电影院集中空调系统设计方案

电影院集中空调系统设计方案
电影院集中空调系统设计方案

电影院集中空调系统设计方案探讨

中国电子工程设计院 董海洋

电影院为高大空间建筑具有层高较高、空间体积大、使用功能多样化、人员短期密集、跨度大等特点。对电影院而言,集中空调系统庞大的电耗会增加电影院的日常运行成本。因此,对于电影院这种类型的建筑必须选择实用有效的通风空调以及制冷方案,并且既要考虑前期的投资,也要考虑到长期的运行成本,同时保证室内较高的空气质量和环境舒适性。本文结合工程实例探讨电影院空调系统设计方案。

一、建筑空调设计的特点

空调设计时要留意考虑其建筑及使用功能上的特点。

(1)目前新建的电影院均多数考虑在综合商场内的顶层,作为综合商场经营的一部分内容。电影院建筑组成复杂,既有空间高大的观众厅,又有内部设施复杂的的放映室、休息厅、接待室等大小、外形、用途各不相同的房间。包括一些新兴的电影院还有配套的娱乐设施。

(2)电影院的主要厅室是间歇使用的,对空调系统运行时间和要求很不一致。如观众厅为间歇使用,每场使用2~3 h,场间为休息时间;而休息厅、办公室等是非连续、非全天、只集中在一段时间使用的;接待室等则是短时间有人停留。

(3)低纬度地区的电影院观众厅,建筑隔热良好时,空调负荷主要为人体散热负荷,可能全年需要送冷风,但观众少时又要防止室内过冷。

(4)电影院人员集中,新风量需求大,空调系统的新风比较其他类型建筑大。新风系统按照人员集群度为间歇性使用。

(5)观众厅内人体散热负荷为主要空调负荷,热湿比小,为了满足客满时室内相对湿度较低的标准及换气次数的要求,需要送风在冷却减湿处理后作再热处理;而在夏季,热源往往不运行,所以直接利用冷凝器热量作再热热源有一定的节能意义。

(6)要求随着建筑物使用情况和节假日情况的变化能自动控制新风量,达到节能的效果。如在空调系统预冷、预热时间内可以完全封闭新风风阀,停止供新风;在上座率不高时也应能减少新风量。

(7)设计时应考虑减少送风量的可能,满场时设计风量较大,应对系统分区或者采用变风量系统等。

二、空调设计原则:

1、观众厅部分的空调系统一般用低速单风道空调系统。

2、观众厅一般采用一个或者两个独立的空调系统。前部和后部最好分系统或者分区,以适应气流组织的需要或者上座率的变化。当观众上座率减少时,观众集中在前部或者后部,停止一个系统或者部分区域。

3、观众厅空调系统要做好良好的消声和隔声处理,空调设备产生的噪声需要采取措施,噪声不允许超过允许标准。

4、休息厅、办公区等区域,需要独立考虑空调系统。这些区域的使用时间与观众厅系统不同步,区域直接也不同步。

5、空调风系统上需要设置必要的消声器、调节风阀等。

6、根据项目地点不同需要考虑是否冬季供暖,在低纬度地区,观众厅常年供冷,而休息厅则需要考虑供热。在高纬度地区,观众厅和休息厅均需要考虑供热问题。

7、全空气系统需要考虑采用双风机系统,能在过渡季加大新风量,降低系统运行能耗。在其他季节可以根据系统运行情况,灵活调节新风量。

三、空调负荷计算

对于电影院高大空间可使用分层空调设计。分层空调是指仅对下部区域进行空调,而对上部区域不实施空调的空调方式。分层空调以送风V1中心作为分层面,将整个舞台在竖直方向分为两个区域,分层面以下的空间为空调区,分层面以上的空间为非空调区。

与全室空调相比,分层空调夏季可节省冷量30%左右,可减少初投资和运行能耗,但冬季空调并不节能。同时,只有当建筑物高度H≥10 m,建筑物体积> 10 000 m3,空调区高度与空间高度之比h1/H≤1/2时,分层空调才合理。

分层空调负荷计算主要指的是夏季分层空调冷负荷计算,至于冬季,则必须按全室采热方式进行计算,特别是在没有设置空气幕,而且空间上下温度很不均匀时,则必须按照竖直方向温度梯度来确定上部的气温,然后计算围护结构耗热量。

空调区夏季分层空调冷负荷计算,在进行规划设计估算时,可采用经验系数法,即对分层空调建筑物按全室空调方法进行冷负荷计算,然后乘以经验系数。a=空调区分层空调冷负荷/全室空调冷负荷,常由特定性质的高大建筑物经实测与计算得出,通常a=0.5~0.85,当缺乏数据时,可取a=0.7。

在满足使用要求的条件下,分层高度h1越小越节能,分层高度可由下式计算确定:

h 1=h+y+ha (1)

式中h——工作区高度,m;

y——射流竖直落差,m;

ha——安全值,一般舒适性空调可不考虑。

全室空调总冷负荷由以下各项冷负荷组成:外墙冷负荷、人员散热冷负荷、屋面冷负荷、照明冷负荷及新风冷负荷。

按各朝向外墙面积计算出外墙逐时冷负荷,其中的最大冷负荷即为外墙冷负荷。

夏季室外空气比焓值比较大,新风的处理需要消耗比较多的能量,因此,新风量的选择既要考虑到人们的舒适要求,同时也要考虑节约能源。《暖通规范》中规定影剧院中每人最小新风量为20m3/(人·h)。考虑到电影院观众厅等场所职员密集且停留时间较短,为了节能可降低新风量标准。受污染影响,城市某些地区的室外空气CO2浓度可能超过0.03%,当电影院每人所占空间较小时,为冲淡观众厅内臭味所需新风量稍大于冲淡CO2所需要的新风量,以使人感觉空气新鲜,因此人员密集的电影院中人群密度的变化大,因此需要综合考虑集群密度,给出合适的新风量标准。

观众席部分的热负荷特征是:人员密度约达1.8人/m2(办公室为0.1~0.2人/m2),人体发热负荷大,故人体负荷的取值和计算应力求正确。此外,由于职员众多,新风负荷也随之而增加。电影院外墙虽大,但一般为无窗建筑,故夏季围护结构冷负荷并不大。观众席新风量占总风量的30%以_上,故应尽可能采用全热换热器及CO2新风控制等措施以减少能耗。在设计中采用全热换热器或不采用全热换热器时的冷负荷计算比较表明,使用全热换热器时可使新风负荷从总负荷组成中下降20%~30%左右。

四、空气处理方案

4.1 观众厅空气处理方案

由于建筑规模大、换气量大,观众厅的空调系同一般采用全空气系统。

全空气系统有以下主要优点:

