全球定位系统的介绍 --通信工程外文翻译

全球定位系统的介绍 --通信工程外文翻译
全球定位系统的介绍 --通信工程外文翻译

毕业设计(论文)外文参考

资料及译文

译文题目:Introduction to the Global Positioning System

全球定位系统的介绍

学生姓名:学号:

专业:通信工程

所在学院:

指导教师:

职称:

201x年 xx月xx日

Introduction to the Global Positioning System

---------From “Corvallis Microtechnology, Inc. 1996”

Chapter One: What is GPS?

The Global Positioning System (GPS) is a location system based on a constellation of about 24 satellites orbiting the earth at altitudes of approximately 11,000 miles. GPS was developed by the United States Department of Defense (DOD), for its tremendous application as a military locating utility. The DOD's investment in GPS is immense. Billions and billions of dollars have been invested in creating this technology for military uses. However, over the past several years, GPS has proven to be a useful tool in non-military mapping applications as well.

GPS satellites are orbited high enough to avoid the problems associated with land based systems, yet can provide accurate positioning 24 hours a day, anywhere in the world. Uncorrected positions determined from GPS satellite signals produce accuracies in the range of 50 to 100 meters. When using a technique called differential correction, users can get positions accurate to within 5 meters or less.

Today, many industries are leveraging off the DOD's massive undertaking. As GPS units are becoming smaller and less expensive, there are an expanding number of applications for GPS. In transportation applications, GPS assists pilots and drivers in pinpointing their locations and avoiding collisions. Farmers can use GPS to guide equipment and control accurate distribution of fertilizers and other chemicals. Also,GPS is used for providing accurate locations and as a navigation tool for hikers, hunters and boaters.

Many would argue that GPS has found its greatest utility in the field of Geographic Information Systems (GIS). With some consideration for error, GPS can provide any point on earth with a unique address (its precise location). A GIS is basically a descriptive database of the earth (or a specific part of the earth). GPS tells you that you are at point X,Y,Z while GIS tells you that X,Y,Z is an oak tree, or a spot in a

stream with a pH level of 5.4. GPS tells us the "where". GIS tells us the "what". GPS/GIS is reshaping the way we locate, organize, analyze and map our resources.

Chapter Two: Trilateration - How GPS Determines a Location

In a nutshell, GPS is based on satellite ranging - calculating the distances between the receiver and the position of 3 or more satellites (4 or more if elevation is desired) and then applying some good old mathematics. Assuming the positions of the satellites are known, the location of the receiver can be calculated by determining the distance from each of the satellites to the receiver. GPS takes these 3 or more known references and measured distances and "triangulates" an additional position.

As an example, assume that I have asked you to find me at a stationary position based upon a few clues which I am willing to give you. First, I tell you that I am exactly 10 miles away from your house. You would know I am somewhere on the perimeter of a sphere that has an origin as your house and a radius of 10 miles. With this information alone, you would have a difficult time to find me since there are an infinite number of locations on the perimeter of that sphere.

Second, I tell you that I am also exactly 12 miles away from the ABC Grocery Store. Now you can define a second sphere with its origin at the store and a radius of 12 miles. You know that I am located somewhere in the space where the perimeters of these two spheres intersect - but there are still many possibilities to define my location.

Adding additional spheres will further reduce the number of possible locations. In fact, a third origin and distance (I tell you am 8 miles away from the City Clock) narrows my position down to just 2 points. By adding one more sphere, you can pinpoint my exact location. Actually, the 4th sphere may not be necessary. One of the possibilities may not make sense, and therefore can be eliminated.

For example, if you know I am above sea level, you can reject a point that has negative elevation. Mathematics and computers allow us to determine the correct point with only 3 satellites.

Based on this example, you can see that you need to know the following information in order to compute your position:

A) What is the precise location of three or more known points (GPS satellites)?

B) What is the distance between the known points and the position of the GPS receiver?

Chapter Three: How the Current Locations of GPS Satellites are Determined GPS satellites are orbiting the Earth at an altitude of 11,000 miles. The DOD can predict the paths of the satellites vs. time with great accuracy. Furthermore, the satellites can be periodically adjusted by huge land-based radar systems. Therefore, the orbits, and thus the locations of the satellites, are known in advance. Today's GPS receivers store this orbit information for all of the GPS satellites in what is known as an almanac. Think of the almanac as a "bus schedule" advising you of where each satellite will be at a particular time. Each GPS satellite continually broadcasts the almanac. Your GPS receiver will automatically collect this information and store it for future reference.

The Department of Defense constantly monitors the orbit of the satellites looking for deviations from predicted values. Any deviations (caused by natural atmospheric phenomenon such as gravity), are known as ephemeris errors. When ephemeris errors are determined to exist for a satellite, the errors are sent back up to that satellite, which in turn broadcasts the errors as part of the standard message, supplying this information to the GPS receivers.

By using the information from the almanac in conjuction with the ephemeris error data, the position of a GPS satellite can be very precisely determined for a given time.

Chapter Four: Computing the Distance Between Your Position and the GPS

Satellites

GPS determines distance between a GPS satellite and a GPS receiver by measuring the amount of time it takes a radio signal (the GPS signal) to travel from the satellite to the receiver. Radio waves travel at the speed of light, which is about 186,000 miles per second. So, if the amount of time it takes for the signal to travel from the satellite to the receiver is known, the distance from the satellite to the receiver (distance = speed x time) can be determined. If the exact time when the signal was transmitted and the exact time when it was received are known, the signal's travel time can be determined.

