抗裂性能好,刚度大;缺点是反拱长期不断发展,预压区混凝土由于长期处于高压应力状态下,会因徐变而使反拱不断增长,造成桥面不平,影响正常使用。同时由于预应力度过大,也易引起沿管道方向负弯矩区的纵向裂缝。 先简支后连续部分预应力梁桥,又分为跨中为部分预应力、支点为普通混凝土连续梁桥,此种结构是支点顶面配普通钢筋,由于普通钢筋太多太密,焊接较多,此处混凝土及焊缝质量不易保证,构造较难处理,顶层混凝土易开裂,产生渗水使钢筋锈蚀,优点施工方便。第二种为跨中、支点都为部分预应力混凝土A类构件连续梁桥,此种结构吸取了钢筋混凝土结构的经验,一方面在结构的不同部位配置适量的非预应力钢筋,包括作为主筋的纵向非预应力钢筋,以控制裂缝的发生和扩展;另一方面通过对混凝土裂缝及反拱的控制,根据桥梁所处环境及结构功能,合理地选用预应力度,此种部分预应力先简支后连续梁桥被广泛采用,并在不断完善和发展。 三、部分预应力先简支后连续梁桥设计中应注意问题

常用钻具组合

一、常规钻井(直井)钻具组合: BIT钻头;DC钻铤;SDC 螺旋钻铤;LZ螺杆钻具;SJ双向减震器;DP钻杆;HWOP 加重钻杆;STB或LF钻具稳定器;LB随钻打捞杯;DJ震击器; 1、塔式钻具组合: Φ×0.50m+Φ229mmDC×27.24m +Φ203mmDC×54.94m+Φ165mmDC×54.51m+Φ Φ×0.40m+Φ229mmDC×54.38m+Φ203mmDC×82.23m+Φ165mmDC×81.83m+Φ Ф×0.32m+Ф×9.50m+Ф229mmDC×45.40m+Ф203mmDC×73.13m+Ф165mmDC×81.83 m+Ф Φ×0.30m+Φ229mm SJ×6.62m+Ф229mmDC×53.94m+Ф203mmDC×81.75m+Ф165mmDC ×81.83m+Ф 钻头FX1951X0.44 m(Φ311.1mm)+6A10/630×0.61 m+9″钻铤×52.17m(6根)+6A11/5A10×0.47 m+ 8″钻铤×133.19m(9根)+410/5A11×0.49 m+61/2″钻铤 ×79.88m(9根)+51/2″HWOP×141.88m(15根)+51/2″钻杆(**根)+顶驱Φ×0.25m+430/4A10+Ф165mmSDC×161.56m+4A11/410+Ф165mmDJ×8.81m+411/4A1 0+61/2″钻铤×79.88m(9根)+51/2″HWOP×141.88m(15根)+51/2″钻杆(**根)+顶驱 2、钟摆钻具组合: Φ×0.50m+730/NC61母+Φ229mm SJ×9.24m+Φ229mmSDC×18.24m+730/NC61公+2 6″LF+731/NC61母+Φ229mmSDC×9.24m+730/NC61公+26″LF +731/NC56母+Φ203mmD C×94.94m+410/NC56公+Φ+顶驱 Φ×0.50m+730/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC×18.24m+171/2″LF+Φ2 29mmSDC×9.24m+171/2″LF +NC61公/NC56母+Φ203mmDC×121.94m+8″随震+8″DC ×18.94m+410/NC56公+Φ127mmH WOP×141.94m +Φ+顶驱 Φ×0.46m+Φ229mmDC×18.08m+Φ308mmLF×1.82m+Φ203mmDC×9.10m+Φ308mmL F×1.51m+Φ229mmDC×27.32m+203mmDC×73.13m+Φ178mmDC×81.83m+Φ+顶驱Φ×0.50m+630/NC61母+Φ229mmSJ×9.24m+Φ229mm SDC×18.24m +NC61公/NC56母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×9.24m +NC61公/NC56母+121/4″LF +Φ203mmDC×121.94m+8″随震+8″SDC×27.94m+410/NC56公+Φ×141.94m +Φ+顶驱Φ×0.50m+630/731+95/8″LZ+Φ229mmSJ×18.64m+ 121/4″LF ++Φ229mm SDC ×9.24m +121/4″LF+Φ203mmDC×148.94m+410/NC56公+Φ×141.94m +Φ+顶驱Φ×0.33m+Φ172mmLZ×8.55m+Φ165mmSDC×1.39m+Φ165mmSDC×1.39m+Φ214mmS TB×1.38m+Φ165mmDC× 236.14m+Φ×141.94m +Φ+顶驱 3、满眼钻具组合: Φ×0.30m+121/4″LF +NC56 公/ NC61母+Φ229mmSJ×9.24m+NC61公/NC56 母+121/4″LF + NC56 公/ NC61母+Φ229mm SDC×18.24m+NC61公/NC56母+121/4″LF +Φ203mmDC×121.94m+8″随震+8″SDC×18.94m+410/NC56公+Φ×141.94m +Φ+顶驱Φ215.9mm牙轮BIT×0.24m+Φ190mm LB×1.10m+Φ214mmSTB×1.39m+Ф165mm SDC ×1.39m+Φ214mmSTB×1.40m+Ф165mm DC×8.53m+Φ214mmSTB×1.39m+Φ165mm SJ×5.08 m+Ф165mm DC×244.63m+Φ×141.94m +Φ+顶驱 Φ215.9mm牙轮BIT×0.24m+Φ214mmLF×1.49m+Ф165mmSDC×1.39m+Φ214mmLF×1.40m+Ф165mmDC×8.53m+Φ214mmLF×1.39m+Φ165mm SJ×5.08m+Ф165mmDC×244.63m+Φ×141.94m +Φ+顶驱