(1)空气过滤效果好。过滤器的过滤效率高,必要时可采用粗、中效两级过滤,确保空气中悬浮颗粒的浓度保持在卫生标准规定的范围。

(2)室内无凝聚水和凝聚水集水盘。避免了霉菌的产生,可以确保室内空气质量。同时也没有冷凝水渗漏题目,室内环境较好。

(3)通过调控,可以确保送风温度合适、气流分布均匀,具有较为理想的温度场和速度场。

(4)空调机组设在专门的机房内,噪声可以有效地控制在标准要求的水平。

(5)年运行费低。过渡季节里可利用室外空气的自然冷却能力进行降温处理,减少制冷机的开启时间,不仅减少了运行用度,而且司以进步室内空气质量。

但由于空气的比热容较小,需要用较多的空气才能达到消除余热余湿的目的,因此要求有较大断面的风道或较高的风速。在观众厅一般均采用一次回风式系统,即回风与室外新风在空气冷却器前混合,经处理后送人室内。

考虑到部分停止送风的可能性,可以将观众厅的前部和后部、上部和下部进行分区,以适应气流组织的需要或上座率的变化。当观众厅上座率减少时,观众一般集中在前部或后部,此时可停止部分分区的空调,达到节能的效果。

4.2 其他房间的空气处理方案

休息厅、办公室等一般使用功能的房间,这些房间的空调方式采用风机盘

管或VRV加独立新风系统。新风系统采用分层设置水平式,将新风处理至等比焓线上,经新风管道直接送人各房间,不承担室内负荷。房间采用二级吊顶,新风管从风机盘管侧面引出,新风下送进房间。各房间不单独设排风系统,通过窗户缝隙渗透排风,厕所设排风扇排风。需要综合考虑气流组织和风系统平衡。

这种空调方式布置灵活,各房间之间空气互不串通,可独立调节室温,冷量可由使用者调节,房间没人的时候可方便地关掉机组(关风机),不影响其他房间使用,从而比其他系统节省运转用度。在过渡季节,可以封闭制冷系统、风机盘管和新风系统,采用开窗方式进行自然透风降温。独立的新风系统既满足该系统调节和运转的灵活性,又能使进进风机盘管的供水温度适当提高,从而能使水管的结露现象得到改善。

五、冷热源方案选择与经济性分析

因电影院的营业时间和综合商场的营业时间不一致,因此电影院一般均设置独立的冷热源系统,独立运行和承担计量费用,便于运行管理。而综合商场内一般不会提供独立的冷源空间给电影院,因此在此原则基础上,一般以下2种方案进行比较。

方案1:风冷热泵式冷水机组;

方案2:VRV系统加直膨式风管机。

根据分析得到的一些数据和根据经验进行初投资及运行用度估算得出,方案2为最经济方案,其初投资费用及运行费用均最低。

风冷热泵机组的主机,但其辅助设备比较简单,机房占用空间较小。同时,风冷热泵及水泵可放置在屋顶,水泵房为独立小设备房,与方案1和方案2相

比,多了水泵房的辅机设备间。夏季可供冷,冬季可供热,且其热量直接取于室外空气,可以节省能量,有助于环保。但风冷热泵式机组的冬季COP较低,当室外温度低于标准工况的温度时,风冷热泵能够提供的热量会有所下降,而且COP也会下降,特别是在冬季使用时还要考虑到为防止水系统冰冻造成系统瘫痪,在电影院不适用期间风冷热泵需要持续低温运行。因此节能型差。同时风冷热泵在冬季运行时除霜的不稳定性,会对系统的稳定运行造成影响。

方案2采用VRV 加直膨式风管机相比,采用的氟利昂系统,没有水系统,冬季不存在防冻问题,因此系统可以灵活运行。同时目前市场上主流的VRV和直膨风管机产品均针对北方地区采用了二次增焓、辅助电加热等技术措施,能有效的解决冬季系统运行稳定性的问题。而且目前在北京地区有大规模的应用案例(北京总部基地、北辰B5等项目)。均运行情况良好。

综上所述,对该电影院而言采用VRV 加风管机系统的方案是合理可行的。建议选用针对北方地区能有效供热的VRV和直膨风管机。

空调自控系统方案设计(江森自控)

沈阳利源轨道交通设备有限公司暖通空调自控系统项目 HVAC暖通空调自控系统 技术方案设计书

一. 总体设计方案 根据用户对项目要求,并结合沈阳建筑智能化建筑现状,沈阳利源轨道交通装备有限公司暖通空调自控系统项目是屹今为止整个沈阳所有建筑物厂区当中智能化程度要求较高的。沈阳利源轨道交通装备有限公司暖通空调自控系统项目里面分布着大量的暖通空调机电设备。 ?如何将这些暖通空调机电设备有机的结合起来,达到集中监测和控制,提高设备的无故障时间,给投资者带来明显的经济效益; ?如何能够使这些暖通空调机电设备经济的运行,既能够节能,又能满足工作要求,并在运行中尽快的将效益体现出来; ?如何提高综合物业管理综合水平,将现代化的的计算机技术应用到管理上提高效率。 这是目前业主关心的也是我们设计所侧重的。 沈阳利源轨道交通装备有限公司暖通空调楼宇自动化控制系统的监测和控制主要包括下列子系统: 冷站系统 空调机组系统 本暖通空调楼宇自动化控制系统之设计是依据沈阳利源轨道交通设备有限公司暖通空调自控系统项目的设计要求配置的,主体的设计思想是结合招标文件及设计图纸为准。 1.1冷站系统 (1)控制设备内容 根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:监控设备监控内容 冷却水塔(2台)启停控制、运行状态、故障报警、手 自动状态。 冷却水泵(2台)启停控制、运行状态、故障报警、手

自动状态、水流开关状态; 冷却水供回水管路供水温度、回水温度, 冷水机组(2台)启停控制、运行状态、故障报警、手 自动状态; 冷冻水泵(2台)启停控制、运行状态、故障报警、手 自动状态、水流开关状态; 冷冻水供回水管路供水温度、回水温度、回水流量; 分集水器分水器压力、集水器压力、压差旁通 阀调节; 膨胀水箱高、低液位检测; 有关系统的详细点位情况可参照所附的系统监控点表。 (2)控制说明 本自控系统针对冷站主要监控功能如下: 监控内容控制方法 冷负荷需求计算根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空 调实际所需冷负荷量。 机组台数控制根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节 能目的。 独立空调区域负荷计算根据Q=C*M*(T1-T2) T1=分回水管温度,T2=分供水总管温度, M=分回水管回水流量 当负荷大于一台机组的15%,则第二台机组运行。 机组联锁控制启动:冷却塔蝶阀开启,冷却水蝶阀开启,开冷却水泵,冷冻 水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组, 关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷 却塔风机、蝶阀。 冷却水温度控制根据冷却水温度,自动控制冷却塔风机的启停台数,并且自