In order to do this, the satellites and the receivers use very accurate clocks which are synchronized so that they generate the same code at exactly the same time. The code received from the satellite can be compared with the code generated by the receiver. By comparing the codes, the time difference between when the satellite generated the code and when the receiver generated the code can be determined. This interval is the travel time of the code. Multiplying this travel time, in seconds, by 186,000 miles per second gives the distance from the receiver position to the satellite in miles.

Chapter Five: Four (4) Satellites to give a 3D position

In the previous example, you saw that it took only 3 measurements to "triangulate" a 3D position. However, GPS needs a 4th satellite to provide a 3D position. Why?? Three measurements can be used to locate a point, assuming the GPS receiver and satellite clocks are precisely and continually synchronized, thereby allowing the distance calculations to be accurately determined. Unfortunately, it is impossible to synchronize these two clocks, since the clocks in GPS receivers are not as accurate as the very precise and expensive atomic clocks in the satellites. The GPS signals travel from the satellite to the receiver very fast, so if the two clocks are off by only a small fraction, the determined position data may be considerably distorted.

The atomic clocks aboard the satellites maintain their time to a very high degree of

accuracy. However, there will always be a slight variation in clock rates from satellite to satellite. Close monitoring of the clock of each satellite from the ground permits the control station to insert a message in the signal of each satellite which precisely describes the drift rate of that satellite's clock. The insertion of the drift rate effectively synchronizes all of the GPS satellite clocks.

The same procedure cannot be applied to the clock in a GPS receiver. Therefore, a fourth variable (in addition to x, y and z), time, must be determined in order to calculate a precise location. Mathematically, to solve for four unknowns (x,y,z, and t), there must be four equations. In determining GPS positions, the four equations are represented by signals from four different satellites.

Chapter Six: The GPS Error Budget

The GPS system has been designed to be as nearly accurate as possible. However, there are still errors. Added together, these errors can cause a deviation of +/- 50 -100 meters from the actual GPS receiver position. There are several sources for these errors, the most significant of which are discussed below:

Atmospheric Conditions

The ionosphere and troposphere both refract the GPS signals. This causes the speed of the GPS signal in the ionosphere and troposphere to be different from the speed of the GPS signal in space. Therefore, the distance calculated from "Signal Speed x Time" will be different for the portion of the GPS signal path that passes through the ionosphere and troposphere and for the portion that passes through space.

As mentioned earlier, GPS signals contain information about ephemeris (orbital position) errors, and about the rate of clock drift for the broadcasting satellite. The data concerning ephemeris errors may not exactly model the true satellite motion or the exact rate of clock drift. Distortion of the signal by measurement noise can further increase positional error. The disparity in ephemeris data can introduce 1-5 meters of

positional error, clock drift disparity can introduce 0-1.5 meters of positional error and measurement noise can introduce 0-10 meters of positional error.

Ephemeris errors should not be confused with Selective Availability (SA), which is the intentional alteration of the time and ephemeris signal by the Department of Defense.

A GPS signal bouncing off a reflective surface prior to reaching the GPS receiver antenna is referred to as multipath. Because it is difficult to completely correct multipath error, even in high precision GPS units, multipath error is a serious concern to the GPS user.

Chapter Seven: Measuring GPS Accuracy

As discussed above, there are several external sources which introduce errors into a GPS position. While the errors discussed above always affect accuracy, another major factor in determining positional accuracy is the alignment, or geometry, of the group of satellites (constellation) from which signals are being received. The geometry of the constellation is evaluated for several factors, all of which fall into the category of Dilution Of Precision, or DOP.

DOP is an indicator of the quality of the geometry of the satellite constellation. Your computed position can vary depending on which satellites you use for the measurement. Different satellite geometries can magnify or lessen the errors in the error budget described above. A greater angle between the satellites lowers the DOP, and provides a better measurement. A higher DOP indicates poor satellite geometry, and an inferior measurement configuration.

Some GPS receivers can analyze the positions of the satellites available, based upon the almanac, and choose those satellites with the best geometry in order to make the DOP as low as possible. Another important GPS receiver feature is to be able to ignore or eliminate GPS readings with DOP values that exceed user-defined limits. Other GPS receivers may have the ability to use all of the satellites in view, thus minimizing the DOP as much as possible.

全球定位系统的介绍

----摘自Corvallis Microtechnology公司,1996

第一章:什么是GPS?

全球定位系统(GPS)是一种基于24颗高度大约11000英里的地球轨道卫星的定位系统。GPS是美国国防部(DOD)因为其在军事定位装置方面巨大的应用而开发的。国防部对GPS的投入是极大的。已经有数十亿美元的投资为了开发这种军事应用技术。然而,过去一段时间以来,GPS已经被证实是在测绘非军事地图应用方面十分有用的工具。

GPS卫星的轨道足够高以避免以土地为基础的系统相关的问题,还可以在世界上任何地方提供每天24小时准确的定位。在裸眼可视位置GPS卫星信号产生的定位精度为50到100米。当使用差分技术时,用户可以得到精度为5米以下的定位。

今天,许多行业都促使国防部改变。由于GPS单位正变得更小,更便宜,GPS 的应用正在不断增加。在交通运输应用方面,GPS协助飞行员和司机准确定位它们的位置,避免碰撞。农民可以使用GPS引导设备并且控制化肥和其他化学品的准确分布。此外,GPS用于提供准确的位置,并作为徒步旅行者,猎人和船民的导航工具。

