电磁场第四章补充习题

电磁场第四章补充习题
电磁场第四章补充习题

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。 a 题4.1图

上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=00 22121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞ -=+∑ 题 4.2图

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场与电磁波(第4版)习题第4章

第4章 时变电磁场 部分习题解答 4.1 证明:在无源的真空中,以下矢量函数满足波动方程22 22 10c t ??-=?E E ,其中200 1c με=,0E 为常数。 (1)0cos()x E t z c ω ω=-E e ;(2)0sin()cos()x E z t c ω ω=E e ; (3)0cos()y E t z c ω ω=+ E e 解 (1)22 2 002cos()cos()x x E t z E t z c z c ω ω ωω??=?-=-=?E e e 20()cos()x E t z c c ωω ω--e 222 0022cos()cos()x x E t z E t z t t c c ωωωωω??=-=--??E e e 故 22 220022211()cos()[cos()]0x x E t z E t z c t c c c c ωωω ωωω??-=-----=?E E e e 即矢量函数0cos()x E t z c ωω=-E e 满足波动方程22 22 10c t ??-=?E E 。 (2)222 002[sin()cos()][sin()cos()]x x E z t E z t c z c ωωωω??=?==?E e e 20()sin()cos()x E z t c c ωω ω-e 222 0022[sin()cos()][sin()cos()]x x E z t E z t t t c c ωωωωω??==-??E e e 故 22 220022211()sin()cos()[sin()cos()]0x x E z t E z t c t c c c c ωωω ωωω??-=---=?E E e e 即矢量函数0sin()cos()x E z t c ωω=E e 满足波动方程22 22 10c t ??-=?E E 。 (3)222 002cos()cos()y y E t z E t z c z c ωωωω??=?+=+=?E e e 20()cos()y E t z c c ωω ω-+e 222 0022cos()cos()y x E t z E t z t t c c ωωωωω??=+=-+??E e e 故 22 220022211()cos()[cos()]0y y E t z E t z c t c c c c ωωω ωωω??-=-+--+=?E E e e

电磁场第四章习题测验解答

第四章习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。 解 根据题意,电位满足的边界条件为 ① ② ③ 根据条件①和②,电位的通解应取为 由条件③,有 两边同乘以,并从0到对积分,得到 故得到槽内的电位分布 4.2 两平行无限大导体平面,距离为,其间有一极薄的导体片由到 。上板和薄片保持电位 ,下板保持零电位,求板间电位的解。设在薄片平面上,从到,电位线性变化,。 解 应用叠 加原理,设板间的电位为 0U (,)x y ?(0,)(,)0y a y ??==(,0)0x ?=0(,)x b U ?=(,)x y ?1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑sin( )n x a πa x 002sin()d sinh()a n U n x A x a n b a a ππ==?0 2(1cos )sinh() U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =???=? ,0 1,3,5, 41(,)sinh()sin()sinh()n U n y n x x y n n b a a a ππ?π π== ∑ b d y =b y =)(∞<<-∞x 0U 0=y d y =0(0,)y U y d ?=(,)x y ?= 12(,)(,)x y x y ??+ 题4.1图 y o y bo y d y 题 4.2图

电磁场习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。 (2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。 解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。对此圆柱体的外表面应用高斯通量定理,得 l S D s τ=?? d 考虑到此问题中的电通量均为r e 即半径方向,所以电通量对圆柱体前后 两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是 l rD l τπ=2 即 r e r D πτ2= , r e r E 02πετ= 由此可得 a b r e e r r E U b a r r b a ln 2d 2d 00 ? ?επτ=?επτ=?= 1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的

内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。内导体的半径为 a ,其值可以自由选定但有一最佳值。因为a 太大,内外导体的间隙就变得很 小,以至在给定的电压下,最大的E 会超过介质的击穿场强。另一方面,由于 E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。试问a 为何值时,该电缆能承受最大电压?并求此最大电压。 (击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。 解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为 r E πετ2= , a E πετ 2max = 而内外导体之间的电压为 a b r r r E U b a b a ln 2d 2d πετπετ? ?===