中央空调系统设计方案设计案例

1.空调负荷估算 a)空调冷负荷估算(1)冷负荷估算面军 A.空调冷负荷法估算冷指标。 2

B:按建筑面积冷指标进行估算 建筑面积冷指标 时,取上限;大于l0000平米,取下限值。 2、按上述指标确定的冷负荷,即是制冷机的容量,不必再加系数。 3、由于地区差异较大,上述指标以北京地区为准。南方地区可按上限采取。 热负荷估算 (l)按建筑面积热指标进行估算 注:总建筑面积、大外围结构热工性能好、窗户面积小,采用较小的指标;反之采用较大的指标。 (2)窗墙比公式法: q=(7a+1.7)W/F(tn-tw)W/m2; 说明:q—建筑物的供热指标,W/m22。

a —外窗面积与外墙面积(包括窗之比); W一外墙总面积(包括窗),m22 F一总建筑面积,m2 tn一室内供暖设计温度,℃ tw一室外供暖设计温度,℃ (3)冷热负荷说明 A.以上估算的冷热负荷指标,是按2000年10月1日以前执行的《民用建筑节能设计标准》进行估算的。 B.新的《民用建筑节能设计标准》,自2000年10月1实施执行,其冷热负荷指标,应参照有关的标准。 2.机组选型 机组选型步骤: A.估算或计算冷负荷 通过3.2.2节的估算法进行估算总冷负荷,或通过有关的负荷计算法进行计算。 B.估算或计算热负荷 通过3.2.2节的估算法进行估算总热负荷,或通过有关的负荷计算法进行计算。 C.初定机组型号 根据总冷负荷,初次选定机组型号及台数 D、确定机组型号 根据总热负荷,校核初定的机组型号及台数。并确定机组型号。 3.机组选型案例 例:建筑情况:北京市某办公楼建筑面积为11000 m22,空调面积为10000 m2

某大酒店暖通空调设计方案[优秀工程方案]

某大酒店暖通空调设计方案 工程概况: 原深圳湾大酒店现已更名为XX大酒店,位于深圳市华侨城深南大道旅游文化区域的中心位置,基地现状为不规则多边形,坐北向南,东西长约460米,南北最深约200米,现状为斜坡场地,酒店总用地面积为62717米2.整个建筑地下二层(半地下层、地下一层)塔楼高六层,在首层与二层间设夹一、夹二两个设备转换层,塔楼主体二至六层,主要以客房为主,包括标准客房、行政套房、总统套房、常住客房等;裙房(含夹一、夹二层)主要为酒店公共设施,设有餐饮、宴会、酒吧、会议、健身、婚礼中心等功能房间;利用地势高差设有半地下室停车库、酒店设备用房及部分酒店公共设施;地下一层为人防地下室,平时为酒窖.总建筑面积108867 米2,其中客房面积约40451 米2,客房数量约500间,酒店公共空间面积约37549 米2.改建后的酒店定位为白金五星级酒店,已于2006年底部分投入使用. 图1 酒店总平面图 XX大酒店设计之初,其管理公司——XX酒店管理公司已经介入,对本酒店的空调系统设计提出了很多具体的要求,如酒店室内设计参数、新风量要求、空调主机品牌,空调冷、热水管管制、房间换气次数、室内噪声要求等等 主要设计参数 深圳市夏季室外计算干球温度33.0℃,湿球温度27.9℃;冬季室外计算干球温度6.0℃,最冷月平均相对湿度70%.室内设计参数详见表1. 表1 室内设计参数表

空调冷热源系统设计 冷源系统 本工程集中空调面积62279米2,夏季空调计算冷负荷11403KW,设计选型时考虑酒店的运行规律, 按同时使用系数为0.8配置制冷主机,设计选用水冷离心式冷水机组四台,总装机容量9142KW,其中单台制冷量为2637KW的机组三台,单台制冷量为1231KW的机组一台,机组冷水进、出水温度为12℃~7℃,机组冷却水进、出水温度为32℃~37℃,冷媒为R134a.大、小主机的冷量调节范围均为30%~100%无级调节,当冷量需求低于单台大主机冷量的50%时,由小主机接力,总装机容量下的大小主机搭配可实现5%~100%的调节能力. 热源系统 本工程所有客人活动区的空调系统在冬季都将供热.空调供热面积56732米2,计算供热负荷2524KW.酒店洗衣房有蒸汽使用要求,本工程选用高效蒸汽锅炉,能有效满足洗衣房、厨房、生活热水、空调采暖的要求. 热回收系统 由于锅炉房、洗衣房、配电室等房间夏季散热量大,冷却通风所需风量大,且无法回收利用这部分热量,因此在施工配合过程中,为这些房间增设了带热回收装置的热泵机组.热泵机组进、出风温度为30℃/20~24 ℃,进、出水温度为20℃~55℃,制热效率可达4.0.经热回收后的冷风可作为房间冷却通风,产生的热水供应员工更衣室、员工厨房及洗衣房生活热水需求. 空调水系统设计 空调水系统设计为一次泵变流量四管制系统,根据使用功能及平面位置划分为四大主支路(图2),从分、集水缸接管分别为左翼裙房、左翼客房、主楼及右翼裙房、主楼及右翼客房服务,各主支路回水管均设有静态平衡阀.因左翼客房支路水管距主机房较近,其冷、热水管采用同程布置,增加同程管路以增加其阻力损失,与右翼平衡;其余主、支管路均为异程布置;客房管井立管底部设置压差平衡阀;平衡阀通过控制各支路之间地水力压差来平衡因主干管阻力引起地支路之间水力不平衡.本工程选用地平衡阀在全开地状态下其阻力只有0.3Kpa,从而起到比设置同程管还节能地效果.

空调计费系统设计方案

大厦智能化 空调计费系统 设 计 方 案 广州莱安智能化系统开发有限公司

一、简述 1.空调计费系统的作用 随着社会的不断发展,人类步入了高质量的生活水平。各现代化楼宇都安装了中央空调,为了节省及合理分配资源,进行空调用量计量成为必要。 2.空调计费系统的设计思路 根据甲方的要求,针对空调计费系统,及中央空调的运行特点,结合我司在BAS 系统方面设计施工等多年的工程经验,统的系统方案设计思路如下: 为大厦建设先进、成熟、实用、性能稳定可靠的空调计费系统。 系统设计应在技术上达到先进性和成熟性的统一;性能上应该具有很高的安全、可靠性;并具有很高的性能价格比。 设计选型方面应同时遵循: 集成化原则:应选择高效集成的设备,将空调计费系统跟楼宇自动化控制系统结合在一起,采用lonworks现场总线技术,将空调计费和楼宇自控系统建立在同一个网络上,便于控制、管理和维护; 模块化结构设计原则:在硬件上都采用商业化、通用化、模块内化结构的设备,使系统具有很强的扩充能力; 高性能价格比:本系统在设备选型上主要设备采用知名品牌以及先进的高质量的监控产品,保持着非常高的先进性和稳定性。

