平面向量应用举例82951

平面向量应用举例82951
平面向量应用举例82951

平面向量章节复习

【学习目标】

1.熟练掌握向量的两种运算---坐标法和向量法。

2.可以用向量知识研究物理中的相关问题和生活中的实际问题.

3.以极大的热情投入到学习中,积极主动探究知识,享受成功的快乐。

【使用说明】

1.基础回顾环节不要翻书,或者先复习再完成。

2.不能再留任何的疑问。

3.导学案在一小时内完成。

【学习过程】

1.知识框图:

2.基础回顾:

1.向量的加法的几何意义__________________________________________________

2.向量的减法的几何意义__________________________________________________

3. 向量的数乘的几何意义__________________________________________________

4.若1122(,),(,)a x y b x y ==r r ,则a b +=r r _______,a b -=r r ________, a λ=r ______

5.共线向量定理___________________________________________________________

6.平面向量基本定理________________________________________________________ ______________________________________________________________________________________________________________________________________________________________

7. 若1122(,),(,)a x y b x y ==r r ,则a b r r P 时有________,a b ⊥r r 时有________

8.若1122(,),(,)a x y b x y ==r r ,则||a =r ________,a b ?=r r ___________

9. 下列命题中,正确命题的个数为( )

①若与是非零向量 ,且与共线时,则与必与或中之一方向相同;

②若为单位向量,且∥则=|| ③··=||

④若与共线,与共线,则与共线;⑤若平面内四点A.B.C.D ,必有+=+

A 1

B 2

C 3

D 4

10.已知F 1= i +2j ,F 2= -2i +3j ,F 3=3i -4j ,若F 1、F 2、F 3共同作用于一物体上,使得物体从点A(1,-2)移到点B(3,1),则合力所做的功为 ( )

(A) 5 (B) 6 (C ) 7 (D) 8

3.例题展示:

例一..质点受到平面上的三个力123,,F F F u r u u r u u r (单位:牛顿)的作用而处于平衡状态,已知

12F F u r u u r 与成60°角,且12,F F u r u u r 的大小分别为2和4,则的大小为________. (变式)平面上的三个力123,,F F F u r u u r u u r 作用于一点且处于平衡状态, 1||F uu r =1N ,

2||F =u u r , 01245F F u r u u r 与的夹角为,求3(1)F uu r 的大小;13,F F u r u u r (2)与夹角的大小。 例二.一条河的两岸平行,河的宽度=500,一艘船从A 处出发到河对岸。已知船的静水速度1||v uu r =10/km h ,水流速度2||v uu r =2/km h .要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小。此时我们分三种情况讨论:

1.当船逆流行驶,与水流成钝角;

2.当船顺流行驶,与水流成锐角;

3.垂直河岸行驶。 请同学们计算以上三种情况,判断哪种情形时船行驶的时间最短。

例三.若│a │=2,│b │=,a 与b 夹角θ=45°,且a ⊥(λb -a ),求λ的值.

例四.已知平面上三点A 、B 、C ,向量BC →=(2-k,3),AC →

=(2,4). (1)若三点A 、B 、C 不能构成三角形,求实数k 应满足的条件; (2)若△ABC 为直角三角形,求k 的值.

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

高三高考平面向量题型总结,经典

平面向量 一、平面向量的基本概念: 1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。 向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________. 5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。 6.相等向量:_______________________. 例:下列说法正确的是_____ ①有向线段就是向量,向量就是有向线段; ②,,a == 则c a = ;③,//,//a a // ④若CD AB =,则A ,B ,C ,D 四点是平行四边形的四个顶点; ⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法: 1.向量的加法的运算法则:____________、_________和___________. (1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC 的取值范围__________ 例2.化简下列向量 (1)+++ (2))()()(+++++ (2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则; a + 是以a ,b 为邻边的平行四边形的一条对角线,如图: 例1.(09 )设P 是三角形ABC 所在平面内一点,BP BA BC 2=+,则 A.0=+PB PA B.0=+PC PA C.0=+PB PC D.0=++PC PB PA 例2.(13四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ=+ ,则.______=λ (3)多边形法则 2.向量的加法运算律:交换律与结合律 (二)向量的减法: 减法是加法的逆运算,A.PB PA OB OA BA -=-= (终点向量减始点向量)