变截面连续梁完整计算书

一、工程概况 上部结构采用预应力混凝土变截面连续箱梁,为双幅结构。单幅箱梁采用单箱单室截面,箱梁顶板宽11.99m,底板宽为6.99米,箱梁顶板设置1.5%的横坡。边跨端部及中跨跨中梁高均为2.0m(以梁体中心线为准),箱梁根部梁高为4.0米,梁高从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25米,箱梁悬臂根部底板厚度为0.6米,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。箱梁腹板在3.5m长度内由0.45米直线变化至0.6米。 桥台采用重力式U型桥台,桥台与道路中心线正交布置。桥台扩大基础应嵌入中风化岩面不少于0.5m,同时应满足基底持力层抗压承载力要求,桩基础应嵌入中风化岩层长度不小与2.5倍桩径,桥台台身采用C25片石混凝土浇筑,台帽混凝土采用C30钢筋混凝土。台后的填料采用压实度不小于96%的砂卵石,回填时应预设隔水层或排水盲沟。 桥墩均采用钢筋混凝土八棱形截面,基础采用桩基接承台。桥墩墩身截面为3.5×2.0m,截面四角对应切除70×50cm倒角。墩顶设盖梁,桥墩盖梁尺寸为 6.99m(长)×2.4m(宽)×2.6m(高),承台尺寸为8.4m(长)×3.4m(宽)×2.5m。每个承台接两根直径2.0m的桩基。 所有的桩基础均采用嵌岩桩,用人工挖孔成桩。桩基础应嵌入完整的中风化岩面不少于3倍桩径,并要求嵌岩岩石襟边宽度大于3.0m,同时应满足基底持力层岩石抗压强度要求。 桥型布置见图1 桥型立面布置图。 图1 桥型立面布置图 二、主要技术标准 汽车荷载:公路-I级。 人群荷载:3.5 KN/m2。 2.4.桥梁宽度:

定向井下部钻具组合设计方法

SY/T5619—1999 定向井下部钻具组合设计方法 代替SY/T5619—93 Method of bottom hole assembly design in directional wells 1范围 本标准规定了井斜角小于60°的定向井下部钻具组合的设计方法。 本标准适用于陆上石油、天然气及地质勘探钻定向井钻具组合设计,侧钻井及大斜度井的下部钻具组合设计也可参照使用。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 SY/T5051—91 钻具稳定器 SY/T5172—1996 直井下部钻具组合设计方法 3钻铤尺寸及重量的确定 3.1钻铤尺寸的确定 3.1.1在斜井段使用的最下一段(应大于27m)钻铤的刚度应适用于设计的井眼曲率。 3.1.2入井的下部钻具组合中,钻铤的外径应能满足打捞作业。 3.1.3钻头直径与相应钻铤尺寸范围的要求见表1。

表1 钻头直径与相应的钻铤尺寸 mm(in) 钻头直径钻铤直径钻头直径钻铤直径 120.7(4 3/4) 79.4(3 1/8) 241.3(9 1/2) 158.8(6 1/4) 177.8(7) 152.4(6) 104.8(4 1/8) 311.2(12 1/4) 203.2(8) 228.6(9) 215.9(8 1/2) 158.8(6 1/4) 444.5(17 1/2) 228.6(9) 3.2无磁钻铤安放位置及长度的确定 3.2.1无磁钻铤安放位置 无磁钻铤的安放位置应根据钻具组合的特性(造斜、增斜、稳斜或降斜)、具体尺寸和连接螺纹类型,使之尽可能接近钻头。 3.2.2无磁钻铤长度的确定 3.2.2.1根据图1确定施工井所在区域。 3.2.2.2施工井在1区时,无磁钻铤长度根据图2进行确定。 图2(a)为光钻铤组合。 在曲线A以下:

先简支后连续梁

一、发展: 高速公路的迅速发展使得桥梁的数量大幅度增加,而高速度的行车则要求桥梁具有较好的连续性能、较少的伸缩缝构造等。在高等级公路桥梁中,多孔中等跨径的桥梁占很大的比重,桥面连续的简支梁结构体系由于存在桥面容易开裂等缺点而在与连续梁结构体系的竞争中常常处于下风。但是由于现浇连续梁的施工复杂繁琐,人们一直希望将简支梁的批量预制生产和连续梁的优越性能结合起来,用梁或板批量预制生产的方式来加快连续梁的建设速度,以省去繁琐的支模工序,由此产生了将整跨梁板预制、架设就位后在端部浇筑混凝土并张拉预应力使之连续的“先简支后连续”施工法,而形成的体系则被称为“先简支后连续结构体系”。 二、定义: 先简支后连续,很形象的施工方式,一联几孔的桥梁,在施工时,板先预制,然后安装,预制板安放在临时支座上,现在是简支板受力方式,和普通的桥梁没什么区别,但是两个板头之间需要连接钢筋,这个位置也是永久支座的上部。接通波纹管,浇筑连接带,张拉板顶负弯矩钢绞线,等这联负弯矩钢绞线全部拉完后,拆掉临时支座,这是这一联结构变成了连续梁受力方式了。这就是先简支后连续小箱梁。 三、先简支后连续桥梁的优点 先简支后连续桥梁结构就是两跨及两跨以上的预应力混凝土梁通过现浇混凝土形成连续结构,优点有以下几点:(1)具有刚度大、变形小、伸缩缝少和行车舒适等优点;(2)简支梁的预应力钢束在工厂进行张拉,而负弯矩区的预应力钢束布置及张拉均在主梁上进行,仅需吊装设备起吊主梁,减少了施工设备,又能避免张拉预应力钢束造成地面上的障碍;(3)预制梁能采用标准构件,进行工厂化统一生产和管理,有利于技术操作,节省了施工时间,缩短工期,提高经济效益; 四、先简支后连续桥梁结构施工工艺要点 (一)先简支后连续桥梁的施工的一般流程 1.预制主梁,待混凝土强度达到设计强度的100%后,张拉正弯矩区预应力钢束,压浆并及时清理主梁(预应力混凝土简支转连续箱梁)底板通气孔。 2.设置临时支座并安装好永久支座,逐孔安装主梁,置于临时支座上为简支状态,及时连接桥面钢筋与横梁钢筋。

钻井工程设计(钻具组合部分已完成) 直井

《钻井工程》课程设计 乌39井 姓名 专业班级油工61302 学号201360043 班级序号18 指导教师张俊

1 井身结构 1.1井身结构示意图 1.2井下复杂情况提示 1.3井身结构设计数据表

1.4井身结构设计说明 1.5 钻机选型及钻井主要设备

2.钻具组合设计 2.1一开钻具组合设计 本井一开钻井液密度为ρd=1.15g/cm3,最大钻压Wmax=100KN,钻井深度D1=500m,井斜角为0°,钢材密度取7.85g/cm3,安全系数取S N=1.2。 2.1.1选择尺寸配合 一开井眼直径381mm,钻头尺寸选用直径381.0mm,根据钻头与钻柱尺寸配合关系,钻铤选用直径为228.6mm的钻铤,钻杆选用直径为127mm的钻杆。 2.1.2钻铤长度设计 (1)计算浮力系数K b=1-(ρd/ρs)=1-(1.15/7.85)=0.854 (2)计算第一段钻铤长度 本井选用NC61-90线密度q c=2.847kN/m,单根长度为9.1m的钻铤,根据中心点原则该钻铤需用长度为: L c=S N Wmax/(q c K b)=(1.2×100)/(2.847×0.854×1)=49.356m n=49.356/9.1=5.4 根据库存和防斜要求NC61-90钻铤实取6根,上接直径为203.2mm的钻铤9根,直径为177.8的钻铤12根,组成塔式钻具组合。 (3)钻铤参数计算 钻铤总长度为:Lc= L c1+ L c2+ L c3=(6+9+12)×9.1=245.7m 钻铤总浮重为: F mc=K b cosα(L c1q c1+ L c21q c2+ L c31q c3)

变截面连续梁桥常用施工方法与经典图纸

变截面连续梁桥常用施工方法 1.支架现浇法 支架现浇法适用于旱地且跨径不太大的桥梁,施工中支架的安全、变形等是必须引起重视的问题。 2.悬臂施工法 悬臂施工法是大跨径连续梁桥常用的施工方法,属于一种自架设方式,分为悬臂拼装与悬臂浇筑两种。 悬臂拼装指在预制场预制梁节段、然后进行逐节对称拼装,拼装方法主要有扒杆吊装法、缆索吊装法、提升法等。 悬臂浇注法则是利用挂蓝在桥墩两侧对称浇注箱梁节段、待已浇节段混凝土强度达到要求的张拉强度后进行预应力张拉,然后移动挂蓝进行下一节段施工,直至合拢。目前主要采用该法施工。 不论悬拼还是悬浇,都是属于自架设方式施工,且已成结构的状态(包括受力,变形)具有不可调整性,所以,施工成败的关键在于临时锚固的可靠性,施工过程中的应力监测、变形预测与标高调整以及体系转换的实施。 经典图纸:变截面预应力连续刚构箱梁桥施工图范例 桥梁全长:695.4m 设计行车速度:80Km/h。 荷载等级:公路-Ⅰ级,无人群荷载。 桥宽:左右幅桥宽布置为0.5m 11m(行车道)0.5m(防撞护栏)。 高程:黄海高程系统。 坐标:北京坐标系。