很多人认为,GPS已经在地理信息系统(GIS)领域发挥最大的应用。在考虑到一些误差的情况下,GPS可以提供地球上任何一点的唯一一个地址(它的精确位置)。 GIS从根本上说是地球的一个描述的数据库(或地球的特定部分)。GPS会告诉你,你是在点X,Y,Z,而GIS告诉你,X,Y,Z点是一棵橡树,或河流中的一个pH值5.4的点。 GPS告诉我们,“在哪里”, GIS告诉我们“是什么”。 GPS/ GIS正在重塑定位,管理,分析,并且映射我们的资源。

第二章:三边定位——GPS是怎样定位的

简单地说,GPS是基于卫星测距 -计算接收器和3颗或更多颗卫星(4个或更多,如果需要高程)之间的距离,然后用一些以前的正确数字进行计算。假设

卫星的位置是已知的,通过确定每个卫星到接收机的距离,可以计算出接收机的位置。 GPS用这3个或更多的已知的参考和测量距离然后“三角测量”出额外的位置。

作为一个例子,假设我要你根据我给你提供的很少的一些线索让你在一个固定的位置找到我。首先,我告诉你,我离你的房子正好是10英里远。你会知道我在一个以你的房子为圆心,半径10英里的球形边界的地方。只有这些信息,你很难找到我,因为在这球形的边界上有无数的位置点。

第二,我告诉你,我也正好离ABC杂货店12英里远。现在,你可以画出一个以杂货店为圆心,半径12英里的球形。你知道,我所在的地方,在两个球形空间的周长交叉的地方 - 但我的位置还是有很多的可能性。

添加更多的范围将进一步减少可能的地点。事实上,第三个圆心和距离(我告诉你是8英里远的城市时钟)使我的位置缩小到只有2点。再增加一个范围,你可以找出我的确切位置。其实,第四球体可能不是必需的。其中一个可能是没有意义的,并因此可以被消除。

例如,如果你知道我是海平面上,你可以拒绝一个海拔为负的点。数学和计算机让我们能够只用3颗卫星确定正确的点。

基于这个例子,你可以明白,你需要知道以下信息,以便计算你的位置:A)3个或更多的已知点(GPS卫星)的精确位置是什么?

B)已知点的位置和GPS接收器之间是多少距离?

第三章:如何确定GPS卫星当前位置

GPS卫星在高度为11000公里的轨道绕地球飞行。国防部可以非常准确地预测卫星的路径与时间的关系。此外,卫星还可以定期通过巨大的陆基雷达系统进行调整。因此,轨道,卫星的位置,都是预先已知的。今天的GPS接收器存储所有的GPS卫星的轨道信息,被称为星历。你的星历像“巴士时刻表”,提醒你每颗卫星在一个特定的时间点在什么地方。每个GPS卫星不断广播星历。你的GPS

接收器会自动收集这些信息,并将其存储以供将来参考。

国防部不断地监视卫星的轨道预测值的偏差。任何偏差(由于自然的大气现象,如重力),被称为星历误差。当被确定为存在卫星星历误差,误差被发送备份到该卫星,依次将错误作为标准的消息的一部分广播,提供这种信息给GPS 接收机。

通过使用星历表的信息误差数据,可以很精确地在一个给定的时间确定GPS 卫星的位置。

第四章:计算你的位置和GPS卫星之间的距离

GPS通过测量卫星和接收机之间无线电信号(GPS信号)传输所花费的时间来确定卫星和接收机的距离。无线电波以光速传播,这是大约每秒186,000英里的速度。因此,如果信号从卫星到接收机的时间量是已知的,卫星到接收机的距离(距离=速度×时间)可以被确定。如果信号发送和收到的时间确定,信号的传输时间才能确定。

为了做到这一点,卫星和接收机使用非常精确的同步时钟,以便它们在完全相同的时间,生成相同的代码。从卫星接收的代码可以跟接收器产生的代码进行比较。通过比较代码,卫星产生代码时与接收机接收后产生代码之间的时间差可以被确定。这个时间间隔为代码的旅行时间。每秒186,000英里的速度乘以这个时间间隔就是接收机位置与卫星之间的距离。

第五章:四颗卫星定位3D位置

在前面的例子中,你看到了,只用了3个测量“三角测量”三维位置。然而,GPS需要第四个卫星提供三维位置。为什么?

三个测量值可以用来定位一个点,假设GPS接收机和卫星时钟是精确和连续的同步的,从而使计算出阿里的距离非常精确。不幸的是,这两个时钟是不可能同步的,因为GPS接收机中的时钟是不像非常精确和昂贵的卫星原子钟那样精确的。GPS信号从卫星到接收机的速度非常快,所以,如果两个时钟是不同步的,

即使只有一小部分,所确定的位置数据也会大大失真。

船上的卫星的原子钟保持自己的时间在一个非常高的精确度。然而,卫星与卫星之间的时钟速率总是会有轻微的变化。从地面关闭监测每颗卫星的时钟使得控制站能在每个卫星的信号中插入精确地描述了该卫星的时钟漂移率的消息。有效的漂移速率的插入同步了的所有GPS卫星的时钟。

相同的程序不能被施加到一个GPS接收器中的时钟上。因此,第四个变量(除了为x,y和z),时间,必须确定,以计算一个精确的位置。在数学上,解决四个未知数(x,y和z,和t),必须有四个方程。在确定GPS定位上,四个方程表示从四个不同卫星的信号。