电磁场第四章习题

4.1两块无限大接地平行板导体相距为d, 其间有一与导体板平行的无限大电荷 片,其电荷面密度为S,如图所示。试通过拉普拉斯方程求两导体之间导体分 布。 d a S 1 2 0O 4.2设很长的同轴圆柱结构的内、外导体之间填充以电子云,其电荷体密度 A b) ,其中a和 b 分别为内、外导体的半径, A 为常数。设内导体 (a r r 维持在电位 V0,而外导体接地用解泊松方程的方法求区域 a r b 内的电位分布。 4.3通过解电位的泊松方程和拉普拉斯方程,确定球形电子云内部和外部的电位 和电场。已知电子云内部区域0 r b,有均匀的体电荷密度0 ;在电子 云外部区域 r b 中,0 。 4.4 一电荷量为q质量为m 的小带电体,放置在无限大导体平面下方,与平面距离h 。求 q 的值以使带电体上受到的静电力恰与重力相平衡。(设 m 2 10 3 kg, h0.02m ) 。 4.5一个点电荷q与无限大导体平面距离为 d ,如果把它移到无穷远处,需要做 多少功? 4.6两点电荷 Q 和 Q 位于一个半径为a的导体球直径的延长线上,分别距球心 D 和 D 。 (1)证明:镜像电荷构成一偶极子,位于球心,偶极矩为2a3Q D 2 (2)令 D 和 Q 分别趋于无穷,同时保持Q 2不变,计算球外的电场D

D Q q1 d1 a d 2q2 D Q 题4.6 图 4.7半径为a的长导线架在空中,导线和墙和地面都相互平行,且距墙和地面分 别 d1和 d2,设墙和地面都视为理想导体,且d1 a , d 2 a 。试求此导线对 地的单位长电容。 4.8 半径为 a 的接地导体球,离球心 r1 ( r1 a ) 处放置一个点电荷q,如图所示 , 用 分离变量法求电位分布。 4.9在一个半径为a的圆柱面上,给定其电位分布: U 00 00 求圆柱内、外的电位分布。 4.10 假设真空中在半径为 a 的球面上有面密度为0 cos 的表面电荷,其中0是常数,求任意点的电位。 4.11一半径为a的细导线圆环,环与x、y平面重合,中心在原点上,环上总量 为 Q0。证明其电位为

电磁学试题库电磁学第二章试题(含答案)

一、填空题 1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d 的导体板,则其电容为 ;答案内容:;20d S ε 2、导体静电平衡必要条件是 ,此时电荷只分布在 。 答案内容:内部电场处处为零,外表面; 3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。在这个过程中,电场能量的增量是 ; 答案内容:2 02U L s r εε 4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r q E e ∧=204περ; 5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ; 答案内容:d q 04πε; 6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。 答案内容:??? ??++-πεb q Q a q r q 0 41 7、导体静电平衡的特征是 ,必要条件是 。 答案内容:电荷宏观运动停止,内部电场处处为零; 8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。 答案内容:并联,串联; 9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。 答案内容:201 4q r πε ;

10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。 答案内容:00W εε ; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。 答案内容:/r R ; 12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。A 、B 间为真空,B 外为真空,若用导线把A 、B 接通后,则A 球电位 (无限远处u=0)。 答案内容:()0/4c Q r πε ; 13、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现不断开电源而将两极板的距离拉大一倍,则其电容为______,板间电场强度为_____。 答案内容: 21C , 21E 。 14、一平行板电容器的电容为C ,若将它接在电压为U 的恒压源上,其板间电场强度为E ,现断开电源后,将两极板的距离拉大一倍,则其电容为________,板间电场强度为_____。 答案内容: 21C , E 不变 二、单选择题 1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( ) (A )金属导体因静电感应带电,总电量为-Q ; (B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q ; (C )金属导体两端带等量异号电荷,且电量q

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 ~ a > 题图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? # 根据条件①和②,可设2 (,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 2 02U W C e f =定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 图

最新电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳 内表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁场原理习题与解答(第4章)