地震烈度:设计基本地震动加速度峰值A=0.05g,抗震设防烈度为6度。 桥面横坡:主桥单向横坡2%,引桥处在横坡变化段上。 单箱单室截面箱梁顶宽:12米底宽6.5米 顶板悬臂长度:2.75米顶板悬臂端部厚:20cm 根部厚70cm。全桥分五联,其中第二联为主桥,采用(70 130 70)m跨的变截面预应力混凝土 连续刚构箱梁;两岸引桥采用预应力混凝土T梁,第一、三联为先简支后刚构 (采用部分连续墩),第四、五联为先简支后连续。 主桥数量表、引桥数量表、地质纵断面图、桥型布置图 箱梁标准横断面图、箱梁施工程序示意图 箱梁截面标高、箱梁一般构造图 箱梁纵向预应力钢束布置图 箱梁纵向钢束竖弯平弯要素表 箱梁纵向预应力钢束材料数量及引伸量计算表 纵向钢束布置断面图20张 箱梁纵向预应力钢束定位钢筋示意图 箱梁锚下加强钢筋布置图 箱梁横、竖向预应力钢束(筋)布置图 箱梁横、竖向预应力钢束(筋)锚固大样图 箱梁横、竖向预应力钢束(筋)数量表 箱梁横、竖向预应力钢束(筋)定位钢筋示意图 箱梁0号节段一般构造图、箱梁0号节段钢筋布置图 箱梁1-16、1-16号节段钢筋布置图 箱梁17号节段钢筋布置图、箱梁17号节段一般构造图

1 煤层气水平井钻井工程作业规程

煤层气水平井钻井工程作业规程 The Operation Regulation of Coalbed Methane Horizontal Drilling 1 范围 本标准作为中联煤层气有限责任公司(以下简称中联公司)企业标准,规范了煤层气水平井钻井工程作业全过程的程序和要求。包括水平井钻井工程设计、钻前准备及验收、水平井井眼轨迹控制作业、水平井测量作业、水平井完井作业、水平井钻井工程质量要求、健康、安全与环境管理(HSE)要求、水平井钻井工程资料汇交要求等六项内容。 本标准适用于煤层气勘探开发过程中水平井钻井工程的设计、施工作业、工程质量要求、资料汇交和验收。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/CUCBM 0301 煤层气钻井作业规程 GB/T 8979 污水排放要求 GB/T 11651 劳动保护用品 SY/T 5172 直井下部钻具组合设计方法 SY/T 5272 常规钻井安全技术规程 SY/T 5313 钻井工程术语 SY/T 5322 套管柱强度设计推荐方法 SY/T 5334 套管扶正器安装间距计算方法 SY/T 5358 砂岩储层敏感性评价实验方法 SY/T 5396 石油套管现场验收方法 SY/T 5411 固井设计格式 SY/T 5412 下套管作业规程 SY/T 5435 定向井轨道设计与轨迹控制 SY/T 5526 钻井设备安装技术、正确操作和维护 SY/T 5547 动力钻具使用、维修和管理 SY/T 5618 套管用浮箍、浮鞋 SY/T 5619 定向井下部钻具组合设计作法 SY/T 5672 钻井井下事故处理基本规则 SY/T 5724 套管串结构设计 SY 5876—93 石油钻井队安全生产检查规定 SY/T 5957—94 井场电器安装技术要求 SY/T 5958 井场布置原则和技术要求 SY/T 5964 钻井井控装置组合配套规范 SY/T 6075 评价入井流体与多层配伍性的基础数据 SY/T 6228—1996 油气井钻井及修井作业职业安全的推荐方法中第八章和第10.5、10.6款 SY/T 6283—1997 石油天然气钻井健康、安全与环境管理体系指南 SY/T 6426 钻井井控技术规程 3水平井钻井工程设计

先简支后连续梁施工工艺工法

先简支后连续梁施工工艺工法 (QB/ZTYJGYGF-QL-0509-2011) 桥梁工程有限公司廖文华余海 1前言 工艺工法概况 随着桥梁技术的发展,综合各类结构体系的优点,预制架设的梁式桥越来越多地采用了先简支后连续结构体系。简支梁具有施工工艺简单,工厂化作业施工质量好,工效高,预制安装方便的优点,而连续梁具有桥梁线形好行车平顺,结构体系完整,梁体受力较好的优点,而将这两种优点相结合就形成了先简支后连续的结构体系。我单位在近年的桥梁施工中严格按照施工工艺施工,不断总结完善先简支后连续施工工艺形成了本工法。 工艺原理 由简支转换为连续体系,是通过在箱梁端部顶部负弯矩区内增设负弯矩预应力束来实现的,而为配合梁体结构体系转换,在转换过程中需在箱梁端部布设相应临时支座并适时拆除来实现其体系的转换。 2工艺工法特点 刚度大、变形小、伸缩缝少和行车舒适 梁场整体预制梁,可确保施工质量,节省了施工时间,提高了经济效益。 3适用范围 本工法适用于曲线半径大于400m,跨度16m以上,多跨结构桥梁施工。适用于桥下无支架搭设条件,需要通车通航的桥梁工程施工。 适用于13~35m跨径,吊装重量小于70t的中小跨径桥梁。 4主要技术标准 《铁路架桥机架梁规程》(TB10213) 《铁路混凝土工程施工技术指南》(TZ210) 《客运专线铁路桥涵工程施工技术指南》(TZ213) 《公路桥涵施工技术规范》(JTG/TF50) 《公路工程质量检验评定标准》(JTGF80-1) 5施工方法

