红外线吸收式分析仪

红外线吸收式分析仪
红外线吸收式分析仪

精心整理

红外线吸收式分析仪

参考资料:中国环保网(

根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。

一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。

接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。

与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

操作

需要提供纯净氮气清洗仪器的气室和减小噪音,确保仪器的最大稳定性。

包装设备顶空气体分析仪器用于密封包装袋、瓶、罐等包装件内氧气、二氧化碳气体含量、混合比例的测定;适合在生产线、仓库、实验室内等场合快速准确地对包装件内的气体组分含量与比例做出评价,从而指导生产,保证产品货架期得以实现。

包装设备

顶空气体分析仪器用于密封包装袋、瓶、罐等包装件内氧气、二氧化碳气体含量、混合比例的测定;适合在生产线、仓库、实验室内等场合快速准确地对包装件内的气体组分含量与比例做出评价,从而指导生产,保证产品货架期得以实现。

非分散红外分析

精心整理

非分散红外分析同时采用窄带滤光片和气体过滤相关法两种非色散光谱分析技术结合,适合于气体不同的测量范围要求。

过滤相关法能够测量低量程气体并有效避免交叉干扰,这种独特技术能消除弱吸收气体如CO和高吸收气体CO2交叉干扰。

热源发出的红外光被旋转过滤器过滤,导致系列脉冲信号直接通过包含样本气体的单元,当过滤器轮旋转时固态检测器反映出信号变化并将信号放大输出以及显示。

^)

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

GXH-3011A便携式红外线分析器

GXH-3011A型便携式红外线分析器操作规程 1.仪器工作条件及环境要求 1.1仪器的工作电压为:220V±22V AC,6V±0.6V AC,功率≤9W 1.2仪器工作环境温度:0~35o C 1.3仪器安放地点要求干燥,避免阳光直射 1.4仪器台应稳固、防震 2.操作规程 2.1接通电源,打开仪器开关,预热5分钟,冬季可适当延长预热时间。 使用交流供电时将稳压电源的标准插头插在仪器面板的“POWER”插座上,将“BAT.EXT”转换开关拨到“EXT”处;直流供电时将“BAT.EXT”开关拨到“BAT”处。按下“ON/OFF”,红色指示灯亮,将“TEST”开关向上扳动,仪器表头指示为电源电压,外接供电时电压要大于6V,电池供电时电压应大于5.8V,如电压指示正常,将“TEST”开关扳下,预热。 2.2校零点。 将仪器侧面板上的圆形切换阀旋钮拧到“零点”位置,打开“PUMP”开关,黄色指示灯亮,约两分钟后表头指示稳定在“0”附近,如不是“0”,缓慢旋动面板上“ZERO”电位器,将指示调为“0”。如显示在0~0.5之间可不必调零。 2.3校终点。 调好仪器零点后,关上泵开关,将仪器侧面板上的圆形切换阀旋钮拧到“测量”位置。将减压阀装在标准气瓶上,皮管插到仪器进气口“IN”处,以0.5L/min流量通入标准气体,约1分钟后表头显示值稳定,调终点电位器使显示值与标准气值相等,关上减压器阀及标准气瓶总阀,打开泵开关将标气排出,当指示小于5ppm时再将切换阀拧到“零点”处,指示回到“0”附近。

2.4 样品测定。 校好“零点”、“终点”后,将取样器与进气口相连,可将被测气体样品抽入仪器内,显示值即为被测气体CO的浓度值,连续测量多个样品时,不需要每次回零,可直接连续进样测量,约一小时左右可进行一次回零检查,零点变化较大时,可旋动零点电位器调零。仪器显示数据单位为ppm。 2.5 测定完毕,关闭泵及仪器电源开关。 2.6填写仪器运行记录和维护情况,整理工作台和实验室卫生。 3. 仪器维护、保养及注意事项 3.1仪器电池电压低于5.8V时,应进行充电。将稳压电源插在“POWER”处,另一端接220V,将“BAT.EXT”开关拨在“BAT”处,“ON/OFF”开关与“PUMP”开关均处于“关”,此时仪器便处于充电状态。电池电压在58V时,只需要充电4小时即可达到6V以上,电池电压小于5.5V时,需要充电6~16小时充满。电池充满后可连续工作5h。 3.2该仪器选用高容量免维护蓄电池,无记忆特效,不必放光电后再充电,可随时充电。 3.3仪器测定样品时需要1min以上读数稳定,因此样品采集量应保证在5L左右。 3.4当仪器归零反应慢时,需要激活过滤剂。更换过滤剂时,将过滤器盖逆时针方向拧开,使过滤器口朝下方,并将仪器前后、左右摇晃,使过滤剂倒干净。将过滤剂放在瓷盘中加热到100℃,烘2~4小时,冷却至室温后再倒入过滤器中。 3.5在装入过滤剂时,上过滤器盖之前要用酒精棉球将过滤器口的密封棉擦拭干净后慢慢按顺时针方向将过滤器盖拧紧。 5. 应急措施 5.1若发生断电情况时,要立即关闭仪器的电源,待恢复供电后重新启动仪器。 6.检定/校准/检查