第四章习题答案 4-4 设磁矢量位的参考点为无穷远处,计算一段长为2m 的直线电流I 在其中垂线上距线电流1m 的磁矢量位值。 解:选圆柱坐标,在z '处取元电流段 z e I l I 'dz d =,元电流段 产生的元磁矢量位为 z 0e R 4z Id A d πμ'= 整个线电流产生的磁矢量位: C e R z Id 4A z 2 l 2 l 0 +'= ? - //π μ 其中 2 2z R '+=ρ,电流有限分布,参考点选 在无穷远处,所以积分常数C 为零。 ()() z e 2l 2l 2l 2l 2I e z z Id 4A 222 20z 2 l 2 l 2 20 ////ln //++-++='+' = ? -ρρπμρπ μ 将 l =2 ,1=ρ 带入上式,得 z 0e 222I A 1 1π-+=ln μ 4.5 解:由恒定磁场的基本方程,磁感应强度一定要满足0B ?= ,因此,此方程可以作为判断 一个矢量是否为磁感应强度B 的条件。 4-6 相距为d 的平行无限大平面电流,两个平面分别在2 d z - =和2 d z = 且平行与xO y 平面。 相应的面电流密度分别为x e k 和y e k ,求由两个无限大平面分割出来的三个空间区域的磁感应强度。 解:由例题4-7结果,分别求出面电流x e k 和y e k 产生的磁场,然后应用叠加原理, x e k 产生的磁场为: ρ y 图4-4

?????? ?-<->-2d z e 2 K 2d z e 2K B y 0y 01,,)()( μμ= y e k 产生的磁场为 ???? ?> <-2),(2 2),(2002d z e K d z e K B x x μμ= 由叠加原理知: ??? ??????>+-<<-+--<-=2),(2 22,)(22 ),(2000d z e e K d z d e e K d z e e K B x y x y x y μμμ 4-7 参见教材例4.8 4-8 如题图4-8所示,同轴电缆通以电流I ,求各处的磁感应强度。 解:选圆柱坐标,应用安培环路定律: in 0I l d B l μ=?? 当10R << ρ时: 内导体上的电流密度: z 21 e R I J π= I R B e d e B l d B l 21 2 0202ππρμπραρφφπ===???? φπρμπρμe R I B R I B 2 1021 02, 2==∴ 当21R R << ρ时 I B l d B l 02μπρ==?? 题图4-8

物理性污染控制各章节习题答案(全)

物理性污染控制习题答案 第一章略 第二章噪声污染及其控制 1. 什么是噪声?噪声对人的健康有什么危害? 答:从心理学出发,凡是人们不需要的声音,称为噪声。 噪声是声的一种;具有声波的一切特性;主要来源于固体、液体、气体的振动;产生噪声的物体或机械设备称为噪声源。 噪声的特点:局部性污染,不会造成区域或全球污染;噪声污染无残余污染物,不会积累。 10lg 10lg1.74 2.4 DI Q ===7.已知某声源均匀辐射球面波,在距声源4m 处测得有效声压为2Pa ,空气密度1.23/kg m 。。使计算测点处的声强、质点振动速度有效值和声功率。

解:2222,,,000 ,0p p D V e e I Dc D W IS W S p u S p cu S e e e c c S t p u e u u e e c ρρρ=======?== 8.在半自由声场空间中离点声源2m 处测得声压的平均值为88dB ,(1)求其声功率级和声功率; (2)求距声源5m 处的声压级。 解: (1) 按球面波考虑 、解 倍频程F=0.3 治理前响度指数分别为 N 1=18(sone ),N 2=50(sone ),N 3=55(sone ),N 4=50(sone ),N 5=30(sone ) 治理后 N 1=10(sone ),N 2=23(sone ),N 3=29(sone ),N 4=23(sone ),N 5=22(sone ) 治理前总响度max max =()i N N F N N +-∑前=55+0.3?(18+50+55+50+30-55)=99.4(sone) 治理后总响度max max =()i N N F N N +-∑后=29+0.3?(10+23+29+23+22-29)=52.4(sone)

第四章 时变电磁场

第四章 时变电磁场 一 选择题: 1. 时变电磁场的电磁感应定律微分表达式,当媒质静止时为( )。 A. ?×B =μJ B. ?×E =t B ?? C. ?×E =-t B ?? D. ?×E=+t B ??+υ×B 2. 由动态位A 和?可求出B 和E 的公式是( )。 A. ?×A =B ,??=E B. ?×A =B ,E =-?? C. ?×A =B ,E =??+t A ?? D. ?×A =B ,E =-??-t A ?? 3. 由坡印亭矢量的量纲单位瓦/米2,由此看出它具有的物理概念是( )。 A. 功率流的面密度 B. 电磁场能量的体密度 C. 电磁场中消耗的总功率 D. 电磁场的总功率 4.下列关于动态位的叙述正确的是( ) A .动态位既不是空间坐标的函数,也不是时间的函数 B .动态位既是空间坐标的函数,也是时间的函数 C .动态位是空间坐标的函数,但不是时间函数 D .动态位是时间的函数,但不是空间坐标的函数 5.在无损耗均匀媒质(电导率为0,磁导率为μ,介电常数为ε),正弦电磁场矢量() H r 满足亥姆霍兹方程2 20H k H ?+= ,其中( ) A 22k ωμε= B 2 2 k ωμε= C 221k ωμε= D 22k μεω= 二 填空题: 1.时变电磁场中,引入的洛仑兹规范是__________。