梁在预制场进行预制,采用运梁车简支梁进行安装,待箱梁安装完毕即将每一联的连续端端部负弯矩区预应力束管道和非预应力钢筋进行连接。立模浇筑连续端横梁及负弯矩区梁间湿接缝混凝土。立模时确保各永久支座处连续端横梁底部间距均满足设计图纸及施工规范要求,待混凝土强度达到设计强度90%以上,即可进行负弯矩预应力束穿束张拉。张拉完毕进行孔道压浆。此时,桥梁整联上部结构已经形成一个连续的整体。此时将一联所有临时支座同时降低,保证一联整个梁体同时平稳降落在永久支座上,并拆除临时支座即可完成简支体系向连续体系的转换。 6工艺流程及操作要点 施工工艺流程 先简支后连续梁施工中,新老混凝土连接面处理;临时支座、永久支座正确安装;连接钢筋、预应力束施工质量是从简支变为连续施工质量的关键。施工工艺流程图见图1。 操作要点 施工准备 简支连续梁桥通过将简支梁在墩顶实施结构连续或墩梁固结而成,所以,简支梁体是基础、墩顶结构连续、墩梁固结或桥面连续构造是关键,施工必须高度重视。强化施工设计,明确施工工艺,制定精细化的施工方案,实行首件(试制)制。施工准备中强调预制完成后到体系转换的时间。 6.2.2梁预制与支座安装 预制台座稳定性好,顶面光滑,易于脱模。严格按照设计图纸,制作强度、刚度、稳定性均满足精品预制梁需要的模板系统,同时,模板必须能根据预制梁顶横坡、锚固齿板等需要具有可调整功能。从控制混凝土原材料、配比、几何尺寸、一

定向井底钻具组合的类型

定向井底钻具组合的类型 吕永华 根据井底钻具组合的设计目的或作用效果不同,可分为以下三类:增斜、降斜、稳斜。实际上常规定向井的最基本钻具组合有四个,即马达造斜钻具,转盘增斜、降斜和稳斜。在渤海地区常用钻具组合的总结如下: 1、在12-1/4井眼中四套基本钻具组合有: 马达造斜: 12-1/4BIT+9-5/8Motor(1.15-1.5) +11-3/4STB+8NMDC+8HOS+8S.NMDC+F/V+7-3/4(F/J+JAR)+5HWDP(14) 转盘增斜: 12-1/4BIT+12-1/4STB+8NMDC(1)+8DC(2)+12-1/4STB+8DC(1)+12-1/4STB +8DC(5)+5HWDP(20) BOR:(2-4)o/30m 降斜: 12-1/4BIT+8NMDC(1)+12-1/4STB+8DC(1)+12-1/4STB +8DC(5)+5HWDP(20) BOR:-(2-3)o/30m 强降斜在钻头上加两根钻挺。 稳斜: 12-1/4BIT+12-1/4STB+8S.DC(2) +12-1/4STB+8DC(1)+12-1/4STB +8DC(5)+5HWDP(20) 2、可以通过调整扶正器扶正翼尺寸的大小、扶正器之间钻挺的长度和钻压的大

小达到不同的增降或者稳斜的效果如下: 微增组合: 12-1/4Bit+12-1/4STB+8DC(1)+12-1/4STB+8DC(1)+12-1/4STB +8DC(5)+5HWDP(20) 微降组合: 12-1/4Bit+8S.DC(1)+12-1/4STB+8DC(1)+12-1/4STB +8DC(5)+5HWDP(20) 井底钻具组合表现出不同的效果,是由于不同的钻具组合具有各自的力学特性,这主要是钻头处产生的侧向力的方向和大小的不同。从而使钻头按照预定的轨迹前进。 如果钻头不是按照预定的井眼轨迹前进,就需要在适当的时候,起钻调整钻具组合。调整钻具的原因有三个:1、井斜不合适 2、方位不合适 3、井斜方位都不合适 钻具组合的调整一般都在稳斜井段进行,调整钻具组合时应考虑以下几点: 1、经调整后的钻具入井后具有预料的性能 2、一般情况下采用微调的形式,以避免大幅度增斜/降斜导致稳斜段狗腿太大,造成井下事故 3、尽量争取调整后的钻具能有较长的井段的进尺,以避免反复起下钻调整钻具,一是保证快速钻进,二是避免波浪形井眼轨迹 地层因素同样影响着井眼轨迹,很明显同一套钻具组合在不同的地层表现出的性能是不一样的,或者说轨迹方位和井斜的变化率是不一样的,这是由于

简支转连续梁桥名目

目录 一、绪论 1、先简支转连续梁桥概述 1.1、先简支转连续梁桥的优缺点 1.2、先简支转连续桥梁的研究背景 1.3、先简支转连续桥梁的研究现状 2、论文的主要研究内容和方法 二、简支转连续桥梁的基本理论 1、简支转连续结构体系形式和施工方法 1.1、简支转连续结构体系形式 1.2、简支转连续桥梁的施工方法和控制过程 2、简支转连续桥梁的基本理论分析 2.1、概述 2.2、梁体应力基本理论 2.3、先简支转连续桥梁的次内力和内力重分布 2.4、先简支转连续桥梁的主梁内力 3、软件简介 3.1、有限元法简介 3.2、迈达斯Civil简介 三、简支转连续体系受力特性分析 1、工程概论 2、迈达斯Civil建模过程