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

GXH-3011A1便携式红外线分析器操作维护规程

GXH-3011A1型便携式红外线分析器 操作维护规程 1.仪器工作条件及环境要求 1.1工作电压:(220V±22)V AC,(50±1)Hz,功率≤6W 1.2工作环境温湿度:5~40o C;相对湿度≤90% 1.3响应时间:≤45s 1.4预热时间:30min 1.5仪器安放地点要求不应有腐蚀性气体及强烈的机械震动和电磁干扰 2.测量气体要求 2.1含水量:相对湿度≤90% 2.2含尘量:<0.1g/m3 2.3腐蚀性气体:(SO 2、H 2 S、NH 3 ……)<0.005% 2.4温度:(5~40)o C 2.5流量:(0.5~1.5)L/min 3.操作规程 3.1接通电源,打开仪器开关,使用交流供电时将稳压电源标准插头插在仪器面板的“POWER”(电源)插座上,将电池/外接转换开关拨到“外接”处;电池供电时,将电池/外接开关拨到“电池”处,按下“电源开关”,液晶显示屏点亮,这时仪器表头指示为电源电压。外接供电时电压约 6.0V,如太低应加交流调压器或稳压器;电池供电时电压应大于 6.5V,否则需要充电。仪器预热时间为30min。 3.2校零点 将仪器侧面板上的圆行切换阀旋钮拧到“调零”位置(红点对准“调零”,要拧到底),此时表头读数应在零点附近,如相差较远则调节侧面板上的零点电位器,使其读数在“0.0”附近,待读数稳定后按“调零”键,仪器将自动保存零点初值,以后测量的数据将减去这个零点初值,调零结束。按“确定”键直接退出,不保存这次的零点初值(但仍

保留上次调零时的零点初值,此为防止用户误操作的一种措施)。 3.3校终点。 调好仪器零点后,关上泵开关,将仪器侧面板上的圆形切换阀旋钮拧到“测量”位置。将减压阀装在标准气瓶上,皮管插到仪器进气口“IN”处,以0.5L/min流量通入标准气体,约1分钟后表头显示值稳定,调终点电位器使显示值与标准气值相等,关上减压器阀及标准气瓶总阀,打开泵开关将标气排出,当指示小于5ppm时再将切换阀拧到“零点”处,指示回到“0”附近。(新出厂的仪器已经校好终点,且仪器终点很稳定,所以用户半年内可不必再校终点) 3.4 样品测定。 校好“零点”、“终点”后,将仪器侧面板上的圆形切换阀旋钮拧到“测量”位置,将取样探头拉出,用皮管将取样器与入口“IN”相接,便可将被测环境中的气体抽入仪器内,从显示器上能直接读得被测气体 CO 的浓度值。当浓度值稳定后按动“确定”键可将测量数据保存,也可点“↓”键选择取消,不保存。测量第二个数时,不需要再回零,重新选择开始测量即可,将探头指向被测处,直接测量第二个数据。1 小时后,可回零检查。零点变化较大时,可以重新进行零点校对。 3.5 测定完毕,关闭泵及仪器电源开关。 3.6填写仪器运行记录和维护情况,整理工作台和实验室卫生。 4. 仪器维护、保养及注意事项 4.1仪器电池电压低于 6.5V 时,就应对仪器进行充电。充电时,将切换开关打到充电档,稳压电源一端插在 220V 交流电源插座上,另一端插在仪器侧面板的“POWER”处,此时充电指示灯为红色,此时仪器处于充电状态。当充电器的指示灯由红色变成绿色时,表示充电完成(但不能变充电边使用)。该电池是锂电池供电,可连续工作8小时以上。 4.2仪器测定样品时需要1min以上读数稳定,因此样品采集量应保证在5L左右。 4.3当仪器归零反应慢时,需要激活过滤剂。更换过滤剂时,将过滤器盖逆时针方向拧开,使过滤器口朝下方,并将仪器前后、左右摇晃,使过滤剂倒干净。将过滤剂放在瓷盘中加