完善的服务体系:遵循实事求是、先进、实用、可靠、节约、后期服务体系完善的原则。

二、用户需求分析 项目实施应按国家现行的有关标准和规定进行,并应结合本大厦的实际情况由承包人根据现场勘察的实际结果和甲方的具体要求进行系统的合理配置。 所用设备、器材应符合现行的国家和行业的有关技术标准;国产设备(包括合资厂生产的)应为经国家指定的检测部门检验为合格的产品;进口设备、器材至少应有原产地证明及符合原产地相关的国标标准的证明,或者商检合格证书, 系统中各项配套设备的性能指标及技术要求应协调一致。 系统的安装应符合现行的国家有关的安装标准。 系统前端设备的工作条件应保证在项目建设单位常规环境下能够正常使用。 系统应具有良好的抗外界干扰能力。 系统应具备良好的自身安全性的保密性。 系统的组成应考虑进一步发展的可能性,应有利于系统规模的扩充,以及新技术的引用。 系统应配置简洁,安装方便,操作简单,显示明了,易于维护,使用可靠。三、设计规范 本系统设计严格遵守中华人民共和国颁布的安全防范国家标准和业主的招标文件及设计图纸的要求: GD/T50314-2000J《中华人民共和国国家标准,智能建筑设计标准》 JGJ/T16-92 建设部《民用建筑电气设计规范》

空调自控技术方案

空调自控系统技术方案 第1章. 总体设计说明 建筑概况 本项目(XXXXX有限公司整体迁扩建项目)位于浙江省杭州市,共有综合车间1及综合仓库、综合车间2、质检研发楼、前处理提取及仓库4个区域。 工程设计资料 暖通专业图纸 采用的主要规范及标准 (1)《智能建筑设计标准》(GB/T50314-2006) (2)《智能建筑工程质量验收规范》(GB50339-2003) (3)《民用建筑电气设计规范》(JGJ/T16-2008) (4)《公共建筑节能设计标准》(GB50189-2005) (5)《建筑设计防火规范》(GB50016-2006) (6)《低压配电装置及线路设计规范》(GBJ54-83) (7)《电气工程施工质量验收规范》(GB50303-2002) (8)《采暖、通风与空气调节设计规范》(GBJ19-87) (9)《分散型控制系统工程设计规定》(HG/T20573-95) (10)《低压配电装置及线路设计规范》(GBJ54-83) (11)《低压配电设计规范》(GB50054-95)

第2章. 设计范围 空调自控系统 冷热源系统、空调机组、新风机组、配套排风机/除尘机、室外温湿度、室内温湿度、室内静压、定风量阀、变风量阀 第3章. 系统组成 系统主要技术指标 1.本工程空调自控系统设计成一套完整的分布式集散控制系统,通过对厂房的空调机组、 新风机组、配套排风机/除尘机组等主要机电设备的集中管理和分散控制,使之达到最佳运行状态,同时收集、记录、保存及管理各系统中重要信息及资料,实现综合自动监测、通讯、控制与管理,达到科学管理、节能管理及综合报警处理的目的,提高建筑物的现代化管理水平。 2.系统采用基于B/S(浏览器/服务器)的网络体系结构,系统网络协议符合国际标准 ISO16484-5(BACnet)。系统为两层网络结构,分别为管理层和控制层,两层网络均具有足够的开放性且应易于扩展,为将来运营和维护中可能发生的变化提供便利。 3.系统由服务器/工作站、网络控制引擎、现场控制器(DDC)等组成。服务器/工作站与网 络控制引擎通过管理层网络采用BACnet/IP协议通讯,网络控制引擎作为管理层网络核心设备管理控制层网络并向服务器/工作站发布信息。控制层网络现场控制器通过RS-485现场总线连接到网络控制引擎上,采用BACnet MS/TP 协议与网络控制引擎及其他现场控制器保持紧密联系。传感器及执行器等连接至各现场控制器。 4.系统在控制中心配置服务器及工作站。操作系统支持Windows XP,系统配置打印机用 于系统的报警及统计资料的打印。系统仅需在主控工作站上安装系统管理软件,无需在分控工作站上购买和安装特定的软件。 5.为满足管理要求,整个系统还可以让用户设任意多个工作站通过Web以共享方式访问, 系统应支持至少5用户同时访问系统。 6.为保持系统稳定安全,系统数据存储不仅仅依赖于工作站电脑,工作站电脑因为故障

某大酒店暖通空调设计方案

某大酒店暖通空调设计方案 工程概况: 原深圳湾大酒店现已更名为XX大酒店,位于深圳市华侨城深南大道旅游文化区域的中心位置,基地现状为不规则多边形,坐北向南,东西长约460m,南北最深约200m,现状为斜坡场地,酒店总用地面积为62717m2。整个建筑地下二层(半地下层、地下一层)塔楼高六层,在首层与二层间设夹一、夹二两个设备转换层,塔楼主体二至六层,主要以客房为主,包括标准客房、行政套房、总统套房、常住客房等;裙房(含夹一、夹二层)主要为酒店公共设施,设有餐饮、宴会、酒吧、会议、健身、婚礼中心等功能房间;利用地势高差设有半地下室停车库、酒店设备用房及部分酒店公共设施;地下一层为人防地下室,平时为酒窖。总建筑面积108867 m2,其中客房面积约40451 m2,客房数量约500间,酒店公共空间面积约37549 m2。改建后的酒店定位为白金五星级酒店,已于2006年底部分投入使用。 图1 酒店总平面图 XX大酒店设计之初,其管理公司——XX酒店管理公司已经介入,对本酒店的空调系统设计提出了很多具体的要求,如酒店室内设计参数、新风量要求、空调主机品牌,空调冷、热水管管制、房间换气次数、室内噪声要求等等 主要设计参数 深圳市夏季室外计算干球温度33.0℃,湿球温度27.9℃;冬季室外计算干球温度6.0℃,最冷月平均相对湿度70%。室内设计参数详见表1。 表1 室内设计参数表