3、不同施工工序下体系受力计算 3.1、内力计算 3.2、变形计算 4、计算结果分析 5、结论 四、参数分析 1、收缩徐变的影响分析 五、不同跨数的次内力分析 六、施工技术研究

一、绪论 1、先简支转连续桥梁的概述 1.1、先简支转连续桥梁的优缺点 先简支转连续桥梁是两跨及两跨以上的预应力混凝土通过现浇混凝土的形式连接而成的连续结构,该连续结构有一下几个优点: (1)具有刚度大、变形小、伸缩缝少和行车舒适的优点; (2)简支梁的预应力钢束在工厂进行张拉,而负弯矩区的预应力钢束布置及张拉均在主梁上进行,仅需吊装设备起吊主梁,减少施工设备,又能减少或避免张拉预应力钢束阻碍地面交通; (3)预制梁能采用标准构件,进行工厂化统一生产和管理,有利于技术操作,减少施工时间,提高了经济效益,缩短了工期。 先简支转连续桥梁是连续结构,有以下缺点: (1)基础不均匀沉降将在结构中产生附加内力,因此,对桥梁基础要求较高,通常适用于地基较好的场地。 (2)箱梁界面局部温差,混凝土收缩、徐变及预加应力均会在结构中产生附加内力,增加了设计计算的复杂程度。 1.2、先简支转连续桥梁的研究背景 从简支梁发展到简支转连续梁是一个漫长复杂的过程。简支梁是应用最早、最广泛的一种桥梁形式,因其简单的构造,方便施工,能够适应较大的地基沉降,因此在中小跨径桥梁中普遍应用。但是,简支梁桥的桥面因有伸缩缝的存在,致使行车颠簸。尽管简支梁的桥面连接本身就存在着缺陷,无法与连续梁结构体系的良好性能相比,但施工方面的优点使其在桥梁建设中扔占有一定的地位。需要

变截面连续梁式桥设计入门

变截面连续梁桥设计入门 预应力混凝土连续梁桥在公路桥梁中的应用范围越来越广泛,跨径超过40m时多采用变截面箱梁,本文主要介绍变截面连续箱梁桥设计的入门知识和容易遗漏的一些技术处理措施。 一、变截面连续梁桥的适用范围 变截面连续梁桥主跨经济跨径一般在40~250m之间,桥型优点在于施工技术成熟、造价低廉、行车舒适、养护简单;缺陷在于结构自重大、容易开裂、恒载在使用荷载中占据较大比例、建筑高度高。 二、箱梁构造设计 1.箱梁箱室分配 (1)鉴于多室箱梁弯曲内力分配难以把握,箱梁最好采用单箱单室; (2)箱梁分室受畸变和横框架抗弯控制,当箱梁最大宽高比超过3~3.5时应考虑分室; (3)当采用单箱多室结构时,各墩支撑最好一条腹板对应一排支座; (4)当腹板与支座不是一一对应或支座中心与腹板中心存在偏离时应进行支座处横隔板的横向抗弯计算。 2.箱梁梁高 箱梁梁高的控制因素主要包括: (1)箱梁根部梁高一般取主跨跨径的1/16~1/20;跨中梁高一般取主跨跨径的1/40~1/60。 (2)跨中梁高最小箱内净高一般不宜小于1.5m,特小跨径桥梁例外。 (3)箱梁最矮梁段箱体宽高比不大于3.5。 3.梁高变化 箱梁梁高一般采用抛物线变化,主跨跨径小于120m时采用2次抛物线,大于120m时采用1.8、1.6或1.5次抛物线。 4.底板厚度 箱梁底板厚度变化规律一般采用2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定一般为20cm~32cm;最厚处底板厚度一般取跨径的1/200~1/120,根据下缘压应力要求控制。

1.纵向预应力 一般由内力设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应力设置腹板束。

钻井设计

钻井工程设计指导 前言 一、钻井设备 二、井身结构设计 三、钻具组合设计 四、钻井液设计 五、钻井参数 六、油气井压力控制 七、固井设计 前言 钻井是石油、天然气勘探与开发的主要手段。钻井工程质量的优劣和钻井速度的快慢,直接关系到钻井成本的高低,油田勘探开发的综合经济效益及石油工业发展速度。 钻井程设计是钻井施工作业必须遵循的原则,是组织钻井生产和技术协作的基础,搞好单井预算和决算的唯一依据。钻井设计的科学性,先进性关系到一口井作业的成败和效益。科学钻井水平的提高,在一定程度上依靠钻井设计水平的提高。 搞好钻井工程设计也是提高技术管理和加强企业管理水平的一项重要措施,是钻井生产实现科学化管理的前提。 钻井工程设计应包括以下方面的内容: 1.地面井位的选择及钻井设备的确定; 2.井身结构的确定; 3.钻柱设计与下部钻具的组合; 4.钻井参数设计; 5.钻井液设计;