红外光谱分析仪基础知识全解

红外光谱分析仪基础知识 前言 (2) 第一章红外光谱法及相关仪器 (4) 一. 红外光谱概述 (4) 1. 红外光区的划分 (4) 2. 红外光谱法的特点 (5) 3. 产生红外吸收的条件 (5) 二. 红外光谱仪 (6) 1. 红外光谱仪的主要部件 (6) 2. 红外光谱仪的分类 (9) 3. 红外光谱仪各项指标的含义 (12) 三.红外光谱仪的应用 (15) 四.红外试样制备 (16) 四.红外光谱仪的新进展 (17)

前言 分析仪器常使用的分析方法是光谱分析法,光谱分析法可分为吸收光谱分析法和发射光谱分析法,而吸收光谱分析法又是目前应用最广泛的一种光谱分析方法:它包括有核磁共振,X射线吸收光谱,紫外-可见吸收光谱,红外光谱,微波谱,原子吸收光谱等。但最常用的则是原子吸收光谱、紫外-可见吸收光谱和红外光谱,这些方法的最基本原理是物质(这里说物质都是指物质中的分子或原子,下同)对电磁辐射的吸收。还有拉曼光谱和荧光光谱,也是比较常用的手段,它们的原理是基于物质发射或散射电磁辐射。其实物质与电磁辐射的作用还有偏振、干涉、衍射等,由此发展而成的是另外一系列的仪器,如椭偏仪、测糖仪、偏光显微镜、X射线衍射仪等等,这些仪器都不是基于光谱分析法,不是我们介绍的重点。 吸收光谱可分为原子吸收光谱和分子吸收光谱。当电磁辐射与物质相互作用时,就会发生反射、散射、透射和吸收电磁辐射的现象,物质所以能够吸收光是由物质本身的能级状态所决定的。例如原子吸收可见光和紫外光,可以使核外电子由基态跃迁到激发态,相应于不同能级之间的跃迁都需吸收一定波长的光。因此,如有一波长连续的光照射单原子元素的蒸气(如汞蒸气、钠蒸气等),将会产生一系列的吸收谱线。由于在一般情况下原子都处于基态,通常只有能量相当于从基态跃迁到激发态的所谓主系谱线出现在原子的吸收光谱中。 而分于吸收光谱则比较复杂。它们不是分立的谱线而是许多吸收带。因为每一个分子的能量包括三部分,即分子的电子能量、振动能量和转动能量。每一种能量都是量子化的。当电子有一种能级跃迁到另一能级时,可能同时还伴有振动能级和转动能级的跃迁。应此分子吸收光谱是一系列的吸收带。通常引起原子或分子中外层价电子的跃迁需要1.5-8.0ev的能量,其相应的辐射波长在 150nm-800nm之间,这是紫外-可见吸收光谱的波长范围。引起振动跃迁或振动-转动跃迁的能量是0.05-1.2ev,相应的辐射波长在1.0-25μm之间,这是红外光谱的范围。

BFS8310型相关红外线分析仪操作规程

BFS8310型相关红外线分析仪操作规程 1、目的 规范CO测定仪操作程序,正确使用仪器,保障检测工作顺利进行。 1、适用范围 适用于BFS8310型红外线分析仪的使用操作。 3、职责 3.1操作人员;严格按本操作规程使用仪器,确保设备的安全、正常运行,做好使用登记。 3.2管理人员:负责监督仪器操作是否符合规程;对设备进行日常管理和定期维护,做好记录;当设备出现无法排除的故障时,及时向科室负责人员汇报,联系维修,并做好记录;定期参与仪器的期间核查,做好记录。 3.3科长:监督设备的安全正常运行,组织每年对设备的校准/检查工作,负责仪器的综合管理。 4、主要技术数据 4.1测量范围:CO 0-50ppm; 4.2线性误差:±≤2%F.S 4.3重复性误差: 1% 4.4预热时间:15分钟 4.5零点漂移:≤2%F.S/4h; 4.6跨度漂移:≤±2%F.S/4h