空调冷热源系统设计 冷源系统 本工程集中空调面积62279m2,夏季空调计算冷负荷11403KW,设计选型时考虑酒店的运行规律, 按同时使用系数为0.8配置制冷主机,设计选用水冷离心式冷水机组四台,总装机容量9142KW,其中单台制冷量为2637KW的机组三台,单台制冷量为1231KW的机组一台,机组冷水进、出水温度为12℃~7℃,机组冷却水进、出水温度为32℃~37℃,冷媒为R134a。大、小主机的冷量调节范围均为30%~100%无级调节,当冷量需求低于单台大主机冷量的50%时,由小主机接力,总装机容量下的大小主机搭配可实现5%~100%的调节能力。 热源系统 本工程所有客人活动区的空调系统在冬季都将供热。空调供热面积56732m2,计算供热负荷2524KW。酒店洗衣房有蒸汽使用要求,本工程选用高效蒸汽锅炉,能有效满足洗衣房、厨房、生活热水、空调采暖的要求。 热回收系统 由于锅炉房、洗衣房、配电室等房间夏季散热量大,冷却通风所需风量大,且无法回收利用这部分热量,因此在施工配合过程中,为这些房间增设了带热回收装置的热泵机组。热泵机组进、出风温度为30℃/20~24 ℃,进、出水温度为20℃~55℃,制热效率可达4.0。经热回收后的冷风可作为房间冷却通风,产生的热水供应员工更衣室、员工厨房及洗衣房生活热水需求。 空调水系统设计 空调水系统设计为一次泵变流量四管制系统,根据使用功能及平面位置划分为四大主支路(图2),从分、集水缸接管分别为左翼裙房、左翼客房、主楼及右翼裙房、主楼及右翼客房服务,各主支路回水管均设有静态平衡阀。因左翼客房支路水管距主机房较近,其冷、热水管采用同程布置,增加同程管路以增加其阻力损失,与右翼平衡;其余主、支管路均为异程布置;客房管井立管底部设置压差平衡阀;平衡阀通过控制各支路之间地水力压差来平衡因主干管阻力引起地支路之间水力不平衡。本工程选用地平衡阀在全开地状态下其阻力只有0.3Kpa,从而起到比设置同程管还节能地效果。

空调自控系统方案

空调自控系统方案 1概述 (3) 1.1建筑概况.......................................................................................... 错误!未定义书签。 1.2系统概述 (3) 1.2.1节电 (3) 1.2.2节省人力 (3) 1.2.3延长设备的使用寿命 (4) 1.2.4保证建筑及人身安全 (4) 2设计依据 (4) 2.1遵循标准 (4) 3系统设计及设备选型原则 (5) 3.1先进性与适用性 (6) 3.2成熟性 (6) 3.3开放性 (6) 3.4按需集成 (6) 3.5标准化 (6) 3.6可扩展性 (6) 3.7安全性与可靠性 (7) 3.8经济性 (7) 3.9追求最优化的系统设备配置 (7) 3.10保留足够的扩展容量 (7) 4系统监控范围及监控功能说明 (8) 4.1空调机组监控系统.......................................................................... 错误!未定义书签。 4.2排风机监控系统.............................................................................. 错误!未定义书签。 4.3给排水监控系统 (9) 4.4其他系统监控系统 (10) 5HONEYWELL系统解决方案 (10) 5.1概述 (10) 5.2HONEYWELL自控简介 (11)

5.3系统构成 (12) 5.4系统网络结构 (12) 5.5EBI楼宇中央管理系统 (14) 5.5.1概述 (14) 5.5.2EBI系统的特点 (15) 5.5.3操作界面 (16) 5.5.4数据报表 (16) 5.5.5控制算法 (17) 5.5.6实时数据库 (18) 5.5.7报警管理 (18) 5.5.8趋势图 (19) 5.5.9设备界面 (19) 5.5.10EBI系统结构 (21) 5.6E XCEL5000控制系统 (22) 5.6.1Excel5000是一套集散控制系统(TDS) (22) 5.6.2EXCEL 5000是一套开放的计算机网络系统 (23) 5.6.3EXCEL 5000系统保持向上兼容性 (23) 5.6.4Excel5000现场控制器(DDC) (23) 5.6.5带有LONBUS接口的 Excel500控制器 (24) 5.6.6Excel 100控制器 ...................................................................................... 错误!未定义书签。 5.6.7Excel 50 控制器 (26) 5.7末端装置(传感器、执行器等) (27) 5.7.1风门执行器 (27) 5.7.2座式调节型水阀门和执行装置 (28) 5.7.3低限温度装置(防冻开关) (28) 5.7.4继电器 (28) 5.7.5温度传感器 (28) 5.7.6压力传感器 (29) 5.7.7湿度传感器 (29)

北京某五星级酒店塔楼空调系统设计【开题报告】

开题报告 建筑环境与设备工程 北京某五星级酒店塔楼空调系统设计 一、综述本课题国内外研究动态,说明选题的依据和意义 随着我国国民经济水平的不断提高,建筑业也在持续稳定地向前发展。和前几年建筑业的发展相比,目前的发展商将眼光放的更远,他们不再片面的追求容积率及如何将开发成本降得越低越好,而是更多的考虑以人为本,开发真正舒适度高、建筑质量高的居住及商用建筑。 随着中国加入世贸及承办2008年奥运会,中国向全世界全面开放,为了适应国际贸易、旅游、及城市建设迅速发展的需要,高层建筑的发展不会停留在过去的发展水平,特别是对建筑物内的空气品质及舒适程度的要求也会越来越高。 空调系统在建筑物内的作用将不再停留在只对建筑物内的温度进行调节,而是作为控制室内环境的一个重要组成部分。因为室内空气品质已经成为当今全世界最为关注的话题。同时,当人们在享受着空调技术给生产和生活带来方便和舒适的同时,也在思考如何减少空调系统所需消耗的能量。 商业建筑是一个流动人口众多的公共场所,室内空气的温湿度、洁净度和新鲜空气量等,对顾客和商场职工的身体健康影响很大。我国卫生防疫部门对商业建筑提出了卫生要求,对较大的重点商场还进行过监测,对一些已建的大中商场要求进行改造,增设通风设施或加建空气调节装置。新建的大中商业建筑纷纷安装了空调系统,以提高商场的档次,吸引更多的顾客。各大城市中频频展开的“商战”更加速了空调系统在商业建筑中的普及。 商业建筑不断的增多,以及人们对室内空气的温湿度、洁净度和空气品质问题越来越重视。由于能源的紧缺,节能问题越来越引起人们的重视。因此迫切需要为商业建筑物安装配置节能、健康、舒适的中央空调系统来满足人们对高生活水平的追求。 中央空调在世界上已有百年的发展历史,在中国也有20多年的应用时间,然而真正引起国内企业关注还是近几年。目前国内市场中央空调领域竞争已经进入白热化阶段,随着价格战连绵不断,在家用空调领域几乎已经无利可图的企业纷纷开始在中央空调领域寻找新的发展空间和利润增长点。 2003年中央空调市场容量将达到85亿元,2005年达到200亿元以上。市场空间迅速巨大,而利润至少是40%以上。这对于众多在市场上艰难逐利的企业,尤其是仍在价格战中挣扎的家电企业来说,无疑是极其诱人的。