6.油气井压力控制; 7.固井设计; 一钻井设备 (一) 钻进设备的选择 钻井设备可以按设计及分类细分为若干部件系统。这些系统可分为: 1.动力系统; 2.起升系统; 3.井架及井架底座; 4.转盘; 5.循环系统; 6.压力控制系统。 这些系统是选择钻井设备的基础。钻井设备的选择主要依据钻机类型,地表条件及钻井设计所确定的最大载荷而定。 (二) 钻井设备选择实例 表1-1是大庆地区45110钻井队芳深三井的钻进设备记录。

二井身结构设计 (一) 井身结构确定的原则 1.能有效的保护油气层,使不同压力梯度的油气层不受泥浆污染损害。 2.应避免漏、喷、塌卡等情况发生,为全井顺利钻进创造条件,使钻井周期最短。 3.钻下部高压地层时所用的较高密度泥浆产生的液柱压力,不致压裂上一层管鞋处薄弱的露地层。 4.下套管过程中,井内泥浆液柱压力之间的压差,不致产生压差卡套管事故。 (二) 井身结构设计步骤 1.根据地区特点和井的自身条件,确定在保证工程需要的条件下应下几层套管,做出井身结构设计图。 2.确定套管尺及相应钻头尺寸。 3.确定各层套管的下入深度。 (三) 套管下入深度的确定方法 1.确定各套管下入深度初选点H ni

“先简支后构连续”梁桥的工艺讨论

“先简支后结构连续”梁桥的工艺讨论 声明:本贴转自其它站点,其中有本人的观点 先简支后结构连续梁桥这方面设计比较成熟! 施工目前也没有发现什么问题! 欢迎大家在设计和施工中有什么问题在此讨论 ------------------------------------------------------------------------------- - 施工流程主要是通过预制小箱梁,在桥墩上设置临时支座,中间保留永久支座,临时支座是用硫磺混凝土里边敷设电阻丝,将预制箱梁吊装后,永久支座暂不受力,由临时支座参与结构受力,临时支座每跨之间为简支体系,待一联全部吊装完成后,将各主梁的预留的钢筋连接,并浇筑湿接缝,先使结构连成整体的连续结构体系。再将电阻丝通电,使临时支座融化,使原来布置的连续体系的永久支座参与结构受力,这样就完成了1、梁体的转换;2、完成 结构体系的从简支到连续的转换。 ------------------------------------------------------------------------------- - 楼上老兄说的硫磺垫块座临时支座我也遇到过,但是在将电阻丝通电,使临时支座融化时遇到了很大的麻烦,电阻丝未能将垫块融化已经断了,结果费了九牛二虎之力冒着危险炸掉了,据说其他工程中的硫磺垫块也出现过很多问题,不知道大家遇到过没有。是如何解决的。 ------------------------------------------------------------------------------- - 我想是硫磺垫块配合比不当,致使它的熔点过高,或则是电阻丝的功率不够,但是这的确是一个非常棘手的问题。保证硫磺块的熔点,就势必要降低它的承载能力,因为要增加硫磺的含量,这样就需要在承载能力和熔点之间找到最佳的平衡点。好在硫磺块只是在施工阶段支 撑恒载。 ------------------------------------------------------------------------------- -

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

先简支后连续预应力混凝土连续T梁桥设计

先简支后连续预应力混凝土连续T梁桥设计计算 —、设计基本资料 1、桥梁线形布置:平面线形为直线,无竖曲线,设单向纵坡2%o 2、主要技术标准 (1 )桥跨布置:2x30m先简支后连续,桥梁总体布置如图]所示;主梁横断面布置如图2所示,T梁截面尺寸如图3所示.主梁一般构造如图4所示。 (2 )荷载等级:公路一I (学号为奇数的),公路II级(学号为偶数的\人群荷载3.0kN/m2 (学号数字能被4整除的),人群荷载4.0kN/m2 (学号数字能被3 整除的),人群荷载3.5kN/m2 (学号数字为其他的X (3 )桥梁宽度:2x( 1.75m+O.5m+10.75+0.5 )m+lm=28m,单幅桥横坡为2%。 (4 )航道等级:无通航要求。 (5 )设计洪水频率:1/100。 (6哋震动参数地震动峰值加速度< 0.05g地黑动反应谱特征周期为0.35s , 采用简易设防。 (7)设计基准期:100年。 (8 )结构重要性系数:1.1。 3、主要材料 (1 )混凝土:30m预制T形梁及其现浇接缝、封锚、墩顶现浇连续段和桥面现浇层均采用C50混凝土,基桩采用C25 ,其余均采用C30。 (2 )普通钢筋:普通钢筋必须符合QB1499-1998'和QB13013-1991,标准的规定,其中:钢筋直径D>12nmi全部采用HRB335钢筋,抗拉强度标准值fsk=335MPa ;钢筋直径D < 12mm全部采用R235钢筋,抗拉强度标准值f sk=235MPa o (3 )钢材:所采用的钢材技术标准必须符合《普通碳素结构钢技术条件》(GB/T700-1988 )规定的Q235 ,选用的焊接材料应符合《碳钢焊条》(GB/T5117-1995 )及《低合金钢焊条》(GB/T5118-1995 )的要求,并与所采用