第六章:GPS误差

GPS系统已被设计为尽可能接近尽可能准确。然而,仍然有误差。这些错误加在一起可能会导致实际的GPS接收器的位置偏差为+ / - 50 -100米。这些错误的来源有几个,其中最重要的如下:

大气环境

电离层和对流层都折射GPS信号。这会导致从空间中传输的GPS信号的速度与电离层和对流层中的GPS信号的速度是不同的。因此,从“信号速度×时间”的计算的距离将是不同的GPS信号的路径,穿过电离层和对流层的部分,其通过空间的部分。

正如前面提到的,GPS信号包含有关下列内容的信息的星历表(轨道位置)的错误,和有关的广播卫星的时钟漂移的速率。星历误差的数据可能不完全模拟真实的的卫星运动或时钟漂移的准确率。测量噪声的信号失真,可以进一步增加的位置误差。星历数据的差距可以推出1-5米的位置误差,时钟漂移差距引起0-1.5米的位置误差,测量噪声可以导致0-10米的误差。

星历误差不应该与选择可用性(SA)混淆,SA是国防部对信号的时间和星历的蓄意篡改。

多个反射面到达GPS接收机天线之间的GPS信号被称为多径。因为它是难以完全纠正,即使在高精确度的GPS单元也有多路径误差,多路径误差的是GPS 用户的一个严重的问题。

第七章:测量GPS精度

如上所讨论的,有几个外部来源引起了GPS位置的误差。虽然上面讨论的误差总是会影响精度,确定定位精度的另一个主要因素是正在接收信号的一组卫星(星座)的排布或几何分布。星座的几何形状被几个因素评价,所有这些都归入精度稀释的类别中,或称为DOP。

DOP是的卫星星座的几何形状的质量的指标。您的计算出的位置可能有所不同,这取决于使用的用于测量的卫星。不同的卫星的几何形状,可以放大或减少上述误差预算中的错误。卫星之间的更大的角度会降低DOP,并提供了一个更好的测量量。较高的DOP表示卫星排列位置不合理和一种低劣的测量结构。

一些GPS接收器可以根据历书分析可用卫星的位置,并选择这些卫星的最佳几何形状,以尽可能DOP使降低。 GPS接收器的另一个重要的特点是可以忽略或消除超过用户定义的限制受DOP影响的GPS读数。其他的GPS接收器可能有能力使用在视野中的所有的卫星,从而尽可能的最大限度地减少了DOP。

红外数据通信技术外文翻译文献

红外数据通信技术外文翻译文献(文档含中英文对照即英文原文和中文翻译) Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique, drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos

etc. characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage. Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit customer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish customer’s operation demand. Keywords: Infrared dray;Code;Decoding;LM386;Red outside transceiver 1 Introduction 1.1 research the background and significance Infrared Data Communication Technology is the world wide use of a wireless connection technology, by the many hardware and software platforms supported. Is a data through electrical pulses and infrared optical pulse switch between the wireless data transceiver technology.

通信工程专业英语翻译

通信工程专业英语翻译 JXTA is a crystallization by Sun company's chief scientist Bill Joy's more than twenty years of brewing."JXTA technology is a platform for Network programming and calculation.To solve the modern distribution calculation especially peer-to-peer (Peer to Peer, P2P) in the calculation of the problem".[1] JXTA research project,which will provide a new framework that make the user more convenient to access to connect on the Internet's personal computer resources, thus further expand Internet 's space. At the same time JXTA is also the Sun's "ONE Internet" strategic continuance, and will take a more positive attitude to compete with the .net strategy of Microsoft and Hailstorm plan . JXTA agreement defines a set of six agreement based on XML, the organization of node into node group, release and found some resources, communication and mutual monitoring provides standardized method.(Endpoint Routing Protocol,ERP) is used for node found routing.To send a message to other nodes, and through the potential firewall and connection.(Rendezvous Protocol,RVP) s used for the nodes in the group to spread information.(Peer Resolver Protocol,PRP) is Used to one or more points to send general inquiries, and receive the response of inquiries.

《自动化专业英语》中英文翻译-中文部分

第二部分 控制理论 第1章 1.1控制系统的引入 人类控制自然力量的设计促进人类历史的发展,我们已经广泛的能利用这种量进行在人类本身力量之外的物理进程?在充满活力的20世纪中,控制系统工程的发展已经使得很多梦想成为了现实?控制系统工程队我们取得的成就贡献巨大?回首过去,控制系统工程主要的贡献在机器人,航天驾驶系统包括成功的实现航天器的软着陆,航空飞机自动驾驶与自动控制,船舶与潜水艇控制系统,水翼船?气垫船?高速铁路自动控制系统,现代铁路控制系统? 以上这些类型的控制控制系统和日常生活联系紧密,控制系统是一系列相关的原件在系统运行的基础上相互关联的构成的,此外控制系统存在无人状态下的运行,如飞机自控驾驶,汽车的巡航控制系统?对于控制系统,特别是工业控制系统,我们通常面对的是一系列的器件,自动控制是一个复合型的学科?控制工程师的工作需要具有力学,电子学,机械电子,流体力学,结构学,无料的各方面的知识?计算机在控制策略的执行中具有广泛的应用,并且控制工程的需求带动了信息技术的与软件工程的发展? 通常控制系统的范畴包括开环控制系统与闭环控制系统,两种系统的区别在于是否在系统中加入了闭环反馈装置? 开环控制系统 开环控制系统控制硬件形式很简单,图2.1描述了一个单容液位控制系统, 图2.1单容液位控制系统 我们的控制目标是保持容器的液位h 在水流出流量V 1变化的情况下保持在一定 可接受的范围内,可以通过调节入口流量V 2实现?这个系统不是精确的系统,本系 统无法精确地检测输出流量V 2,输入流量V 1以及容器液位高度?图2.2描述了这 个系统存在的输入(期望的液位)与输出(实际液位)之间的简单关系, 图2.2液位控制系统框图 这种信号流之间的物理关系的描述称为框图?箭头用来描述输入进入系统,以及