空调系统设计方案

XXXX有限公司 空调系统设计方案 一、工程概况 XXXXX有限公司是一座现代化的生产制造工厂,根据工艺的要求,对厂房的温度、湿度、新风量都有严格的要求。为了满足室内空气质量及节能要求,我们为贵公司提供Siemens公司可编程逻辑控制PLC S7-200系统。该控制系统是将3台冷水机组、8个水泵系统、4个冷却塔系统,23台恒温恒湿空调机组集成在一个RS485 OPC协议网络上并与上位机HMI-Microsoft Visual Studio 2008 控制平台进行网络组态操作。 方案HMI监控范围及系统目标包括以下几部分: ·空调冷水机组 ·冷却水系统 ·冷冻水系统 ·组合式恒温恒湿空调机组 ·组合式新风机组 根据甲方的要求和相关图纸,以最高性价比为原则通过优化的设备控制方案和智能管理方式,从而给贵公司提供精确温湿度控制、高效节能可进行系统管理的生产环境。 二、系统设计规范与依据 -建筑智能化系统工程设计管理暂行规定(建设部1997-290) -建筑电气设计规范(JCJ/T16-92) -智能建筑设计标准(DBJ-08-47-95) -采暖通风与空气调节设计规范(GBJ19-87) -建筑设计防火规范(GB50045-95) -电气装置工程施工及验收规范(GBJ232-82) -招标文件要求的相关条例及规范 -业主提供的招标文件和设计图纸

三、系统方案描述 我们通过对甲方提出需求的了解,结合楼宇控制系统的设计规范,对集控冷水 机组,水系统,冷却塔空调设备的自动化系统提出以下方案。 自控系统组成: 机组系统控制 监控系统控制 1.机组系统控制 冷水机组系统采用3台1000RT离心式冷水机组。自控系统采用PLC控制器直接采集冷热源系统中的机组的各种参数。同时程序控制机组的启停,完成各种联动控制,备用设备的转换。 本方案的冷热源系统用Siemens系列控制器配合点扩展模块来解决。 PLC是现场管理和控制系统的组成部份,是一个高性能的控制器。PLC在不依靠较高层处理机的情形下,可以独立工作和联网以完成复杂的控制、监视和能源管理功能,而不需依赖更高层的处理器。PLC可以连接楼层级网络(FLN)设备并提供中央监控功能。 PLC可带扩展模块的和不带扩展模块的。本方案采用可带扩展模块的PLC,这对业主以后的维护和系统扩展时极为有利的。 特点 ●可与其它层级的处理机互相搭配,以符合应用的需求 ●通过扩展模拟量/数字量模块设备,可增加监控点数 ●结合软件与硬设备配合控制应用 ●以先进的PID 算法,精准的将HVAC 控制在最小的变动范围内 ●具有管理多种报警、历史及趋势记录的收集、操作控制和监控功能 ●可选配手动/停止/自动(HOA) 切换开关 本方案可实现空调冷热源的如下监控内容: 机组台数控制 根据供水管的流量及集水器、分水器的温差,计算负荷,然后通过冷水机组提供的通讯接口对风冷热泵机组的进行联网监控。通过网关的模式可实现数据的双向传输,并监控机组的运行状态、系统负荷、房间温湿度、系统启停指令信号等。

酒店中央空调系统选型方案

.. ****集团项目建设部中央空调系统方案 2016 年10 月

****酒店中央空调系统标准 一、VRV 中央空调系统 VRV(Variable Refrigerant Volume)空调系统——变制冷剂流量多联式空调系统(简称多联机),通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,适时满足室内冷、热负荷要求的直接蒸发式制冷系统。 VRV 系统由室外机、室内机和冷媒配管三部分组成。一台室外机通过冷媒配管连接到多台室内机,根据室内机电脑板反馈的信号,控制其向内机输送的制冷剂流量和状态,从而实现不同空间的冷热输出要求。 VRV 系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。其控制系统由厂家进行集成,因此无需进行后期开发,多数厂家更在其产品基础上推出了多种功能齐全的智能控制系统,相对传统中央空调,其集控的设计、施工、使用更加便利,功能也更人性化。 VRV 虽然名为“变冷媒流量”,但其运行原理不仅止于对冷媒流量的控制。现今的VRV 系统对输出容量的调节主要依赖于两方面:一是改变压缩机工作状态,从而调节制冷剂的温度和压力,以此为依据又可分为变频系统和数码涡旋系统二种;二是通过室内、外机处的电子膨胀阀调节,改变送入末端(室内机)的冷媒流量和状态,从而实现不同的末端输出。相对于传统冷水机组,该系统自成体系,基本无需后期的复杂设计,运行管理也极为便利,可算是空调中的“傻瓜机”。基于以上原理,该系统在应对大楼的加班运行时,灵活节能的特点尤其突出,因此在办公建筑中应用相当广泛。

能源计量管理设计方案(参考)

能源计量管理系统(空调、水、电) 技 术 方 案 艾科电子工程有限公司 二○○九年三月 目录

1. 前言 (3) 1.1. 品牌介绍 (3) 1.2. 选型特点 (3) 1.3. 部分项目清单 (4) 2. 系统概述 (8) 2.1. 总论 (8) 2.2. 设计标准 (8) 2.3. 系统结构 (8) 3. 系统设计说明 (10) 3.1. 空调计量设计说明 (10) 3.1.1. 能量表型计量 (10) 3.1.2. 当量时间型计费 (11) 3.2. 电量计量子系统设计说明 (11) 3.3. 冷热水计量子系统设计说明 (11) 4. 系统设计方案 (12) 4.1. 系统总体设计说明 (12) 4.2. 总体设计原则及目标 (12) 4.3. 设计依据 (12) 4.4. 系统设计方案 (12) 4.5. 设备清单及配置说明 (14) 4.6. 系统功能 (15) 5. 系统选型设备介绍 (17) 5.1. 设备选型原则 (17) 5.2. 选型设备介绍 (18) 5.2.1. J02计费仪 (18) 5.2.2. 通讯管理器 (18) 5.2.3. 电磁能量表 (19) 5.2.4. 盘管时间采样器(C02B) (22) 5.2.5. 间采样器(C02F) (22) 5.2.6. 网络电表 (25) 5.2.7. 网络水表 (25)

