Java线程池实现例子

Java线程池实现例子
Java线程池实现例子

这是我从网上裆下来的一个线程池例子,因为是菜鸟,也是看了有一会儿才看懂了,希望能帮到其他的菜鸟们;

说下实现思路:

PoolManager:创建了一个ArrayList用来存放实例化好的线程对象:一个线程可以帮助一个任务去执行:工厂

Worker:也就是工人的意思:就是实例化好的线程,放到了线程池工厂里,有一批新货(任务)就找一个空闲的线程(工人)去做这件事:工厂里的工人

TaskManager:任务(新货)需要放到一个临时的仓库:这个类就是这个仓库:接到任务的工人从这个仓库里拿需要执行的任务:需要干的活的仓库

TaskNibutirThread:哪件事情由那个人去做,仓库里有没有货,工厂里有没有闲着的工人,都是这个类负责的:负责分配任务的主管

WorkTask:任务的接口其他的是它的实现类,用来放到仓库里执行的

package com.threadpool;

import java.util.ArrayList;

/*

* 线程池管理器(PoolManager):用于创建并管理线程池,采用单例模式

*

*/

public class PoolManager {

public static PoolManager mPool=new PoolManager();

public final int max_pool =3;

public final int max_Tasks = 15;

public static ArrayList init_pools;

// private int GetIdleThreadPollTime=50;//获取空闲线程轮询间隔时间,可配置

private TaskMonitorThread mainThread;//任务监测线程

static {

init_pools = new ArrayList(5);

}

public static PoolManager getInstance() {

if (mPool == null) {

mPool = new PoolManager();

}

return mPool;

}

//获取空闲线程

public Worker getIdleThread(){

Worker working =null;

while(true){

synchronized(init_pools){

for (int i = 0; i < max_pool; i++) {

//Worker working = init_pools.get(i);

working = init_pools.get(i);

if (!working.isrunning) {

// System.out.println("工作将由闲置线程" + working.getThreadTag() + "执行");

return working;

}

}

}

try {

Thread.sleep(5000);//放弃CPU,若干时间后重新获取空闲线程

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

public void init() {

System.out.println("线程池初始化开始。。。");

Worker worker = null;

for (int i = 0; i < this.max_pool; i++) {

worker = new Worker("initThread"+i);

init_pools.add(worker);

worker.start();

}

mainThread=new TaskMonitorThread();

mainThread.start();

System.out.println("结束初始化线程池...");

}

public void destory(){

init_pools.clear();

}

}

package com.threadpool;

import java.util.LinkedList;

/**

* 任务管理器

* 1、添加任务

* 2、监测是否有新任务

*/

public class TaskManager {

public static LinkedList workqueue =new LinkedList();// 缓冲队列

/**

* 向工作队列中加入一个任务,由工作线程去执行该任务

*

* @param task

*/

public synchronized static void addTask(WorkTask worktask) {

if (worktask != null &&workqueue.size()<15) {

workqueue.add(worktask);

}

}

/*[com.yulin.threadpool.WorkTaskImp@44f4ac30,

com.yulin.threadpool.WorkTaskImp@44f4ad60,

com.yulin.threadpool.WorkTaskImp@44f4ae00,

com.yulin.threadpool.WorkTaskImp@44f4aea0,

com.yulin.threadpool.WorkTaskImp@44f4af40]*/

/**

* 从工作队列中取出一个任务

*

* @return

* @throws InterruptedException

*/

public synchronized static WorkTask getTask() throws InterruptedException { while (workqueue.size() >0) {

return (WorkTask) workqueue.removeFirst();

}

return null;

}

}

package com.threadpool;

public final class TaskMonitorThread extends Thread {

//private PoolManage threadPool;

private int GetWorkTaskPollTime = 10;// 监测任务轮询时间,可配置

/*public TaskMonitorThread(PoolManage pool) {

System.out.println("正在创建任务监测线程...");

this.threadPool = pool;

}*/

public TaskMonitorThread() {

System.out.println("正在创建任务监测线程...");

}

@Override

public void run() {

// TODO Auto-generated method stub

while (true) {

try {

WorkTask task = TaskManager.getTask();

if (task == null) {

try {

Thread.sleep(5000);

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

} else {

Worker t = PoolManager.getInstance().getIdleThread();// 获取空闲线程

System.out.println("Worker.toString()=============================>?"+t.toString());

if (t == null)

break;

t.setWorkTask(task);// 设置线程任务

System.out.println("task.toString()=============================>?"+task.toString());

t.setIsRunning(true);//激活空闲线程

System.out.println("Worker.toString()=============================>?"+t.getIsrunning( ));

// try {

//Thread.sleep(GetWorkTaskPollTime);

//

}

} catch (InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

}

package com.threadpool;

/**

* 线程池测试类,测试功能如下:

* 1、测试线程池创建功能

* 2、测试处理并发请求功能

* 3、测试关闭功能

**/

public class TestThreadPool {

public static void main(String[] args){

//创建线程池,开启处理请求服务

PoolManager pool=PoolManager.getInstance();

pool.init();

//接收客户端请求

WorkTask task1=new WorkTaskAImp("执行超时任务1...");

TaskManager.addTask(task1);

final int requestCount=15;

for(int i=0;i

WorkTask task=new WorkTaskImp("执行第"+i+"个增加用户操作.....");

TaskManager.addTask(task);

}

/**/

}

}

package com.threadpool;