4.7响应时间:T90≤10s 4.8泵流量:0.5L/min 4.9环境温度:5℃-35℃ 4.10环境湿度:≤85%RH 4.11干扰误差:≤±2%F.S 4.12供电:220V±10%,50HZ±0.5HZ经直流转换成12V1200Ma. 4.13功率:≤5W 5、操作规程 5.1将仪器后面板的拨动开关拨到“外接”方向,将直流稳压电源的4.5mm电源插头插入到电源插口(注意:电源插头的芯为正,出厂前已经装好,若更换其他电源时,注意正负极不能接反,否则会烧坏内部元器件)。 5.2启动:打开仪器前面面板的开关,此时,仪器已启动,预热15分钟,预热过程中气泵开关应处在关的位置上。 5.3调零:将仪器的前面板的切换阀旋到左侧的零点位置上,打开泵的开关。约1分钟后,数显表头的显示值趋 向零点附近。此时,旋下零点电位器上的保护盖,调节零点电位器。将显示值调到零点上。 5.4测量:用橡胶软管将取样手柄与仪器进口连接上,开泵即可抽取样气进行测量。不取样时可把泵关闭。 5.5测量完毕后,关上电源开关、泵开关,拔下稳压电源插头,将仪器前面板的切换阀打到左上侧的调零状态,可防止灰尘进入气路

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外线分析仪工作解释

红外线分析仪工作原理解释 Interpretation of working principle of infrared analyzer 云南云维股份大为制焦电仪黄兆荣 原理:红外线气体分析仪,是利用红外线对气体的浓度分析,浓度不同,吸收的红外线的能 量不同.剩下的能量使得检测器里的温升不同,电容器两边动片所受的压力不同,从而产生一个差动电容值,测量电容器的变化电容量,通过电容器电桥转换成电信号,间接测量气体组分的浓度。主要用于测量CO2、CO,CH4、SO2等气体浓度。 比尔定律: 分析仪是根据比尔定律工作:I=I0e-KCL(比尔定律) 式中:I--被气体吸收后的能量; I0--红外线通过介质前的能量; C--待测量的气体浓度; K--待气体的吸收系数; L--气室长度 结构图如下: 被测量气体进入测量气室,流体状态发生改变,摩擦加剧,噪音、发热量、电磁力变化增大,气体分子带电增大,红外线是电磁波,当红外线的电磁力与被测量气体分子频率相同时则共振,吸收红外线的能量,红外线入、出口则形成能量差。

被测量气体的分子为何会与红外线一起共振呢?一定要有力的作用(打秋千的共振是人的力作用于秋千上,而且频率要相等),红外线(电磁波)的力是电磁力,作用于被测量的气体分子上(作用力),若被测量的气体分子不是电磁力(反作用力),那么被测量的气体分子会随红外线的波动而波动吗?被测量的气体分子之间的力也是电磁力。 气室5是参比气氮气,气室4是测量气体,气体逆光路前进,吸收红外线能量使之共振产生能量差,薄膜7将检测室6一分为二,气室4能量的变化使检测室6体积发生改变带动薄膜7变化,薄膜7与定片8的电容量发生变化,通过电容器电桥转换为都有的变化放大进行记录。 气室5与检测室6、气室4与检测室6、气室4与气室5相互隔离,只是通过红外线进行作用,气室5中的氮气浓度不变,到检测室6红外线的能量是恒定不变的,故检测室6在气室5下的体积不变。气室4气体浓度是变化的,在气室4下检测室6是变化的。都是红外线的电磁力在作用整个过程中。 从上面分析可看到,房子、原子之间的作用力是电磁力或电磁波。

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

GXH-3011A1便携式红外线分析仪操作规程(一氧化碳)