通信工程专业英文的自我介绍

通信工程专业英文的自我介绍 通信工程专业英文的自我介绍 请大家一起来分享这一篇关于通信工程专业的英文自我介绍范文: Good moring,Ladies and Gentlemen! It is great honour for me to take this interview,thank you for giving me this chance! My name is xx, i am an undergraduate of xidian university,major in telecommunication engineering.as the cradle of china’s telecommunication talents,xidian universtiy’s long history,good research atmosphere and the long term cooperation with xx institue, provide me an excellent stduy environment. after abo ut four years’ hard work, i have learnd all the courses of telecommunication engineering and have good command of the

basis of telecommunication technology. I am confident that my solid education background will lay me a sound foundation to fulfill my master degree courses! in addition to my solid education background,i have good communicate skill and strong team spirit.i strongly believe this will be a great help for me to fullfil my master degree courses.futher more,i am healthy and tough.besides study i enjoy playing basketball much!Sports give me a healthy body and tough mind. That’s all, thank you very much!

通信工程项目毕业材料外文翻译

用于多跳认知无线电网络的分布式网络编码控制信道 Alfred Asterjadhi等著 1 前言 大多数电磁频谱由政府机构长期指定给公司或机构专门用于区域或国家地区。由于这种资源的静态分配,许可频谱的许多部分在许多时间和/或位置未使用或未被充分利用。另一方面,几种最近的无线技术在诸如IEEE802.11,蓝牙,Zigbee之类的非许可频段中运行,并且在一定程度上对WiMAX进行操作;这些技术已经看到这样的成功和扩散,他们正在访问的频谱- 主要是2.4 GHz ISM频段- 已经过度拥挤。为了为这些现有技术提供更多的频谱资源,并且允许替代和创新技术的潜在开发,最近已经提出允许被许可的设备(称为次要用户)访问那些许可的频谱资源,主要用户未被使用或零星地使用。这种方法通常被称为动态频谱接入(DSA),无线电设备发现和机会性利用未使用或未充分利用的频谱带的能力通常称为认知无线电(CR)技术。 DSA和CR最近都引起了无线通信和网络界的极大关注。通常设想两种主要应用。第一个是认知无线接入(CW A),根据该认知接入点,认知接入点负责识别未使用的许可频谱,并使用它来提供对次用户的接入。第二个应用是我们在这个技术中研究的应用,它是认知自组织网络(CAN),也就是使用 用于二级用户本身之间通信的无许可频谱,用于诸如点对点内容分发,环境监控,安全性等目的,灾难恢复情景通信,军事通信等等。 设计CAN系统比CW A有更多困难,主要有两个原因。第一是识别未使用的频谱。在CW A中,接入点的作用是连接到互联网,因此可以使用简单的策略来推断频谱可用性,例如查询频谱调节器在其地理位置的频谱可用性或直接与主用户协商频谱可用性或一些中间频谱经纪人另一方面,在CAN中,与频谱调节器或主要用户的缺乏直接通信需要二级用户能够使用检测技术自己识别未使用的频谱。第二个困难是辅助用户协调媒体访问目的。在CW A中存在接入点和通常所有二级用户直接与之通信(即,网络是单跳)的事实使得直接使用集中式媒体接入控制(MAC)解决方案,如时分多址(TDMA)或正交频分多址(OFDMA)。相反,预计CAN将跨越多跳,缺少集中控制器;而对于传统的单通道多跳自组织网络而言,这个问题的几个解决方案是已知的,因为假设我们处理允许设备访问的具有成

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面

1、 外文原文 A: Fundamentals of Single-chip Microcomputer Th e si ng le -c hi p m ic ro co mp ut er i s t he c ul mi na ti on of both t h e de ve lo pm en t o f t he d ig it al co m pu te r an d th e i n te gr at ed c i rc ui t a rg ua bl y t h e to w m os t s ig ni f ic an t i nv en ti on s o f t he 20th c e nt ur y [1]. Th es e t ow ty pe s of ar ch it ec tu re a re fo un d i n s in g le -ch i p m i cr oc om pu te r. So m e em pl oy t he spl i t pr og ra m/da ta m e mo ry o f th e H a rv ar d ar ch it ect u re , sh ow n in Fi g.3-5A -1, o th ers fo ll ow t he p h il os op hy , wi del y a da pt ed f or ge n er al -p ur po se co m pu te rs a nd m i cr op ro ce ss o r s, o f ma ki ng n o log i ca l di st in ct ion be tw ee n p r og ra m an d d at a m e mo ry a s i n t he P r in ce to n ar ch ite c tu re , sh ow n i n F ig.3-5A-2. In g en er al te r ms a s in gl e -chi p m ic ro co mp ut er i s c h ar ac te ri ze d b y t h e i nc or po ra ti on o f a ll t he un it s of a co mp uter i n to a s in gl e d ev i ce , as s ho wn in Fi g3-5A -3. Fig.3-5A-1 A Harvard type Program memory Data memory CPU Input& Output unit memory CPU Input& Output unit