/**

* 工作线程(WorkThread): 线程池中线程

* @author yulin

*

*/

public class Worker extends Thread {

public boolean isrunning=false;

private WorkTask nowTask; // 当前任务

private Object threadTag;// 线程标识

//获取线程标识key

public Object getThreadTag() {

return threadTag;

}

public synchronized void setWorkTask(WorkTask task) {

this.nowTask = task;

}

public synchronized void setIsRunning(boolean flag) {

this.isrunning = flag;

if (flag) {

this.notify();

}

}

public Worker(Object key) {

System.out.println("正在创建工作线程...线程编号" + key.toString());

this.threadTag = key;

// this.state=CREA TESTA TE;

}

public boolean getIsrunning() {

return isrunning;

}

public synchronized void run() {

System.out.println("工作线程" + this.getThreadTag() + "初始化成功");

while (true) {

if (!isrunning) {

try {

System.out.println("工人" + this.getThreadTag() + "任务完成回归线程池");

this.wait();

} catch (InterruptedException e) {

System.out.println("线程被阻挡");

e.printStackTrace();

}

} else {

//try {

nowTask.runTask();

setIsRunning(false);

System.out.println("工人" +this.getThreadTag() + "开始工作");

//this.sleep(3000);

//} catch (InterruptedException e) {

// e.printStackTrace();

//}

//this.notify();

//break;

}

}

}

}

package com.threadpool;

public interface WorkTask {

public void runTask();//执行工作任务

//public int compareTo(mJob job);

public void cancelTask();

public int getProgress();

}

package com.threadpool;

/**

* 任务类1

* 正常执行的工作任务

*/

public class WorkTaskAImp implements WorkTask {

protected String param;

public WorkTaskAImp(){

}

public WorkTaskAImp(String param){

this.param=param;

}

@Override

public void runTask() {

// TODO Auto-generated method stub

// Log.v("=============>Task1", this.param);

System.out.println("=============>Task1"+this.param);

}

@Override

public void cancelTask() {

// TODO Auto-generated method stub

}

@Override

public int getProgress() {

// TODO Auto-generated method stub

return 0;

}

}

package com.threadpool;

/**

* 任务类1

* 正常执行的工作任务

*/

public class WorkTaskImp implements WorkTask {

protected String param;

public WorkTaskImp(){

}

public WorkTaskImp(String param){

this.param=param;

}

@Override

public void runTask() {

// TODO Auto-generated method stub

System.out.println("=============>Task0"+this.param);

}

@Override

public void cancelTask() {

// TODO Auto-generated method stub

}

@Override

public int getProgress() {

// TODO Auto-generated method stub

return 0;

}

}

Java多线程和输入输出流

班级:13科技2班学号:201324131225 姓名:许耿宁 Java多线程和输入输出流 一、实验目的: 1.熟悉利用Thread类建立多线程方法。 2.熟悉利用Thread接口建立多线程方法。 3.熟悉Java的文件读写机制,练习输入输出流的使用。 二、实验内容: 1.阅读下列程序,分析并上机检验其功能。 public class DelayRunnable implements Runnable{ private static int count=0; private int no; private int delay; public DelayRunnable(){ count++; no=count; } public void run(){ try{ for (int i=0;i<10;i++){ delay=(int)(Math.random()*5000); Thread.sleep(delay); System.out.println("Thread "+no+" with a delay "+delay); } }catch(InterruptedException e){} } } class MyRunnable{ public static void main(String args[]){ DelayRunnable r1 = new DelayRunnable();

DelayRunnable r2 = new DelayRunnable(); Thread thread1=new Thread(r1); Thread thread2=new Thread(r2); thread1.start(); thread2.start(); try{ Thread.sleep(1000); }catch(InterruptedException e){ System.out.println("Thread wrong"); } } } 2.将上列程序利用Runnable接口改写,并上机检验。 3.创建简单的程序ThreeThread.java,该程序将创建三个线程,每个线程应当显示它所运行的时间(可以考虑使用Date类或Calendar类)。 4.键盘输入10个整数,从小到大进行排序。 5.接收键盘输入的字符串,用FileInputStream类将字符串写入文件,用 FileOutputStream类读出文件内容显示在屏幕上。 6.将一个文本文件的内容按行读出,每读出一行就顺序加上行号,并写入到另一个文件中。 三、实验要求: 1.通过实验掌握Thread 、Runnable使用方法; 2.程序必须能够实现多线程; 3.程序必须能够完成题目要求; 4.通过实验掌握文件输入输出流的使用方法; 5.程序必须能够从键盘接收字符串并保存在文件中; 6.程序必须能够读出文件内容显示在屏幕上; 7.写出实验报告。 四、实验代码及截图: 第一题: 在编译器上运行程序得到截图所示结果:

java多线程面试题

java多线程面试题 1.什么是多线程编程?什么时候使用? 多线程一般用于当一个程序需要同时做一个以上的任务。多线程通常用于GUI交互程序。一个新的线程被创建做一些耗时的工作,当主线程保持界面与用户的交互。 2.为什么wait(),notify()和notifyall()函数定义在Object类里面? 因为所有类都是继承于Object类,这样所有类就可以简单的进行多线程编程了。 3.wait()方法和sleep()方法有什么不同? sleep()方法执行后仍然拥有线程,只是延时。而wait方法放弃了线程控制,其它线程可以运行,想要再次运行是要重新开始。 4.Thread和Runnable有什么不同? JA V A线程控制着程序执行的主路径。当你用java命令调用JVM时,JVM创建了一个隐式线程来执行main方法。Thread类提供了主线程调用其它线程并行运行的机制。 Runnable接口定义了一个能被Thread运行的类。实现Runnable的类只需要实行run方法。可以很灵活的扩展现在的已经继承自其它父类的类。而thread则不可以,因为java 只允许继承一个父类。 Runnable可以共享数据,Thread是一个类,而Runnable是一个接口 5.我可以重载start()方法么? 可以重载,重载后还要重载run()方法, 9.编译运行下面的代码会发生什么? 1.public class Bground extends Thread{ 2.public static void main(String argv[]) 3.{ 4. Bground b = new Bground(); 5. b.run(); 6.} 7.public void start()