GXH-3011A型红外线分析器操作规程 一、目的 规范GXH-3011A型红外线分析器操作程序,正确使用该仪器,保证检测工作顺利进行和仪器的正常状态。 二、适用范围 本规程适用于GXH-3011A型红外线分析器的使用和维护操作。 三、职责 1 操作人员按照本规程操作仪器,对仪器进行日常维护。 2 保管人员负责监督仪器操作是否符合操作规程,对仪器进行定期维护、保养。 3 科室负责人负责仪器综合管理。 四、仪器工作条件及环境要求 1 仪器的工作电压为:220V±22V AC,6V±0.6V AC,功率≤9W 2 仪器工作环境温度:0~35oC 3 仪器安放地点要求干燥,避免阳光直射 4 仪器台应稳固、防震 五、操作规程 1 接通电源,打开仪器开关,预热5分钟,冬季可适当延长预热时间。 使用交流供电时将稳压电源的标准插头插在仪器面板的“POWER”插座上,将“BAT.EXT”转换开关拨到“EXT”处;直流供电时将“BAT.EXT”开关拨到“BAT”处。按下“ON/OFF”,红色指示灯亮,将“TEST”开关向上扳动,仪器表头指示为电源电压,外接供电时电压要大于6V,电池供电时电压应大于5.8V,如电压指示正常,将“TEST”开关扳下,预热。 2 校零点。 将仪器侧面板上的圆形切换阀旋钮拧到“零点”位置,打开“PUMP”开关,黄色指示灯亮,约两分钟后表头指示稳定在“0”附近,如不是“0”,缓慢旋动面板上“ZERO”电位器,将指示调为“0”。如显示在0~0.5之间可不必调零。 3 校终点。 调好仪器零点后,关上泵开关,将仪器侧面板上的圆形切换阀旋钮拧到“测量”位置。将减压阀装在标准气瓶上,皮管插到仪器进气口“IN”处,以0.5L/min流量通入标准气体,约1分钟后表头显示值稳定,调终点电位器使显示值与标准气值相等,关上减压器阀及标准气瓶总阀,打开泵开关将标气排出,当指示小于5ppm时再将切换阀拧到“零点”处,指示回到“0”附近。 4 样品测定。 校好“零点”、“终点”后,将取样器与进气口相连,可将被测气体样品抽入仪器内,显示值即为被测气体CO的浓度值,连续测量多个样品时,不需要每次回零,可直接连续

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

常规样品的红外光谱分析

常规样品的红外光谱分析 PB07206298龚智良 实验目的 1.初步掌握两种基本样品制备技术及傅立叶变换光谱仪器的简单操作; 2.通过图谱解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 实验原理 红外光谱:红外光谱是分子的振动转动光谱,也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动引起的偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些区域的光透射强度减弱。记录红外光的百分透射比或波长关系曲线,就得到红外光谱。从分子的特征吸收可以鉴定化合物和分子结构,进行定性和定量分析。红外光谱尤其在物质定性分析中应用广泛,它操作简便,分析速度快,样品用量少且不破坏样品,能提供丰富的结构信息,因此红外光谱法往往是物质定性分析中优先考虑的手段。 能产生红外吸收的分子为红外活性分子,如CO?分子;不能产生红外吸收的分子为非红外活性分子,如O?分子。 中红外区为基本振动区:4000-400cm-1研究应用最多。 红外吸收的波数与相应振动的力常数关系密切。双原子分子的基本频率计算公式为 ??=12????? 其中?为约化质量 μ=m??m? m?+m? 对于多原子分子,其振动可以分解为许多简单的基本振动,即简正振动。一般将振动形式分为两类:伸缩振动和变形振动。 各种振动都具有各自的特征吸收。 仪器结构和测试技术 Fourier变换红外光谱仪(FTIR仪):能够同时测定所有频率的信息,得到光强随时间变化的谱图,称时域图,这样可以大大缩短扫描时间。由于不采用传统的色散元件,其分辨率和波数精度都较好。傅立叶变换红外谱仪主要由光源(硅碳棒、高压汞灯)、Michellson干涉仪、检测器、计算机和记录仪组成。测试样品时,由于样品对某些频率的红外光吸收,从而得到不同样品的干涉图。红外光是复合光,检测器接收到的信号是所有频率的干涉图的加合。 对试样的要求:试样应该为纯物质,纯度大于98%,以便于和纯化合物进行比较;样品中不能含游离水;试样的浓度和测试厚度应选择适当,以使大多数吸收峰的透射比处于10%-80%。 制样方法:对于液体样品有液膜法、液体吸收池法;对于固体样品有压片法、糊状法;对于特殊的样品还有薄膜法(包括熔融法和热压成膜法、溶液制膜法);对于气态样品一般都灌注于气体池中进行测试。 除了常规的测试技术外,红外光谱测试还有衰减全发射和偏振红外光谱等特殊的测试技术。 实验步骤、现象及讨论 固体样品制备:使用KBr压片法。用一个玛瑙研钵将少量KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀,并使其颗粒大小比所检测的光波长更小(约2μm以下)。在一个具有抛光面的金属模具上方一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。KBr压片形成后,用夹具固定测试。注意样品制备过程中一定要将粉末研得足够细,判断的标准是粉末粘在研钵壁上比较紧。整个操作过程在红外灯下进行,这样可以减少样品制备过程中吸水的量。在制备固体样品之前,要用酒精棉球把刮勺、研钵、研杵擦干净。 液体样品的制备:取一对NaCl窗片,用刮勺沾一滴未知液体在一块窗片上,然后用另外一块窗片覆