1.前言 1.1.品牌介绍 本方案设计采用艾科能源计量管理系统,该品牌始于1998年,是国内最早从事能源计量管理系统研制的专业公司,率先整体通过了国家有关计量认证和IS09001国际质量认证体系,所有的计量产品均获得计量许可证,并拥有多项国家专利;该品牌在全国近1000个项目的成功应用,系统成熟、稳定、可靠,在该行业的市场占有率超过50%。 1.2.选型特点 AKE作为能源计量管理系统的国内第一品牌,AKE中央空调计费系统在全国400多个楼盘中得到了成功应用,是目前国内最成熟的能源计量管理系统。 该系统具有如下的特点: 先进性:该系统采用了微电子技术、计算机管理技术、模糊数学理论; 合理性:该系统在中央空调计量采用的末端当量时间计量,简单合理地解决了大批量的零星用户的计费问题,使其计费尽量合理; 安全性:配合空调计量末端控制型采样器,艾科中央空调计费系统软件可设置自动报警能,对非正常用户进行监控和报警; 易操作、易维护性:空调计量末端计费系统只在电路上进行改进,对空调水管管路不作任何改动,无需改动原中央空调系统结构; 稳定性:对于水电计量坚决采用网络一体化表具,彻底解决了数据传输的稳定和精确 系统以中央空调计量为核心,并入水电自动计量的管理,以稳定性、可靠性为原则,品牌经历了10年的考验,现用户已遍布全国。

空调设计方案

设计说明 一、建筑概况 1、建筑地点:河南省洛阳市 2、建筑用途:4S店一层前半部为汽车展厅,一层后半部以及相应的二 层为办公区 3、建筑功能:包括休息、购车、办公等 二、气象参数 冬季空气调节室外计算温度:-5.1℃;冬季空气调节室外计算相对湿度:59%;夏季空气调节室外计算干球温度:35.4℃;夏季空气调节室外计算失球温度:26.9℃;夏季空气调节室外计算日平均温度:30.5℃;夏季室外平均风速:1.6m/s;冬季日照百分率:49%;最大冻土深度:20cm;夏季最多风向:WNW;极端最高气温:41.7℃;极端最低气温:—15.0℃。 三、室内气象参数 四、土建资料 4S店主体结构全部使用工字钢或者槽钢支撑,建筑外边部分用金

属薄板包裹或者制作玻璃幕墙。 五、负荷计算 按照《民用建筑供暖通风与空气调节设计规范》计算并查得洛阳市民用建筑的平均冷指标为120w/㎡,热指标为70w/㎡,由于本工程 33家4S店全部采用钢结构建筑,并且外墙不做保温保护,所以设计 冷热指标增加10%-20%. 六、空调方案和水系统方案确定 空调系统按照空气处理设备的设置可分为集中式系统、半集中式系统、分散式系统。本工程采用分散式系统,即将整体组装的空调器直接放在空调房间内或放在空调房间附近,每个机组只供一个或几个小房间的或者一个大房间内放几个机组的系统。这样利于各个区域的控制,在房间不使用的情况下关闭空调开关,节约能耗。 空调方案按照处理空调负荷的输送介质可以分为全空气系统、全水系统、空气-水系统、制冷剂系统。全空气系统是房间内的负荷全部由空气承担的空调系统,全水系统是房间内的负荷全部由水承担的空调系统,空气-水系统是房间内的负荷由水和空气共同承担的空调系统,制冷剂系统是将制冷剂直接放在房间内消除房间内的余热余湿。本工程采用全水系统,由于水的比热比空气大的多,所以在相同条件下只需要较小的水量,从而使管道所占的空间减小许多。但是对于普通建筑来说仅靠水来消除余热余湿,并不能解决房间的通风换气问题。因而通常不单独采用这种方式。本工程由于建筑的特殊性,4S店汽车展厅以及办公室

20层商务酒店空调设计方案

20层商务酒店空调设计方案

商务酒店 空调方案设计 提 案 书 公司名称: 公司 联 系 人: 电 话: 传 真: E-mail:

商务酒店空调方案设计 (一)规范及设计依据 1、《采暖通风及空气调节设计规范》(GB50019-2003) 2、《居住建筑节能设计标准》(DBJ01-602-2004) 3、《高层民用建筑设计防火规范》(GB50045-96)(2001年版) 4、中华人民共和国行业标准《民用建筑热工设计规范》(GB50176-93) 5、《通风与空调工程施工质量验收规范》(GB50243-2002) (二)项目概况 商务酒店共20层,其中地下2层。本次空调设计范围为酒店大堂,会议室,餐厅、银行及客房,设计范围包含酒店部分配套中央空调及生活热水系统,即夏季制冷及制热水,冬季采暖及制热水。为了便于经营管理及节能运行的需求,根据甲方要求及从空调工程技术角度出发,建议按酒店使用特点及各季节对空调的不同需求设计空调系统,以便于控制及后期管理,且酒店客房部分采用全热回收系统,有利于生活热水的供应及全年运行成本的最低化。新风采取直接引新风的方式,向室内补入。 我们有幸接触到贵司,并对综合楼功能与甲方做充分沟通,明确各功能区域面积及要求,提出我们的中央空调及热水工程解决方案,使贵司满足空调及热水需求的同时达到节能运行及减少维护成本。 (三)设计参数 1、室外计算参数(南宁地区): 夏季空调室外计算干球温度 34.2o C; 夏季空调室外计算湿球温度 27.5o C; 夏季通风室外计算干球温度 32o C; 夏季室外平均风速 1.6m/s; 大气压力(夏季) 996hPa; 冬季室外空调计算干球温度 5o C; 冬季通风室外计算干球温度 13o C; 冬季室外平均风速 1.8m/s; 大气压力(冬季) 1011.4hPa;

计费系统方案 设计

计费系统方案设计 目录 一、项目描述 (3) 二、设计方案 (3) 整体思路:时间+能量型计费 (3) 1.方案优势分析 (3) 2.点数设计 (4) 3.系统配置方案 (4) 4.系统结构图(解) (5) 三、系统优势 (5) 四、系统原理 (6) 1.本地管理软件 (7) 2.数据采集器ADPTOR-12 (9) 3.时间型温控器HL8202AMS-12 (11) 4.能量表MU系列 (14) 五、收费原理 (21) 六、安装概要 (22) 七、售后服务 (22) 1.技术支持与培训 (22) 2. 售后服务承诺 (23)