JAVA 面试题总览(书签完整版)

JAVA面试题总览 JAVA基础 1.JAVA中的几种基本数据类型是什么,各自占用多少字节。 2.String类能被继承吗,为什么。 3.String,Stringbuffer,StringBuilder的区别。 4.ArrayList和LinkedList有什么区别。 5.讲讲类的实例化顺序,比如父类静态数据,构造函数,字段,子类静态数据,构造函数, 字段,当new的时候,他们的执行顺序。 6.用过哪些Map类,都有什么区别,HashMap是线程安全的吗,并发下使用的Map是什么, 他们内部原理分别是什么,比如存储方式,hashcode,扩容,默认容量等。 7.JAVA8的ConcurrentHashMap为什么放弃了分段锁,有什么问题吗,如果你来设计, 你如何设计。 8.有没有有顺序的Map实现类,如果有,他们是怎么保证有序的。 9.抽象类和接口的区别,类可以继承多个类么,接口可以继承多个接口么,类可以实现多个接 口么。 10.继承和聚合的区别在哪。 11.IO模型有哪些,讲讲你理解的nio,他和bio,aio的区别是啥,谈谈reactor模型。 12.反射的原理,反射创建类实例的三种方式是什么。 13.反射中,Class.forName和ClassLoader区别。 14.描述动态代理的几种实现方式,分别说出相应的优缺点。 15.动态代理与cglib实现的区别。 16.为什么CGlib方式可以对接口实现代理。 17.final的用途。 18.写出三种单例模式实现。 19.如何在父类中为子类自动完成所有的hashcode和equals实现?这么做有何优劣。 20.请结合OO设计理念,谈谈访问修饰符public、private、protected、default在应 用设计中的作用。 21.深拷贝和浅拷贝区别。 22.数组和链表数据结构描述,各自的时间复杂度。 23.error和exception的区别,CheckedException,RuntimeException的区别。 24.请列出5个运行时异常。 25.在自己的代码中,如果创建一个https://www.360docs.net/doc/f46588135.html,ng.String类,这个类是否可以被类加载器加 载?为什么。

JAVA线程程序设计(小时钟)实验报告(附完整代码)

线程程序设计 一、课题内容和要求 内容:设计和编写一个编写一个指针式时钟程序,应用线程实现时钟的走动。 要求:本实验旨在通过实验,培养学生将JAVA 线程的相关知识点(包括线程调度,线程同步等)有机结合并加以综合应用,在实验中设计多线程程序的能力。 二、设计思路分析 class Clock:一个指针式时钟的主类 class Layout: 添加窗口和时钟组件 class ClockPaint:定义时钟组件 三、概要设计 public class Clock extends JFrame { public static void main(String[] s) ; } class Layout extends JFrame { public Layout(); } class ClockPaint extends JPanel implements Runnable { int x, y, r; int h, m, s; double rad = Math.PI / 180; public ClockPaint(int x, int y, int r); public void paint(Graphics g); public void run(); } 时钟的绘制:

运行时钟: 四、详细设计 import java.awt.*; import javax.swing.*; import java.util.*; public class Clock extends JFrame { public static void main(String[] s) { new Layout(); } } class Layout extends JFrame {// 添加窗口和时钟组件public Layout() { ClockPaint cp = new ClockPaint(20, 20, 70); add(cp);

JAVA线程池原理333

在什么情况下使用线程池? 1.单个任务处理的时间比较短 2.将需处理的任务的数量大 使用线程池的好处: 1.减少在创建和销毁线程上所花的时间以及系统资源的开销 2.如不使用线程池,有可能造成系统创建大量线程而导致消耗完系统内存以及”过度切换”。 线程池工作原理:

线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个任务上。其好处是,因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通过适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从而可以防止资源不足。 线程池的替代方案 线程池远不是服务器应用程序内使用多线程的唯一方法。如同上面所提到的,有时,为每个新任务生成一个新线程是十分明智的。然而,如果任务创建过于频繁而任务的平均处理时间过短,那么为每个任务生成一个新线程将会导致性能问题。 另一个常见的线程模型是为某一类型的任务分配一个后台线程与任务队列。AWT 和 Swing 就使用这个模型,在这个模型中有一个 GUI 事件线程,导致用户界面发生变化的所有工作都必须在该线程中执行。然而,由于只有一个 AWT 线程,因此要在 AWT 线程中执行任务可能要花费相当长时间才能完成,这是不可取的。因此,Swing 应用程序经常需要额外的工作线程,用于运行时间很长的、同 UI 有关的任务。 每个任务对应一个线程方法和单个后台线程(single-background-thread)方法在某些情形下都工作得非常理想。每个任务一个线程方法在只有少量运行时间很长的任务时工作得十分好。而只要调度可预见性不是很重要,则单个后台线程方法就工作得十分好,如低优先级后台任务就是这种情况。然而,大多数服务器应用程序都是面向处理大量的短期任务或子任务,因此往往希望具有一种能够以低开销有效地处理这些任务的机制以及一些资源管理和定时可预见性的措施。线程池提供了这些优点。 工作队列 就线程池的实际实现方式而言,术语“线程池”有些使人误解,因为线程池“明显的”实现在大多数情形下并不一定产生我们希望的结果。术语“线程池”先于Java 平台出现,因此它可能是较少面向对象方法的产物。然而,该术语仍继续广泛应用着。 虽然我们可以轻易地实现一个线程池类,其中客户机类等待一个可用线程、将任务传递给该线程以便执行、然后在任务完成时将线程归还给池,但这种方法却存在几个潜在的负面影响。例如在池为空时,会发生什么呢?试图向池线程传递任务的调用者都会发现池为空,在调用者等待一个可用的池线程时,它的线程将阻塞。我们之所以要使用后台线程的原因之一常常是为了防止正在提交的线程被阻塞。完全堵住调用者,如在线程池的“明显的”实现的情况,可以杜绝我们试图解决的问题的发生。 我们通常想要的是同一组固定的工作线程相结合的工作队列,它使用 wait() 和

多线程常见面试题

1)现在有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完 后执行? T1.start(); T1.join(); T2.start(); T2.join(); T3.start() 2)11) 为什么我们调用start()方法时会执行run()方法,为什么我们不能直接调用run() 方法? start()方法最本质的功能是从CPU中申请另一个线程空间来执行run()方法中的代码,它和当前的线程是两条线,在相对独立的线程空间运行 ,也就是说,如果你直接调用线程对象的run()方法,当然也会执行,但那是在当前线程中执行,run()方法执行完成后继续执行下面的代码.而调用start()方法后,run()方法的代码会和当前线程并发(单CPU)或并行(多CPU)执行。 调用线程对象的run方法不会产生一个新的线程 3)在java中wait和sleep方法的不同? sleep()睡眠时,保持对象锁,仍然占有该锁; 而wait()睡眠时,释放对象锁。 sleep()使当前线程进入停滞状态(阻塞当前线程),让出CUP的使用、目的是不让当前线程独自霸占该进程所获的CPU资源,以留一定时间给其他线程执行的机会; sleep()是Thread类的Static(静态)的方法;因此他不能改变对象的机锁,所以当在一个Synchronized块中调用Sleep()方法是,线程虽然休眠了,但是对象的机锁并木有被释放,其他线程无法访问这个对象(即使睡着也持有对象锁)。 在sleep()休眠时间期满后,该线程不一定会立即执行,这是因为其它线程可能正在运行而且没有被调度为放弃执行,除非此线程具有更高的优先级。 wait()方法是Object类里的方法;当一个线程执行到wait()方法时,它就进入到一个和该对象相关的等待池中,同时失去(释放)了对象的机锁(暂时失去机锁,wait(long timeout)超时时间到后还需要返还对象锁);其他线程可以访问; wait()使用notify或者notifyAlll或者指定睡眠时间来唤醒当前等待池中的线程。 wiat()必须放在synchronized block中,否则会在program runtime时扔出”https://www.360docs.net/doc/f46588135.html,ng.IllegalMonitorStateException“异常。 4)为什么wait, notify 和notifyAll这些方法不在thread类里面? 因为这些是关于锁的 而锁是针对对象的 锁用于线程的同步应用 决定当前对象的锁的方法就应该在对象中吧 我是这么理解的希望对你有帮助

Java多线程技术及案例

Java多线程技术及案例 进程和线程: 进程:每个进程都有独立的代码和数据空间(进程上下文),进程间的切换会有较大的开销,一个进程包含1–n个线程。 线程:同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换开销小。 线程和进程一样分为五个阶段:创建、就绪、运行、阻塞、终止。 多进程是指操作系统能同时运行多个任务(程序)。 多线程是指在同一程序中有多个顺序流在执行。 Java中多线程的多种实现方式 Java中有多种多线程实现方法,主要是继承https://www.360docs.net/doc/f46588135.html,ng.Thread类的方法和 https://www.360docs.net/doc/f46588135.html,ng.Runnable接口的方法。 继承Thread类 Thread是https://www.360docs.net/doc/f46588135.html,ng包中的一个类,从这个类中实例化的对象代表线程,启动一个新线程需要建立一个Thread实例。 使用Thread类启动新的线程的步骤如下: 1.实例化Thread对象 2.调用start()方法启动线程 构造方法:

public Thread(String threadName); public Thread(); 例程: publicclass Thread1extends Thread{//定义一个类继承Thread privateint count=1000; publicvoid run(){//重写run方法 while(true){ System.out.print(count+" "); if(--count==0){ return; } } } publicstaticvoid main(String[] args){ Thread1 th1=new Thread1();//实例化继承了Thread的类 Thread1 th2=new Thread1(); th1.start();//调用start()方法, th2.start(); for(int i=0;i<1000;i++){ System.out.print("A "); } }

java线程学习总结

java线程学习总结1(java thread培训总结1) 1.线程中一些基本术语和概念 (2) 1.1线程的几个状态 (2) 1.2 Daemon线程 (2) 1.3锁的定义 (2) 1.4死锁 (2) 1.5.Java对象关于锁的几个方法 (3) 1.6锁对象(实例方法的锁) (3) 1.7类锁 (4) 1.8.线程安全方法与线程不安全方法 (4) 1.9类锁和实例锁混合使用 (4) 1.10锁的粒度问题 (4) 1.11.读写锁 (5) 1.12 volatile (5) 2.线程之间的通讯 (5) 2.1屏障 (6) 2.2.锁工具类 (6) 2.3.条件变量 (6) 3. Java线程调度 (7) 3.1 Java优先级 (7) 3.2. 绿色线程 (7) 3.3 本地线程 (7) 3.4 Windows本地线程 (7) 3.5线程优先级倒置与继承 (8) 3.6循环调度 (8) 4.线程池 (8) 5工作队列 (9) 6.参考资料 (10)