变截面箱型连续梁桥桥梁工程毕业设计

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (9) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (20) 3.5荷载组合 (24) 3.5.1按承载能力极限状态进行内力组合 (25) 3.5.2按正常使用极限状态进行内力组合 (27)

第四章配筋计算 (31) 4.1计算原则 (31) 4.2预应力钢筋估算 (31) 4.2.1材料性能参数 (31) 4.2.2预应力钢筋数量的确定及布置 (31) 4.3预应力筋的布置原则 (37) 第五章预应力钢束的估算及布置 (39) 5.1按正常使用极限状态的应力要求估算 (39) 5.1.1截面上、下缘均布置预应力筋 (39) 5.1.2仅在截面下缘布置预应力筋 (40) 5.1.3仅在截面上缘布置预应力筋 (41) 5.2按承载能力极限状态的强度要求估算 (41) 5.3预应力筋估算结果 (42) 5.4预应力筋束的布置原则 (44) 5.5预应力筋束的布置结果 (45) 第六章净截面及换算截面几何特性计算 (45) 6.1净截面几何特性计算(见表6-1) (46) 6.2换算截面几何特性计算(见表6-2) (46) 第七章预应力损失及有效预应力计算 (47) 7.1控制应力及有关参数的确定 (48) 7.1.1控制应力 (48) 7.1.2其他参数 (48) σ的计算 (48) 7.2摩阻损失1l σ的计算 (50) 7.3混凝土的弹性压缩损失4l σ的计算 (52) 7.4预应力筋束松弛损失5l

钻具组合设计

第四章轨迹控制钻具组合设计 4.1 下部钻具组合设计原则 (1)虔诚水平机下部钻具组合设计的首要原则是造斜率原则,保证所有设计组合的造斜率到要求是井眼控制轨迹控制的关键。为了使所设计的钻具组合能够对付在实钻过程中造斜能力又是难以发挥的意外情况,往往有意识在设计时使BHA得造斜能力比井深设计造斜率搞20%~30%。 (2)在设计水平井下部钻具组合时,要考虑和确定测量方法、仪器类别及型号。水平井用最普遍的是MWD,即无线传输的随钻测斜仪,它允许工作在定向钻进和转盘钻进两种情况,但是由于信号靠泥浆脉冲来进行运输,工程参数传输慢,而浅层水平井由于地层软进尺快;为了提高定向精度,实验之初的1~2口井可在定向钻进的起始井段所用的钻具组合中,考虑采用有线随钻测斜仪,形成经验后全部推广MWD。(3)在设计水平井钻具组合时,考虑到井底温度较低,一般选用常温型螺杆钻具;而在常规水平井中有时井底温度高于125℃,此时应考虑选用高温型螺杆钻具。 (4)在设计水平井下部钻具组合时,也要考虑工作排量和螺杆钻具许用最大排量之间的关系。如果排量明显大于螺杆钻具的额定排量和最大排量时,应考虑选用中空转子螺杆钻具。 (5)在设计水平井下部钻具组合时,为了安全生产,组合必须保证足够的强度、工作可靠性,并满足井下事故处理作业队钻具组合的结构要求。 图4-1为螺杆钻具基本形式。 / 由于浅层水平井井眼长度太短,一旦预测的井眼轨迹与设计不一致,几乎没有纠正的余地,而且还无法填井重钻,因此,运用科学合理的方法,准确地计算造斜能力、按设计要求完成完成轨迹是浅层大位移水平井成功的关键。 4·2 钻具组合造斜率预测 4·2·1现有的方法评价 三点定圆法的优点在于计算简单,强调了结构弯曲对工具造斜率的影响,并在一定程度反映了稳定器位置的影响。但该方法的缺点也十分突出,如; (1)未考虑钻具的受力与变形对造斜率的影响,即把造斜率计算建立在绝对刚性的条件下的几何关系基础上; (2)未考虑钻具刚度对造斜率所得结果的影响,用该式计算γ、L 1、L2相同的两种直径,不同刚度的钻具的造斜率所得结果相同; (3)未考虑近钻头稳定器位置(L1)对造斜率的影响。由此式可得出:在上稳定器位置固定的前提下(L1 + L2=Constant),移动近钻头稳定稳定器(L1变化)不改变工具的造斜率。这一结论与钻井实践明显相悖。 (4)未考虑井眼扩大对工具造斜率的影响; (5)由此公式可推出转盘钻BHA(无结构弯角即γ= 0 )不会变更井斜的推论(r = 0则k =0,必然稳斜),但实际上转盘钻BHA有降斜、稳斜、增斜之分; (6)当不接上稳定器时,因只有“两点”而无法用该式计算造斜率。 由现场钻井实践验证,用上式求出的造斜率与实际造斜率存在较大的误差。另外,国内在计算同向双弯组合造斜率时采用的“双半径法”(根据上述三点定圆法演变而来),验证也有明显误差。 极限曲率法(Kc法)是建立在BHA受力变形分析基础上,综合考虑了工具或BHA的诸多

相关文档
最新文档