通信英文翻译

附录一 介绍射频设备与系统设计 1.1定义 许多学科尽量安排事情成为某种逻辑顺序并给予定义,功能,特点,和进程。几乎所有的时间,例如定义失败,至少在一定程度上,这种做法仍在继续,尽管明显缺陷和不准确之处大量存在。最重要的是,教育进入该领域的兴趣已经容易得多。 电气和电子工程师协会历来分为4个或5个类别。然而,词的含义仍然可以混淆。一个简单的电子设计,最低级别的层次往往是组成元件,如电阻,电感,和晶体管。它们连接的形式电路[例如,电压调节器或自动增益控制放大器(自动增益控制) ] ,如果这种放大器投入物理外壳,并配有同轴连接器,许多同事称为装置。整理了一些设备,其中一些往往只是电路相邻的非常同样的印刷电路板,成为一台设备。这可能是,例如,一个接收器(接收),发射器(发射),或频谱分析仪。最后,当设计师有一个捆绑的发射和接收器,他或她可以配置一个完整的射频系统,这可能是用来传输地面数字电视信号或跟踪潜在的敌机。这五个步骤的过程中进一步澄清如图1.1 。 图1.1五个步骤的设计。相邻块之间的界限不是定死的,有时不同的阶段是不需要的

射频系统可能会失败,由于一个坏电阻或一个事实,即经营点放大器已漂流了适当的区域。这种事情确实发生多次在现实生活中,并一定会再次发生。然而,这本书一般认为,元件和电路设计方面所涵盖其他地区。在这里,重点是设计和分析完整的设备(例如,RXs ,并在更大的程度,系统,如雷达或无线电通信网络) 。这个词系统有许多定义,有些或许比别人做得更好。系统工程更难在简短的描述,但我们可以尝试的话说,这是一个聪明的方式相结合的能力,不同的工程学科取得成功的结果。它也考虑到了不同程度的有害的副作用,并试图以确保既定目标得到满足均匀。不可避免地,系统的工程技术处理任务中,有一种强烈的之间的相互耦合的各种界别的利益。失败的系统工程努力是很容易认识到一旦发生。它可以被描述作为一套火箭爆炸punctuating 研究计划[ 1 ]或错误的解释右手圆极化在世界上第一个卫星电视中继会议[ 2 ] 。技术史二次大战充满例子越来越少幸运系统工程[ 3 ]是企业的生命和行动前俄罗斯和平号空间站 [ 4 ] 。 图1.2基本的射频系统组成的一个收发系统,,两个天线和传播路径介于两者之间。 这本书籍,图1.2是一个很好的例子,一个射频系统。我们通常至少有两个天线,一个两端的传播路径。一个网站有一个得克萨斯州,其他的收发。德克萨斯州的基石包括一些主振荡器,一个调制输入和相邻的调制器,以及一些功率放大器( PA ) 。一个电源是必须的。在接收我们经常有一个低噪声前置放大器;一些混合或下变频,而这又需要主振荡器(通常称为本地振荡器) ;一个解调;之后,一套基带放大器和处理器。 1.2读者应该知道些什么 许多RF 工程师从大学毕业获得了一个坚实的背景在无线电波的传播,天线,传输线分析,电子电路理论和也至少有一些能力的节目。事实上,由于大多数射频系统是真正的体育建筑,人们可以看到,触摸,感受,一个基本的了解机械工程基本面将是一个很大的帮助以这本书的读者。电磁理论的基础最电气工程和射

5G无线通信网络中英文对照外文翻译文献

5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 5G无线通信网络的蜂窝结构和关键技术 摘要 第四代无线通信系统已经或者即将在许多国家部署。然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。面临潜在技术的未知挑战也被讨论了。 介绍 信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。 然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。越来越多的

电气自动化专业毕业论文英文翻译

电厂蒸汽动力的基础和使用 1.1 为何需要了解蒸汽 对于目前为止最大的发电工业部门来说, 蒸汽动力是最为基础性的。 若没有蒸汽动力, 社会的样子将会变得和现在大为不同。我们将不得已的去依靠水力发电厂、风车、电池、太阳能蓄电池和燃料电池,这些方法只能为我们平日用电提供很小的一部分。 蒸汽是很重要的,产生和使用蒸汽的安全与效率取决于怎样控制和应用仪表,在术语中通常被简写成C&I(控制和仪表 。此书旨在在发电厂的工程规程和电子学、仪器仪表以 及控制工程之间架设一座桥梁。 作为开篇,我将在本章大体描述由水到蒸汽的形态变化,然后将叙述蒸汽产生和使用的基本原则的概述。这看似简单的课题实际上却极为复杂。这里, 我们有必要做一个概述:这本书不是内容详尽的论文,有的时候甚至会掩盖一些细节, 而这些细节将会使热力学家 和燃烧物理学家都为之一震。但我们应该了解,这本书的目的是为了使控制仪表工程师充 分理解这一课题,从而可以安全的处理实用控制系统设计、运作、维护等方面的问题。1.2沸腾:水到蒸汽的状态变化 当水被加热时,其温度变化能通过某种途径被察觉(例如用温度计 。通过这种方式 得到的热量因为在某时水开始沸腾时其效果可被察觉,因而被称为感热。 然而,我们还需要更深的了解。“沸腾”究竟是什么含义?在深入了解之前,我们必须考虑到物质的三种状态:固态,液态,气态。 (当气体中的原子被电离时所产生的等离子气体经常被认为是物质的第四种状态, 但在实际应用中, 只需考虑以上三种状态固态,