1.线程中一些基本术语和概念 1.1线程的几个状态 初始化状态 就绪状态 运行状态 阻塞状态 终止状态 1.2 Daemon线程 Daemon线程区别一般线程之处是:主程序一旦结束,Daemon线程就会结束。 1.3锁的定义 为了协调多个并发运行的线程使用共享资源才引入了锁的概念。 1.4死锁 任何多线程应用程序都有死锁风险。当一组线程中的每一个都在等待一个只 有该组中另一个线程才能引起的事件时,我们就说这组线程死锁了。换一个说法就是一组线程中的每一个成员都在等待别的成员占有的资源时候,就可以说这组线程进入了死锁。死锁的最简单情形是:线程 A 持有对象X 的独占锁,并且在等待对象Y 的锁,而线程 B 持有对象Y 的独占锁,却在等待对象X 的锁。除非有某种方法来打破对锁的等待(Java 锁定不支持这种方法),否则死锁的线程将永远等下去。

Java定时任务ScheduledThreadPoolExecutor

Timer计时器有管理任务延迟执行("如1000ms后执行任务")以及周期性执行("如每500ms执行一次该任务")。但是,Timer存在一些缺陷,因此你应该考虑使用ScheduledThreadPoolExecutor作为代替品,Timer对调度的支持是基于绝对时间,而不是相对时间的,由此任务对系统时钟的改变是敏感的;ScheduledThreadExecutor只支持相对时间。 Timer的另一个问题在于,如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以TimerTask抛出的未检查的异常会终止timer 线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被安排但尚未执行的TimerTask永远不会再执行了,新的任务也不能被调度了。 例子: packagecom.concurrent.basic; importjava.util.Timer; import java.util.TimerTask; public class TimerTest { private Timer timer = new Timer(); // 启动计时器 public void lanuchTimer() { timer.schedule(new TimerTask() { public void run() { throw new RuntimeException(); } }, 1000 * 3, 500); } // 向计时器添加一个任务 public void addOneTask() { timer.schedule(new TimerTask() { public void run() { System.out.println("hello world"); } }, 1000 * 1, 1000 * 5); }

精选大厂java多线程面试题50题

Java多线程50题 1)什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速。比如,如果一个线程完成一个任务要100毫秒,那么用十个线程完成改任务只需10毫秒。 2)线程和进程有什么区别? 线程是进程的子集,一个进程可以有很多线程,每条线程并行执行不同的任务。不同的进程使用不同的内存空间,而所有的线程共享一片相同的内存空间。别把它和栈内存搞混,每个线程都拥有单独的栈内存用来存储本地数据。更多详细信息请点击这里。 3)如何在Java中实现线程? https://www.360docs.net/doc/f46588135.html,ng.Thread类的实例就是一个线程但是它需要调用https://www.360docs.net/doc/f46588135.html,ng.Runnable接口来执行,由于线程类本身就是调用的 Runnable接口所以你可以继承https://www.360docs.net/doc/f46588135.html,ng.Thread类或者直接调用Runnable接口来重写run()方法实现线程。 4)Thread类中的start()和run()方法有什么区别? 这个问题经常被问到,但还是能从此区分出面试者对Java线程模型的理解程度。start()方法被用来启动新创建的线程,而且start()内部调用了run()方法,这和直接调用run()方法的效果不一样。当你

调用run()方法的时候,只会是在原来的线程中调用,没有新的线程启动,start()方法才会启动新线程。 5)Java中Runnable和Callable有什么不同? Runnable和Callable都代表那些要在不同的线程中执行的任务。Runnable从JDK1.0开始就有了,Callable是在JDK1.5增加的。它们的主要区别是Callable的call()方法可以返回值和抛出异常,而Runnable的run()方法没有这些功能。Callable可以返回装载有计算结果的Future对象。 6)Java内存模型是什么? Java内存模型规定和指引Java程序在不同的内存架构、CPU 和操作系统间有确定性地行为。它在多线程的情况下尤其重要。 Java内存模型对一个线程所做的变动能被其它线程可见提供了保证,它们之间是先行发生关系。 ●线程内的代码能够按先后顺序执行,这被称为程序次序 规则。 ●对于同一个锁,一个解锁操作一定要发生在时间上后发 生的另一个锁定操作之前,也叫做管程锁定规则。 ●前一个对Volatile的写操作在后一个volatile的读操作之 前,也叫volatile变量规则。 ●一个线程内的任何操作必需在这个线程的start()调用之 后,也叫作线程启动规则。 ●一个线程的所有操作都会在线程终止之前,线程终止规