红外分析仪构成、原理

1红外分析仪构成 1.1红外线气体分析仪 红外线气体分析仪是基于红外检测原理,属于光学分析仪器中的一种。它是利用不同气体对不同波长的红外线具有特殊的吸收能力来实现气体的组分检测的。红外线式气体检测主要利用了气体对红外线的波长有选择的可吸收型和热效应两个特点。红外线气体分析器是一种吸收式的、不分光型的气休分析器。所谓吸收式即利用气体对电磁波的吸收特性。不分光型也称为非色散型,即光源发射出连续光谱的射线,全部投射到被分析的气样上去。利用气体的特征吸收波长及其积分特性进行定性和定量的分析,大部分的有机和无机气体在红外波段内都有其特征吸收峰。有的气体还有两个或多个特证吸收峰。 具有对称结构的、无极性的双原子分子气体,如O2、H2等,以及单原子分子气体,例如Ar等,在红外线彼段内没有特征吸收峰。因此红外线气体分析仪对这种双原子和单原子分子气体不能进行分析测量,每一台红外线气体分析器只能分析一种气体,例如一台CO2红外线气体分析器,它可以从一个多组分的混合气体中分析出CO2的体积百分比浓度,如果背景气体中的某一组分在红外线波段内有与CO2的特征吸收峰重迭的部分。那么我们称这种背景气体为干扰组分,因此在气样进人红外线气体分析仪之前要把这种干拢组分去除掉。水蒸汽在2.6-10μm这个很宽的波段范圈内有吸收的特性。因此水蒸汽对红外线气体分析器来讲是一种重要的干扰组分,在分析之前都要对样气进行干燥处理,去除水分,这样才能保证测量的准确性。 红外线气体分析器的工作原理:用人工方法制造一个包括被测气体特征吸收峰波长在内的连续光谱的辐射源,让这个连续光谱通过固定厚度的含有被测气体的混合组分,在混合组分的气体层中,被测气体的浓度不同,吸收固定波长红外线的能量也不相同。继而转换成的热量也不相同,在一个特制的红外检测器中再将热量转换成温度或压力,测量这个温度或压力就可以准确地测量出被分析气体的浓度,从朗伯特一比耳定律来看,I=I o e-kcl,就是要使红外线气体分析器辐射源的发射能量连续地通过一定厚度的被分析气样,也就是说使I o、K、L确定下来。然后测量气体吸收后的能量I来确定气样浓度C的大小。 I。-射人被测组分的光强度; I-经被测组分吸收后的光强度; K-被测组分对光能的吸收系数; C-被测组分的摩尔分数; L-光线通过被测组分的长度(气室长度)。