物质由分子通过分子间的吸引力紧紧地靠在一起。当物质吸收热量,分子的能量升级并且 使得分子之间的间隙增大。当越来越多的能量被吸收,这种效果就会加剧,粒子之间相互脱离。这种由固态到液态的状态变化通常被称之为熔化。 当液体吸收了更多的热量时,一些分子获得了足够多的能量而从表面脱离,这个过程 被称为蒸发(凭此洒在地面的水会逐渐的消失在蒸发的过程中,一些分子是在相当低的 温度下脱离的,然而随着温度的上升,分子更加迅速的脱离,并且在某一温度上液体内部 变得非常剧烈,大量的气泡向液体表面升起。在这时我们称液体开始沸腾。这个过程是变为蒸汽的过程,也就是液体处于汽化状态。 让我们试想大量的水装在一个敞开的容器内。液体表面的空气对液体施加了一定的压 力,随着液体温度的上升,便会有足够的能量使得表面的分子挣脱出去,水这时开始改变 自身的状态,变成蒸汽。在此条件下获得更多的热量将不会引起温度上的明显变化。所增 加的能量只是被用来改变液体的状态。它的效用不能用温度计测量出来,但是它仍然发生 着。正因为如此,它被称为是潜在的,而不是可认知的热量。使这一现象发生的温度被称为是沸点。在常温常压下,水的沸点为100摄氏度。 如果液体表面的压力上升, 需要更多的能量才可以使得水变为蒸汽的状态。 换句话说, 必须使得温度更高才可以使它沸腾。总而言之,如果大气压力比正常值升高百分之十,水必须被加热到一百零二度才可以使之沸腾。

通信工程移动通信中英文对照外文翻译文献

中英文翻译 附件1:外文资料翻译译文 通用移动通信系统的回顾 1.1 UMTS网络架构 欧洲/日本的3G标准,被称为UMTS。 UMTS是一个在IMT-2000保护伞下的ITU-T 批准的许多标准之一。随着美国的CDMA2000标准的发展,它是目前占主导地位的标准,特别是运营商将cdmaOne部署为他们的2G技术。在写这本书时,日本是在3G 网络部署方面最先进的。三名现任运营商已经实施了三个不同的技术:J - PHONE 使用UMTS,KDDI拥有CDMA2000网络,最大的运营商NTT DoCoMo正在使用品牌的FOMA(自由多媒体接入)系统。 FOMA是基于原来的UMTS协议,而且更加的协调和标准化。 UMTS标准被定义为一个通过通用分组无线系统(GPRS)和全球演进的增强数据

技术(EDGE)从第二代GSM标准到UNTS的迁移,如图。这是一个广泛应用的基本原理,因为自2003年4月起,全球有超过847万GSM用户,占全球的移动用户数字的68%。重点是在保持尽可能多的GSM网络与新系统的操作。 我们现在在第三代(3G)的发展道路上,其中网络将支持所有类型的流量:语音,视频和数据,我们应该看到一个最终的爆炸在移动设备上的可用服务。此驱动技术是IP协议。现在,许多移动运营商在简称为2.5G的位置,伴随GPRS的部署,即将IP骨干网引入到移动核心网。在下图中,图2显示了一个在GPRS网络中的关键部件的概述,以及它是如何适应现有的GSM基础设施。 SGSN和GGSN之间的接口被称为Gn接口和使用GPRS隧道协议(GTP的,稍后讨论)。引进这种基础设施的首要原因是提供连接到外部分组网络如,Internet或企业Intranet。这使IP协议作为SGSN和GGSN之间的运输工具应用到网络。这使得数据服务,如移动设备上的电子邮件或浏览网页,用户被起诉基于数据流量,而不是时间连接基础上的数据量。3G网络和服务交付的主要标准是通用移动通信系统,或UMTS。首次部署的UMTS是发行'99架构,在下面的图3所示。 在这个网络中,主要的变化是在无线接入网络(RAN的)CDMA空中接口技术的引进,和在传输部分异步传输模式作为一种传输方式。这些变化已经引入,主要是为了支持在同一网络上的语音,视频和数据服务的运输。核心网络保持相对不变,主要是软件升级。然而,随着目前无线网络控制器使用IP与3G的GPRS业务支持节点进行通信,IP协议进一步应用到网络。 未来的进化步骤是第4版架构,如图4。在这里,GSM的核心被以语音IP技术为基础的IP网络基础设施取代。 海安的发展分为两个独立部分:媒体网关(MGW)和MSC服务器(MSS)的。这基本上是打破外连接的作用和连接控制。一个MSS可以处理多个MGW,使网络更具有扩展性。 因为现在有一些在3G网络的IP云,合并这些到一个IP或IP/ ATM骨干网是很有意义的(它很可能会提供两种选择运营商)。这使IP权利拓展到整个网络,一直到BTS(基站收发信台)。这被称为全IP网络,或推出五架构,如图五所示。在HLR/ VLR/VLR/EIR被推广和称为HLR的子系统(HSS)。 现在传统的电信交换的最后残余被删除,留下完全基于IP协议的网络运营,并