多线程总结

最近想将java基础的一些东西都整理整理,写下来,这是对知识的总结,也是一种乐趣。已经拟好了提纲,大概分为这几个主题: java线程安全,java垃圾收集,java并发包详细介绍,java profile和jvm性能调优。慢慢写吧。本人jameswxx原创文章,转载请注明出处,我费了很多心血,多谢了。关于java线程安全,网上有很多资料,我只想从自己的角度总结对这方面的考虑,有时候写东西是很痛苦的,知道一些东西,想用文字说清楚,却不是那么容易。我认为要认识 java线程安全,必须了解两个主要的点:java的内存模型,java的线程同步机制。特别是内存模型,java的线程同步机制很大程度上都是基于内存模型而设定的。从暂时写得比较仓促,后面会慢慢补充完善。 浅谈java内存模型 不同的平台,内存模型是不一样的,但是jvm的内存模型规范是统一的。java的多线程并发问题最终都会反映在java的内存模型上,所谓线程安全无非要控制多个线程对某个资源的有序访问或修改。java的内存模型,要解决两个主要的问题:可见性和有序性。我们都知道计算机有高速缓存的存在,处理器并不是每次处理数据都是取内存的。JVM定义了自己的内存模型,屏蔽了底层平台内存管理细节,对于java开发人员,要解决的是在jvm内存模型的基础上,如何解决多线程的可见性和有序性。 那么,何谓可见性?多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。Java内存模型(JMM)规定了jvm有主内存,主内存是多个线程共享的。当new一个对象的时候,也是被分配在主内存中,每个线程都有自己的工作内存,工作内存存储了主存的某些对象的副本,当然线程的工作内存大小是有限制的。当线程操作某个对象时,执行顺序如下: (1) 从主存复制变量到当前工作内存 (read and load) (2) 执行代码,改变共享变量值 (use and assign) (3) 用工作内存数据刷新主存相关内容 (store and write) JVM规范定义了线程对主存的操作指令:read,load,use,assign,store,write。当一个共享便变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。 那么,什么是有序性呢?线程在引用变量时不能直接从主内存中引用,如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,这个过程为read-load,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本(read-load-use),也有可能直接引用原来的副本 (use),也就是说 read,load,use顺序可以由JVM实现系统决定。 线程不能直接为主存中中字段赋值,它会将值指定给工作内存中的变量副本(assign),完成后这个变量副本会同步到主存储区(store- write),至于何时同步过去,根据JVM实现系统决定.有该字段,则会从主内存中将该字段赋值到工作内存中,这个过程为read-load,完成后线程会引用该变量副本,当同一线程多次重复对字段赋值时,比如: for(int i=0;i<10;i++) a++; 线程有可能只对工作内存中的副本进行赋值,只到最后一次赋值后才同步到主存储区,所以assign,store,weite顺序可以由JVM实现系统决定。假设有一个共享变量x,线程a执行x=x+1。从上面的描述中可以知道x=x+1并不是一个原子操作,它的执行过程如下:

2019最新Java面试题,常见面试题及答案汇总

ava最新常见面试题+ 答案汇总 1、面试题模块汇总 面试题包括以下十九个模块:Java 基础、容器、多线程、反射、对象拷贝、Java Web 模块、异常、网络、设计模式、Spring/Spring MVC、Spring Boot/Spring Cloud、Hibernate、Mybatis、RabbitMQ、Kafka、Zookeeper、MySql、Redis、JVM 。如下图所示: 可能对于初学者不需要后面的框架和JVM 模块的知识,读者朋友们可根据自己的情况,选择对应的模块进行阅读。 适宜阅读人群 需要面试的初/中/高级java 程序员 想要查漏补缺的人 想要不断完善和扩充自己java 技术栈的人 java 面试官 具体面试题 下面一起来看208 道面试题,具体的内容。 一、Java 基础 1.JDK 和JRE 有什么区别? 2.== 和equals 的区别是什么? 3.两个对象的hashCode()相同,则equals()也一定为true,对吗? 4.final 在java 中有什么作用? 5.java 中的Math.round(-1.5) 等于多少? 6.String 属于基础的数据类型吗? 7.java 中操作字符串都有哪些类?它们之间有什么区别? 8.String str="i"与String str=new String(“i”)一样吗? 9.如何将字符串反转? 10.String 类的常用方法都有那些? 11.抽象类必须要有抽象方法吗? 12.普通类和抽象类有哪些区别? 13.抽象类能使用final 修饰吗?

14.接口和抽象类有什么区别? 15.java 中IO 流分为几种? 16.BIO、NIO、AIO 有什么区别? 17.Files的常用方法都有哪些? 二、容器 18.java 容器都有哪些? 19.Collection 和Collections 有什么区别? 20.List、Set、Map 之间的区别是什么? 21.HashMap 和Hashtable 有什么区别? 22.如何决定使用HashMap 还是TreeMap? 23.说一下HashMap 的实现原理? 24.说一下HashSet 的实现原理? 25.ArrayList 和LinkedList 的区别是什么? 26.如何实现数组和List 之间的转换? 27.ArrayList 和Vector 的区别是什么? 28.Array 和ArrayList 有何区别? 29.在Queue 中poll()和remove()有什么区别? 30.哪些集合类是线程安全的? 31.迭代器Iterator 是什么? 32.Iterator 怎么使用?有什么特点? 33.Iterator 和ListIterator 有什么区别? 34.怎么确保一个集合不能被修改?