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

红外线分析仪的工作原理

红外线分析仪的工作原理 参考资料:中国环保网(https://www.360docs.net/doc/f4570166.html,/news/details12018.htm ) 红外线分析仪简介 气体工业名词术语。大多数气体分子的振动和转动光谱都在红外波段。当入射红外辐射的频率与分子的振动转动特征频率相同时,红外辐射就会被气体分子所吸收,引起辐射强度的衰减。利用这种气体分子对红外辐射吸收的原理而制成的红外气体分析仪,具有测量精度高,速度快以及能连续测定等特点,在钢铁,石油化工,化肥,机械等工业部门,红外气体分析仪是生产流程控制的重要监测手段;在环境污染成分检测和医学生理研究等方面也都有许多成功的应用。 红外线分析仪的工作原理 基于某些气体对红外线的选择性吸收。红外线分析仪常用的红外线波长为2~12μm。简单说就是将待测气体连续不断的通过一定长度和容积的容器,从容器可以透光的两个端面的中的一个端面一侧入射一束红外光,然后在另一个端面测定红外线的辐射强度,然后依据红外线的吸收与吸光物质的浓度成正比就可知道被测气体的浓度。本项目中采用的是ABBAO2000系列仪表,配以URAR26红外模块。 朗伯—比尔定律——其物理意义是当一束平行单色光垂直通过某一均匀非 散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。这就是红外线气体分析仪的测量依据。 红外线便携式分析仪器,是基于某些气体对红外线的选择性吸收原理而制成的,该原理的便携式分析仪器是目前在国内市场上是最为精确,数字显示、操作简单,低返修率的一款仪器。已经受到国内外众多用户的普遍欢迎。 红外线分析仪的用途 卫生防疫部门、环境检测站等部门,对宾馆、商店、影剧院、舞厅、医院、车厢、船舱等公共场合的各种气体浓度的测定。也可用于实验室分析。 根据用户的不同需求,该原理仪器主要用于测量CO2、CO,CH4、SO2等气体浓度。 红外线分析仪的技术参数 1.测量范围:CO2最低:0-50ppm,最高:0-100% CO 最低:0-50ppm,最高:0-100% (其他用户需求自定) 2.零点漂移:≤±2%F.S/4h 量程漂移:≤±2%F.S/4h 3.线性度:≤±2%F.S 4.重复性:≤±1%

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家N.Monardes于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

XLT-3091型便携式红外线气体分析器作业指导书

标识:YNHD/ZY-001-01 云南华都生态环境监测有限公司 XLT-3091型便携式红外线气体分析器操作 作业指导书 编制:________________ 审核:________________ 批准:________________ 生效:

标识:YNHD/ZY-001-01 云南华都生态环境监测有限公司 XLT-3091型便携式红外线气体分析器操作规程 1 目的: XLT-3091型便携式红外线气体分析器的使用,保证仪器的正常运行。 2 范围: XLT-3091型便携式红外线气体分析器的操作维护核查规程 3 职责和权限: 3.1 检测主管 负责XLT-3091型便携式红外线气体分析器的外校维修安排、校准及本作业指导书的更新。 3.2 检测工程师及检测技术员 XLT-3091型便携式红外线气体分析器日常维护保养、相关记录及结果判定。 4主要技术指标 4.1测量组分:CO2 4.2量程范围:(0-0.5)% 4.3最小分辨率0.001 4.4示值引用误差:±0.2%F·S 4.5重复性:1% 4.6漂移:零点漂移:±0.2%FS/h 量程漂移:±0.2%FS/h 4.7预热时间:20min(特殊要求除外)

4.8 响应时间:≤60S 4.9 重量:约6.5kg 4.10 外形尺寸:约215mm*84mm*285mm 4.11 非被测组分干扰误差:不包括水蒸气的非被测组分干扰误差:±0.2%F·S; 水蒸汽干扰误差:不大于仪器的示值引用误差。 4.12 供电电源:充电器AC(100-240)V/50HZ DC8.4V/2A 5 测量方法 5.1 仪器开机预热30min 后可进行正常测量工作,将仪器前面的“气泵开关”打开,可从气体入口吸入气体进行测量,测量结果会显示在数码显示器上。如需要使用探头进行定点测量时,则需要连接气体取样手柄。 5.2定点测量连接图 6. 工作原理 6.1基本原理 XLT-3091型便携式红外线气体分析器由光学系统、数显系统、气路系统、电气系统等四部分组成。 工作原理为:红外线气体分析器时基于不同的气体对红外线有选择吸收这一原理而设计的,吸收的关系遵循朗伯比尔定律,详见图

相关文档
最新文档