一、项目描述 工程总建筑面积约30000m2。建筑功能地下一层,地上三层。地下一层为办公用房、设备用房和汽车库,地上部分均为办公用房。建筑高度(主楼屋面至室外地面)为17.25米。本工程预备进行美国绿色建筑协会建立并推行的《绿色建筑评估体系》论证(LEED论证),根据建筑功能需要、业主意见及LEED预论证要求,全楼设置集中空调系统,采用风冷热泵冷热水机组,每个户型单元设置一台,机组位于屋顶或二层预留的设备平台上。 根据现有资料和甲方要求,进行了认真细致的分析设计,我们希望通过这次设计不但能满足业主的要求,而且真正起到节能、便于管理,降低成本的作用。 所以,我们建议该项目的中央空调计费采用时间+能量型计量。通过检测每台风机盘管的用量来合理分摊中央空调系统的能耗,同时又可以对风机盘管进行控制。另对该中央空调系统总管进行能量型计量,以合理分摊公共区域的费用。实现按需使用、按量收费;多用多计,少用少计。 二、设计方案 整体思路:时间+能量型计费 方案阐述:由于办公区每个房间的末端设备均为风机盘管制冷/热,所以每一台风机盘管配置一只时间型温控器,对风机盘管运行的高、中、低速状态进行时间累计。将每户的风机盘管的个数进行叠加,来实现该用户的总计量;同时实现对末端设备的监控功能及节能管理,方便职能部门对每一办公间进行统一管理。办公区新风机组为公共设备,能量消耗将按照风机盘管的工作时间当量比分摊到个用户能量消耗中。 对系统总管进行能量型计量,以合理分摊中央空调能量的消耗。 1.方案优势分析 ⑴.经济实惠本项目大部分采用时间型温控器,只有大区域才采用能量表。相比较 单独能量表计量的方式,更经济实惠,更具灵活性,并充分满足用户的使用和物业收费管理。 ⑵.安装方便时间型温控器除标准的温控器安装布线外,增加一跟通讯线,将数据 通过数据采集器远传到上位机。 ⑶.维护方便时间型温控器安装在室内墙面,数据查询一目了然,一旦发生故障无

酒店空调方案可行性分析

酒店空调方案可行性分析 中图分类号:tu831.3+5 献标识码:a 文章编号:2095-2104(2012)01-0020-02 摘要:本文分析酒店空调不同方案的可行性,分别从酒店空调的冷热源形式、空调末端形式、空调的内外分区及四管制的必要性等方面进行了研究, 对几种方案进行了比较, 总结出了各种方案的 特点。希望能对酒店空调的优化设计带来一定的帮助。 关键词:酒店空调;冷热源;空调末端;空调内外分区;四管制abstract: in this paper, the feasibility of different hotel air conditioning scheme, respectively from the hotel air conditioning cold and heat source, air conditioning, air conditioning form at the end of the inside and outside the partition and the necessity of four control are studied, comparing of several schemes, summarizes the characteristics of the various options. hope i can bring some help for optimization design of the hotel air conditioning. key words: the hotel air conditioning; cold and heat source; air terminal; air conditioning inside and outside the partition; four control 酒店空调具有能耗大,运行时间长的特点,本文对酒店空调几种方案的可行性进行了分析,并对酒店空调的冷热源形式、空调末端形式、空调的内外分区及四管制的必要性等方面进行了研究,希望

洁净间空调自控系统的解决方案

洁净间空调自控系统的 解决方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

温州屹诚洁净间空调自控系统的解决方案 1、洁净间空调系统相关规范 随着经济的发展和生活水平的提高,目前在电子、制药、食品、生物工程、医疗等领域对洁净间的要求越来越高,洁净技术也随之发展起来。它综合了工艺、建筑、装饰、给排水、空气净化、暖通空调等各方面的技术。按照中华人民共和国标准GBJ73-84《洁净厂房设计规范》,其与空调系统相关的主要技术指标为: A、空气洁净度等级每M3空气中≥微米尘粒数每M3空气中≥微米尘粒数100级≤35×1001000级≤35×1000≤级≤35×10000≤00级≤35×100000≤25000 B、温、湿度(1)满足生产要求;(2)生产工艺无温、湿度要求时,洁净室温度为20-26℃,湿度小于70%;(3)人员净化用室和生活用室温度为16-28℃。 C、洁净室正压洁净室必须维持一定的正压。不同等级的洁净室以及洁净区与非洁净区之间的静压差,应不小于,洁净区与室外的静压差,应不于.。此外,还有对于风量,风速等的技术要求。总之,洁净间的各项指标都非常严格,因此,对其进行精确的控制就成为必须。 2、洁净间空调自控的意义 在现代商业及工业楼宇中,空调系统设备较多,自动化管理是使其安全工作并良好运行的重要保证。同时,空调的能源消耗一般占总能源消耗的40%以上,因此空调节能是节能的重要手段。对洁净间而言,更是如此。采用空调自控产品,会产生下列一系列好处: 首先,由于空调系统实现自动化监控,可以使系统能够更安全的运行,并最大限度的提高舒适程度。对洁净间来说,更成为保证生产所必须的条件。此外,由于实现了自动化监控,可以在满足系统安全运行及保证系统的各种技术指标的同时,最大限度的实现节能控制,符合日益突出的节能和环保需要。有关资料表明,采用空调自控系统后,可节约空调系统设备年度运行费用的10%。更乐观的估计认为可达15%-30%。而空调自控产品的投资占整个楼宇或厂房总投资的不到%,收回投资时间短。同时,由于实现设备的自动控制和管理,可缩减人员维护,节约人员开支,提高综合管理水平,减少突发事故的发生和设备损坏,从而带来潜在效益。 3、洁净间空调控制系统功能简介 Excel20中文版控制器是美国HONEYWELL公司先进Excel5000控制器家族中的一员。特别适合应用于洁净间如手术室,洁净厂房的空调控制,依照《洁净室施工验收规范》,《洁净厂房设计规范应》,《采通风与空气调节设计规范》等国家标准,并综合考虑上述各系统的内在联系,我们以Excel20为核心构建了较完整的洁净间空调自控系统,它具备恒温恒湿比例积分控制、室内远程启停空调、室内温度设定、关键故障(火灾)报警及联锁、非关键故障(滤网堵塞/送风过热)报警及联锁、夏季防止送风凝露/冬季防冻、开机顺序和连锁、自定义启停时间程序等特点。 二、洁净间空调自控系统构成 1、模拟仪表自动控制模拟控制仪表由于其理论成熟、结构简单、投资少、易于调整等因素,过去在空调、冷热源及给排水等系统中得到广泛应用。一般模拟控制器为电气式或电子式,只有硬件部分,无需软件支持。因此,在调整、投

石家庄市某宾馆空调系统设计报告书

石家庄市某宾馆空调系 统设计 院校:机械学院 姓名: 学号:20090769 日期:2012/9/25

目录 石家庄市某宾馆空调系统设计.............................................................................................. - 1 -目录........................................................................................................................... - 2 -空气调节课程设计任务书........................................................................................................... - 3 - 一、工程概况.......................................................................................................................... - 4 - 1.建筑概况................................................................................................................ - 4 - 2. 设计参数..................................................................................................................... - 5 - 3. 设定人均新风量......................................................................................................... - 5 - 二、冷负荷的计算................................................................................................................ - 5 - 三、确定空调方案.............................................................................................................. - 10 - 四、选择空调设备.............................................................................................................. - 10 - 五、水利计算...................................................................................................................... - 11 - 六、系统优缺点.................................................................................................................. - 11 - 七、参考文献...................................................................................................................... - 12 -

相关文档
最新文档