java学习整体总结

CoreJava部分 1 简述下java基本数据类型及所占位数,java基本数据类型:4类8种 整数类型:byte(1byte),short(2byte),int(4byte),long(8byte) 浮点类型:float(4byte),double(8byte) 字符类型:char(2byte) 逻辑类型:boolean(false/true 1byte) 2 说出5个启动时异常 RunTimeException ------NullPointerException ------ArrayIndexOutOfBoundsException ------ClassCastException ------NumberFormatException 3 HashMap 和HashTable的区别: 1HashMap 允许空键值对,HashTable不允许 2HashMap不是线程安全的,HashTable是 3HashMap直接实现Map接口,HashTable继承Dictionary类 4. ArrayList,Vector,LinkedList存储性能和区别 它们都实现了List接口 ArrayList和Vector都是基于数组实现的 LinkedList基于双向循环链表(查找效率低,添加删除容易) ArrayList不是线程安全的而Vector是线程安全的,所有速度上 ArrayList高于Vector 5. Collection和Collections的区别 Collection是集合类的上级接口,继承与他的接口主要有Set和List Collections是针对集合类的一个帮助类,他提供一系列静态方法实现对各种集合的搜索、排序、线程安全等操作。 6 List、Map、Set三个接口,存取元素时,各有什么特点? List以特定次序来持有元素,可有重复元素。 Set 无法持有重复元素,内部排序 Map保存key-value值,value可多值。 7 final,finally,finalize的区别 Final用于声明属性,方法和类,分别表示属性不可变,方法不可覆盖,类不可继承 Finally 是异常处理语句结构的一部分,表示总是执行 Finalize 是Object类的一个方法,在垃圾收集时的其他资源回收,例如关闭文件等。 8 Overload和Override的区别。Overload的方法是否可以改变返回值的

手把手教你做一个java线程池小例子

废话不多说开整 我用的是eclipse(这应该没多大影响) 建一个工程java工程和web工程都行然后建一个包建一个类带main方法 首先贴出来的是内部类 //继承了runnable接口 class MyTask implements Runnable { private int taskNum; public MyTask(int num) { this.taskNum = num; } @Override public void run() { System.out.println("正在执行task "+taskNum); try { //写业务 Thread.currentThread().sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("task "+taskNum+"执行完毕!"); } } 接下来就是这个类 public class testOne { public static void main(String[] args) { ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 7, 10, https://www.360docs.net/doc/f46588135.html,LISECONDS, new ArrayBlockingQueue(2),new ThreadPoolExecutor.DiscardOldestPolicy() );

for(int i=0;i<15;i++){ MyTask myTask = new MyTask(i); executor.execute(myTask); System.out.println("线程池中线程数目: "+executor.getPoolSize()+"队列等待执行的任务数目:"+ executor.getQueue().size()+"已经执行完别的任务数目: "+executor.getCompletedTaskCount()); } executor.shutdown(); } } 接下来在说明一下ThreadPoolExecutor的参数设置ThreadPoolExecutor(int corePoolSize,//线程池维护线程的最少数量 int maximumPoolSize,//线程池维护线程的最大数量 long keepAliveTime,//线程池维护线程所允许的空闲时间 TimeUnit unit, 线程池维护线程所允许的空闲时间单位 BlockingQueue workQueue,线程池所使用的缓存队列 RejectedExecutionHandler handler线程池对拒绝任务的处理策略 ) handler有四个选择: ThreadPoolExecutor.AbortPolicy() 抛出java.util.concurrent.RejectedExecutionException异常 ThreadPoolExecutor.CallerRunsPolicy() 重试添加当前的任务,他会自动重复调用execute()方法 ThreadPoolExecutor.DiscardOldestPolicy() 抛弃旧的任务 ThreadPoolExecutor.DiscardPolicy() 抛弃当前的任务 上面是一个例子接下来再来一个例子

15个Java多线程面试题及答案

15个Java多线程面试题及答案 1)现在有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行? 这个线程问题通常会在第一轮或电话面试阶段被问到,目的是检测你对”join”方法是否熟悉。这个多线程问题比较简单,可以用join方法实现。 2)在Java中Lock接口比synchronized块的优势是什么?你需要实现一个高效的缓存,它允许多个用户读,但只允许一个用户写,以此来保持它的完整性,你会怎样去实现它? lock接口在多线程和并发编程中最大的优势是它们为读和写分别提 供了锁,它能满足你写像ConcurrentHashMap这样的高性能数据结构和有条件的阻塞。Java线程面试的问题越来越会根据面试者的回答来提问。芯学苑老师强烈建议在你在面试之前认真读一下Locks,因为当前其大量用于构建电子交易终统的客户端缓存和交易连接空间。 3)在java中wait和sleep方法的不同?

通常会在电话面试中经常被问到的Java线程面试问题。最大的不同是在等待时wait会释放锁,而sleep一直持有锁。Wait通常被用于线程间交互,sleep通常被用于暂停执行。 4)用Java实现阻塞队列。 这是一个相对艰难的多线程面试问题,它能达到很多的目的。第一,它可以检测侯选者是否能实际的用Java线程写程序;第二,可以检测侯选者对并发场景的理解,并且你可以根据这个问很多问题。如果他用wait()和notify()方法来实现阻塞队列,你可以要求他用最新的Java 5中的并发类来再写一次。 5)用Java写代码来解决生产者——消费者问题。 与上面的问题很类似,但这个问题更经典,有些时候面试都会问下面的问题。在Java中怎么解决生产者——消费者问题,当然有很多解决方法,我已经分享了一种用阻塞队列实现的方法。有些时候他们甚至会问怎么实现哲学家进餐问题。 6)用Java编程一个会导致死锁的程序,你将怎么解决?

java并发编程艺术总结.