2.坡印亭矢量的方向,由E 与H 的矢量_____决定。 3在时变电磁场中,根据方程___________________,可定义矢量位A 使 B A =?? ,再根据方程_____________________ ,可定义标量位,使 ()A E t ??=-?+? 4复数形式的麦克斯韦方程组是 ______________________,____________________________, _______________________,____________________________。 三 名词解释: 1.时变场 2.动态位 3.坡印亭矢量 四 简答题: 1.简述洛仑兹规范的基本意义。 2.解释坡印亭矢量S p =E ×H 的物理意义。 3.在研究时变电磁场中,引入了哪些位函数?写出它们与场矢量之间的关系。

电磁学第二章

第二章 静电场中导体与电介质 一、 选择题 1、 一带正电荷的物体M,靠近一不带电的金属导体N,N 的左端感应出负电荷,右端感应出正电荷。若将N 的左端接地,则: A 、 N 上的负电荷入地。 B 、N 上的正电荷入地。 C 、N 上的电荷不动。 D 、N 上所有电荷都入地 答案:B 2、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。若在它的下方放置一电量为q 的点电荷,则: A 、只有当q>0时,金属球才能下移 B 、只有当q<0就是,金属球才下移 C 、无论q 就是正就是负金属球都下移 D 、无论q 就是正就是负金属球都不动 答案:C 3、 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,已知A 上的电荷密度为σ+,则 在导体板B 的两个表面1与2上的感应电荷面密度为: A 、σσσσ+=-=21, B 、σσσσ2 1 ,2121 +=-= C 、σσσσ2 1 ,2121 -=-= D 、0,21 =-=σσσ 答案:B 4、 半径分别为R 与r 的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线的影响下,两球表面 的电荷面密度之比r R σσ为: A 、r R B 、2 2 r R C 、2 2 R r D 、R r 答案:D 5、 一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板距离均为h 的两点a,b 之间的电势差为() A 、零 B 、 2εσ C 、 0εσh D 、0 2εσh 答案:A 6、 一电荷面密度为σ 的带电大导体平板,置于电场强度为0E (0E 指向右边)的均匀外电场中,并使板面垂直于0E 的方向,设外电 场不因带电平板的引入而受干扰,则板的附近左右两侧的全场强为() A 、0000 2,2εσ εσ+- E E B 、0000 2,2εσ εσ++ E E C 、0 000 2,2εσεσ-+ E E D 、0 000 2,2εσεσ-- E E 答案:A 7、 A,B 为两导体大平板,面积均为S,平行放置,A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大 小E 为() A 、 S Q 01 2ε B 、 S Q Q 0212ε- C 、 S Q 01ε D 、 S Q Q 0212ε+ 答案:C 8、带电时为q 1的导体A 移近中性导体B,在B 的近端出现感应电荷q 2,远端出现感应电荷q 3,这时B 表面附近P 点的场强为n E ?0 εσ= ,问E 就是谁的贡献?()

电磁场与电磁波课后习题及答案第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 002sin()d sinh()a n U n x A x a n b a a ππ==? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh() 02,4,6,U n n n b a n ππ? = ? ?? =?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位0 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 0U y x a a b o 题图

d y =,电位线性变化,0(0,)y U y d ?=。 解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。并按 20 2U W C e f = 定 0U y x o x y bo x y d x y 题 图