外文翻译通信工程英文的毕业设计论文

编号: 毕业设计(论文)外文翻译 (译文) 学院:信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师单位:信息与通信学院 姓名: 职称: 2014年 2 月9 日 Radio network planning process and methods for WCDMA Abstract This paper describes the system dimensioning and the radio network planning methodology for a third generation WCDMA system. The applicability of each method is demonstrated using examples of likely system scenarios. The challenges of

modeling the multiservice environment are described and the implications to the system performance simulations are introduced. Keywords: Telecommunication network planning, Mobile radio- communication, Code division multiple access, Wide band transmission, Multiple service network, Dimensioning, Simulator, Static model, Dynamic model, Cellular network. Resume(?) Contents I.Introduction II. Initial planning, system dimensioning III. Detailed planning process IV. Example dimensioning case and verification of dimensioning with static simulations V. Comparison of a static to a dynamic network simulator VI. Conclusion INTRODUCTION As the launch of third generation technology approaches, operators are forming strategies for the deployment of their networks. These strategies must be supported by realistic business plans both in terms of future service demand estimates and the requirement for investment in network infrastructure. Evaluating the requirement for network infrastructure can be achieved using system dimensioning tools capable of assessing both the radio access and the core network components. Having found an attractive business opportunity, system deployment must be preceded by careful network planning. The network planning tool must be capable of accurately modeling the system behaviour when loaded with the expected traffic profile. The third generation cellular systems will offer services well beyond the capabilities of today's networks. The traffic profile, as well as the radio access technology itself form the two most significant challenges when dimensioning and planning a WCDMA based third generation system. The traffic profile describes the mixture of services being used by the population of users. There are also specific system functionalities which must be modelled including fast power control and soft handover. In order to accurately predict the radio coverage the system eatures associated with WCDMA must be taken into account in the network modeling process. Especially the channel characterization, and interference control mechanisms in the case of any CDMA system must be considered. In WCDMA network multiple services co-exist. Different services (voice, data) have different processing gains, Eb/N0 performance and thus different receiver SNR requirements. In addition to those the WCDMA coverage depends on the load characterization, hand over parameterization, and power control effects. In current second generation systems' coverage planning processes the base station sensitivity is constant and the coverage threshold is the same for each base station. In the case of WCDMA the coverage threshold is dependent on the number of users and used bit rates in all cells, thus it

自动化外文翻译

电气工程与自动化学院 本科毕业设计专业翻译资料(中文读书报告) 学生姓名:王超杰 专业班级:自动化12-06班 学号:311208002219 2016 年 6 月11 日

原文: Design of Combustible Gas Detection system using Wireless Transmission Technology Shijiazhuang Universities of Economics, Hebei, China zkzhlp@https://www.360docs.net/doc/f46922401.html, Keywords:TGS813, AT89S52, DS18B20, nRF905, TC35i Abstract.The detection device of combustible gas are designed in the presented work,using wireless transceiver and GSM network.The system realize the wireless transmission of the gas concentration,and also can send alarm information to user’s mobile when an exception occurs. The system consists of two parts: a master and slave. The function of the slave is to collect data, process data and transffer the data to the master.The taskof the master is to receive data and display it by LED. The signal acquisition is completed by sensor TGS813 and A/D converter TLC2543. The wireless transmission is achieved through wireless transceiver nRF905. Since the accuracy of the sensor is affected by the environment,using DS18B20 to achieve temperature compensation. And with wireless communication module TC35i and GSM network platform, we can send the alarm information to user’s mobile promptly. Introduction Gas detection is widely used in petroleum, chemical, metallurgy, family, shopping malls, gas stations and other places. Currently, how to monitor the hazardous gas fast and accurately are the important issues. Although the gas detection technology is relatively mature, but most products has many shortcomings, such as single function, operating complex, bulky, expensive and low sensitivity. Wireless communication technology applied to the gas monitoring field, can resolve the problem of remote monitoring in special environment, such as high temperature, low temperature, toxic gas.and unable to wiring . In the presented work, the combustible gas detectoris fully functional (with wireless transceiver), simple, small size, low cost, and has high sensitivity. The equipment can greatly improve the system's detection capability and accuracy with temperature compensation algorithm, and also can send alarm information to the user's mobile phone promptly through the GSM network. System design The system consists of two parts as shown in Figure 1. Fig. 1 Overall system block diagram

通信英文缩写名称简介

附录 A 缩略语 缩略语英语解释中文解释 A AM/CM Administration Module/Communication Module 管理和通信模块 B BA BCCH Allocation BCCH分配 BAM Back Administration Module 后管理模块 BCC BTS Color Code 基站色码 BCCH Broadcast Control CHannel 广播控制信道 BCH Broadcast channel (transport channel) 广播信道(传输信道)BIE Base Station Interface Equipment 基站接口设备 BITS Building Integrated Timing Supply 大楼综合定时供给系统 BM Basic Module 基本模块 BS Base Station 基站 BS1 Abis Interface Abis接口 BSC Base Station Controller 基站控制器 BSIU Base Station Interface Unit 基站接口单元 BSS Base Station Subsystem 基站子系统 BTS Base Transceiver Station 基站收发信台 C CA Cell Allocation 小区分配 CBCH Cell Broadcast Channel 小区广播信道 CC Country Code 国家码 CCCH Common Control Channel 公共控制信道 CCS Common Channel Signaling 共路信令方式 CDU Combiner and Divider Unit 合分路单元 CGI Cell Global Identification 全球小区识别码 CIC Circuit Identification Code 电路识别码 CRC Cyclic Redundancy Check 循环冗余校验 CS-1 Code Scheme-1 编码模式-1(9.05kbit/s)CS-2 Code Scheme-2 编码模式-2(13.4kbit/s)CS-3 Code Scheme-3 编码模式-3(15.6kbit/s)CS-4 Code Scheme-4 编码模式-4(21.4kbit/s)

相关文档
最新文档