1、并发编程的挑战 上下文切换:CPU通过时间片分配算法来循环执行任务,在切换任务的过程中,会保存上一个任务的状态,以便在下次切换回这个任务时,可以再加载这个任务的状态。 减少上下文切换的方法:无锁并发编程、CAS算法、使用最少线程和使用协程 2、Java并发机制的底层实现原理 Java代码编译后java字节码然后加载到JVM然后转化为CUP执行的汇编,java的并发依赖于JVM的实现与CPU的指令。 1. Volatile的应用 可见性:当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。 后面还是详细介绍volatile关键字 2. synchronized的实现原理与应用 1) synchronized简介 synchronized在JVM中实现,JVM基于进入与退出Monitor对象来实现方法同步与代码块同步,在同步代码块前后分别形成monitorenter和monitorexit这两个字节码。synchronized的锁存放在java对象头里,在对象头里有关于锁的信息:轻量级锁,重量级锁,偏向锁。(对象头里还包括:GC标记、分代年龄、线程ID、HashCode等。) 2) 锁的介绍 级别从低到高:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,锁能升级不能降级,目的是提高获取锁和释放锁的效率。 偏向锁: 在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一个线程多次获得。

为了让线程获得锁的代价更低而引入了偏向锁。 当一个线程访问同步块并获取锁(对象)时,会在对象头里记录偏向锁的线程ID。以后该线程进入与退出同步块时不需要进行CAS操作来加锁和解锁。如果在运行过程中,遇到了其他线程抢占锁,则持有偏向锁的线程会被挂起,JVM会尝试消除它身上的偏向锁,将锁恢复到标准的轻量级锁。 轻量级锁: 线程通过CAS来获取锁(线程栈帧中有存储锁记录的空间,将Mask Word复制到锁记录中,然后尝试使用CAS将对象头中的Mask Word替换成指向锁记录的指针),如果成功,就获取锁,失败就尝试自旋来获取锁。 重量级锁: 为了避免在轻量级中无用的自旋(比如获取到锁的线程被阻塞住了),JVM可以将锁升级成重量级。当锁处于这个状态时,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程。 锁优点缺点使用场景 偏向锁加锁与解锁不需要 额外的消耗。线程存在竞争时, 会带来额外的锁撤 销的消耗 适用于只有一个 线程访问同步块 轻量级锁竞争的线程不会阻 塞,提高了程序的 响应速度始终得不到锁竞争 的线程,自旋消耗 CPU 追求响应时间, 同步块执行速度 非常快 重量级锁线程竞争不使用自 旋,不会消耗CPU 线程阻塞,响应时 间缓慢 追求吞吐量,同 步块执行时间较 长 3. 原子操作的实现原理 原子:不能被中断的一个或一系列操作。 在java中可以通过锁和循环CAS的方式来实现原子操作。 1) 使用循环CAS实现原子操作 利用处理器提供的CAS指令来实现,自旋CAS现在的基本思路就是循环进

java深入理解线程池

深入研究线程池 一.什么是线程池? 线程池就是以一个或多个线程[循环执行]多个应用逻辑的线程集合. 注意这里用了线程集合的概念是我生造的,目的是为了区分执行一批应用逻辑的多个线程和 线程组的区别.关于线程组的概念请参阅基础部分. 一般而言,线程池有以下几个部分: 1.完成主要任务的一个或多个线程. 2.用于调度管理的管理线程. 3.要求执行的任务队列. 那么如果一个线程循环执行一段代码是否是线程池? 如果极端而言,应该算,但实际上循环代码应该算上一个逻辑单元.我们说最最弱化的线程池 应该是循环执行多个逻辑单元.也就是有一批要执行的任务,这些任务被独立为多个不同的执行单元.比如: int x = 0; while(true){ x ++; } 这就不能说循环中执行多个逻辑单元,因为它只是简单地对循环外部的初始变量执行++操作. 而如果已经有一个队列 ArrayList al = new ArrayList(); for(int i=0;i<10000;i++){ al.add(new AClass()); } 然后在一个线程中执行: while(al.size() != 0){ AClass a = (AClass)al.remove(0); a.businessMethod(); } 我们说这个线程就是循环执行多个逻辑单元.可以说这个线程是弱化的线程池.我们习惯上把这些相对独立的逻辑单元称为任务. 二.为什么要创建线程池? 线程池属于对象池.所有对象池都具有一个非常重要的共性,就是为了最大程度复用对象.那么 线程池的最重要的特征也就是最大程度利用线程. 从编程模型模型上说讲,在处理多任务时,每个任务一个线程是非常好的模型.如果确实可以这么做我们将可以使用编程模型更清楚,更优化.但是在实际应用中,每个任务一个线程会使用系统限入"过度切换"和"过度开销"的泥潭. 打个比方,如果可能,生活中每个人一辆房车,上面有休息,娱乐,餐饮等生活措施.而且道路交道永远不堵车,那是多么美好的梦中王国啊.可是残酷的现实告诉我们,那是不可能的.不仅每个人一辆车需要无数多的社会资源,而且地球上所能容纳的车辆总数是有限制的. 首先,创建线程本身需要额外(相对于执行任务而必须的资源)的开销.

相关文档
最新文档