电磁学第二章习题答案

习题五(第二章 静电场中的导体与电介质) 1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内 表面所带的电量为 - q ,外表面所带电量为 q +Q 。 2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小 204/r Q E πε=,球壳的电势R Q V 04/πε=。 3、导体静电平衡的必要条件就是导体内部场强为零。 4、两个带电不等的金属球,直径相等,但一个就是空心,一个就是实心的。现使它们互相接触,则这两个金属球上的电荷( B )。 (A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多 5、半径分别R 与r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B ) (A) R/r (B) r/R (C) R 2/r 2 (D) 1 6、有一电荷q 及金属导体A,且A 处在静电平衡状态,则( C ) (A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。 7、如图所示,一内半径为a,外半径为b 的金属球壳,带有电量Q, 在球壳空腔内距离球心为r 处有一点电荷q,设无限远 处为电势零点。试求: (1)球壳外表面上的电荷; (2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。 解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a

电磁学第四章答案全

第四章 习题 2、平行板电容器(面积为S,间距为d )中间两层的厚度各为d 1和d 2(d 1+d 2=d ),介电常数各为1ε和2ε的电介质。试求: (1)电容C ;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D ; 解:(1)这个电容器可看成是厚度为d 1和d 2的两个电容器的串联: 1 2210212121d d S C C C C C εεεεε+=+= (2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电) 1 111011111εσεεεσ)(E )(P '-= -=-=?= 分界处第二层介质的极化电荷面密度: 21 222022211εσεεεσ)(E )(P n P '-- =--=-=?= 所以, 2 10 21211 εεσεεσσσ+-=+=)(' '' 若与d 1接触的金属板带负电,则2 10 21211 εεσεεσσσ+--=+=)(''' (3)2 10 122 1202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+= += (4)01101σεε==E D ,02202σεε==E D 4、平行板电容器两极板相距3.Ocm ,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-?=σ,略去边缘效应,求: (1)极板间各处的P 、E 和D 的值; (2)极板间各处的电势(设正极板处00=U ); (3)画出E-x ,D-x ,U-x 曲线; 解:(1)由高斯定理利用对称性,可给出二极板内: 2111098m /c .D e -?==σ(各区域均相同), 在0与1之间01==P ,r ε,m /V D E 20 101?== ε

2017粤教版高中物理选修第二章第四节《麦克斯韦电磁场理论》练习题

【金版学案】2015-2016学年高中物理第二章第四节麦克斯韦电 磁场理论练习粤教版选修1-1 ?达标训练 1。根据麦克斯韦电磁场理论,以下说法正确的是( ) A.磁场周围一定产生电场,电场周围一定产生磁场 B.均匀变化的电场产生均匀变化的磁场,均匀变化的磁场产生均匀变化的电场 C.周期性变化的磁场产生同频率周期性变化的电场,周期性变化的电场产生同频率周期性变化的磁场 D。磁场和电场共同存在的空间一定是电磁场 答案:C 2.关于电磁场和电磁波的正确说法是( ) A。电场和磁场总是相互联系的,它们统称为电磁波 B。电磁场由发生的区域向远处传播形成电磁波 C。在电场周围一定产生磁场,磁场周围一定产生电场 D.电磁波是一种波,声波也是一种波,理论上它们是同种性质的波 解析:电磁场由发生的区域向远处的传播形成电磁波。 答案:B 3.电磁场理论预言了电磁波的存在。建立电磁场理论的科学家是( ) A。法拉第 B。麦克斯韦 C。奥斯特 D.安培 解析:最先建立完整的电磁场理论并预言电磁波存在的科学家是麦克斯韦. 答案:B 4。1888年,用实验证实电磁波的存在,使人们认识物质存在的另一种形式,这位物理学家是() A.赫兹 B.奥斯特 C.麦克斯韦 D.法拉第 答案:A 5.关于电磁场和电磁波,下列说法中正确的是( ) A.电磁场由发生区域向远处的传播就是电磁波 B。在电场的周围总能产生磁场,在磁场的周围总能产生电场 C.电磁波是一种物质,只能在真空中传播 D.电磁波传播的速度总是3、0×108 m/s 解析:根据麦克斯韦电磁场理论,变化的电场(或磁场)产生磁场(或电场),变化的电磁场由发生区域向远处传播就形成电磁波,电磁波在真空中传播速度最大,选A、答案:A 6。关于电磁波,下列说法正确的是() A.所有电磁波的频率相同 B.电磁波只能在真空中传播 C。电磁波在任何介质中的传播速度相同 D。电磁波在真空中的传播速度是3×108 m/s 解析:电磁波有各种各样的频率,可以在不同的介质中传播,但在真空中传播速度最大,c=3×108 m/s、

相关文档
最新文档