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

平面向量应用举例

平面向量应用举例 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?= a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法: (1)斜率相等问题:常用向量平行的性质. (2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程. (3)定比分点问题:转化为三点共线及向量共线的等式条件. (4)夹角问题:利用公式cos |||| θ?= a b a b . 要点三:向量在物理中的应用 (1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象. (2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积. (3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论. 【典型例题】 类型一:向量在平面几何中的应用

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

平面向量典型题型大全

平面向量 题型1.基本概念判断正误: 例2 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r ____;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===u u u r r u u u r r u u u r r ,则||a b c ++r r r =_____ (3)若O 是ABC V 所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r ,则ABC V 的形状为_ 9.与向量a =(12,5)平行的单位向量为 ( ) A .125,1313??- ??? B .12 5,1313??-- ??? C .125125,,13131313????-- ? ?????或 D .125125,,13131313???? -- ? ????? 或 10.如图,D 、E 、F 分别是?ABC 边AB 、BC 、CA 上的 中点,则下列等式中成立的有_________: ①+-=u u u r u u u r u u u r FD DA AF 0 ②+-=u u u r u u u r u u u r FD DE EF 0 ③+-=u u u r u u u r u u u r DE DA BE 0 ④+-=u u u r u u u r u u u r AD BE AF 0 11.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r ,则( ) A.0PA PB +=u u u r u u u r r B.0PC PA +=u u u r u u u r r C.0PB PC +=u u u r u u u r r D.0PA PB PC ++=u u u r u u u r u u u r r 12.已知点(3,1)A ,(0,0)B ,(3,0)C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r ,其中λ等于 ( ) A.2 B. 1 2 C.-3 D.-13 13.设向量a=(1, -3),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形, 则向量d 为 ( ) A.(2,6) B.(-2,6) C.(2,-6) D.(-2,-6) 14.如图2,两块斜边长相等的直角三角板拼在一起,若AD xAB yAC =+u u u r u u u r u u u r ,则 x = ,y = . 图2 15、已知O 是ABC △所在平面内一点D 为BC 边中点且20OA OB OC ++=u u u r u u u r u u u r r 那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 题型3平面向量基本定理 F E C B A

平面向量的应用举例

平面向量应用举例 课型:新课 设计人: 设计时间:2011.3.2 使用时间: 学习目标: 1.通过应用举例,学会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题 2.通过本节的学习,体验向量在解决几何和物理问题中的工具作用,增强积极主动的探究意识,培养创新精神。 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几 何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问 题加以解决. 学习过程: 例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.已知:平行四边形ABCD . 求证:2 2 2 2 2 2 AC BD AB BC CD DA +=+++. 利用向量的方法解决平面几何问题的“三步曲”? (1) 建立平面几何与向量的联系, (2) 通过向量运算,研究几何元素之间的关系, (3) 把运算结果“翻译”成几何关系。 变式训练:ABC ?中,D 、E 、F 分别是AB 、BC 、CA 的中点,BF 与CD 交于点O ,设,.AB a AC b == (1)证明A 、O 、E 三点共线; (2)用,.a b 表示向量AO 。 例2,如图,平行四边形ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗? 例3.如图,一条河的两岸平行,河的宽度500d =m ,一艘船从A 处出发到河对岸.已知船的速度|v 1|=10km/h ,水流的速度|v 2|=2km/h ,问行驶航程最短时,所用的时间是多少(精确到 0.1min)? 变式训练:两个粒子A 、B 从同一源发射出来,在某一时刻,它们的位移分别为(4,3),(2,10)A B s s ==, (1)写出此时粒子B 相对粒子A 的位移s; (2)计算s 在A s 方向上的投影。 当堂检测 1.已知0 60,3,2===?C b a ABC 中,,求边长c 。 2.在平行四边形ABCD 中,已知AD=1,AB=2,对角线BD=2,求对角线AC 的长。 3.在平面上的三个力321,,F F F 作用于一点且处于平衡状态, 2121,2 2 6,1F F N F N F 与+= =的夹角为o 45, 求:(1)3F 的大小;(2)1F 与3F 夹角的大小。 课后练习与提高 一、选择题 1.给出下面四个结论: ① 若线段AC=AB+BC ,则向量AC AB BC =+; ② 若向量AC AB BC =+,则线段AC=AB+BC ; ③ 若向量AB 与BC 共线,则线段AC=AB+BC; ④ 若向量AB 与BC 反向共线,则 BC AB BC AB +=+.其中正确的结论有 ( ) A. 0个 B.1个 C.2个 D.3个 2.河水的流速为2s m ,一艘小船想以垂直于河岸方向10s m 的 速度驶向对岸,则小船的静止速度大小为 ( ) A.10s m B. 262s m C. 64s m D.12s m 3.在ABC ?中,若)()(CB CA CB CA -?+=0,则ABC ?为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定 二、填空题 4.已知ABC ?两边的向量21,e AC e AB ==,则BC 边上的中线向量AM 用1e 、2e 表示为 5.已知10321321=++=++OP OP OP ,OP OP OP ,则1OP 、 2OP 、3OP 两两夹角是 反思总结:

平面向量应用举例#精选.

平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 [展示投影] 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 [展示投影]例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

(完整版)平面向量典型例题.docx

平面向量经典例题: 1. 已知向量 a =(1,2), b = (2,0),若向量 λa +b 与向量 c = (1,- 2)共线,则实数 λ等于 () 1 A .- 2 B .- 3 2 C .- 1 D .- 3 [ 答案 ] C [ 解析 ] λa +b =( λ,2λ)+ (2,0)=(2+ λ,2λ),∵ λa + b 与 c 共线,∴- 2(2+ λ)- 2λ= 0,∴ λ=- 1. 2. (文)已知向量 a = ( 3,1) ,b = (0,1), c =(k , 3) ,若 a +2b 与 c 垂直,则 k =( ) A .- 1 B .- 3 C .- 3 D .1 [ 答案 ] C [ 解析 ] a +2b =( 3,1)+ (0,2)= ( 3, 3), ∵a +2b 与 c 垂直,∴ (a +2b) ·c = 3k + 3 3= 0,∴ k =- 3. (理 )已知 a = (1,2),b =(3 ,- 1),且 a +b 与 a - λb 互相垂直,则实数 λ的值为 ( ) 6 11 A .- 11 B .- 6 6 11 C.11 D. 6 [ 答案 ] C [ 解析 ] a +b = (4,1), a -λb =(1 -3λ,2+ λ), ∵a +b 与 a - λb 垂直, ∴ ( a + b) ·(a -λb)= 4(1- 3λ)+ 1×(2+ λ)= 6-11λ= 0,∴ λ= 6 . 11 3.设非零向量 a 、 b 、 c 满足 |a|= |b|= |c|,a + b = c ,则向量 a 、 b 间的夹角为 () A . 150° B . 120° C . 60° D .30° [ 答案 ] B [ 解析 ] 如图,在 ?ABCD 中, ∵ |a|= |b|= |c|,c = a +b ,∴△ ABD 为正三角形,∴∠ BAD =60°,∴〈 a , b 〉= 120°,故选 B. (理 )向量 a , b 满足 |a|=1, |a - b|= 3 ,a 与 b 的夹角为 60°,则 |b|=() 2 1 1 A. 2 B. 3 1 1 C.4 D.5 [ 答案 ] A [ 解析 ] ∵ |a - b|= 3 ,∴ |a|2 + |b|2- 2a ·b = 3 ,∵ |a|=1,〈 a , b 〉= 60°, 2 4 设|b|= x ,则 1+x 2-x = 3 1 4 ,∵ x>0,∴ x = . 2

平面向量的应用举例

平面向量的应用举例 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

2.5平面向量的应用举例 班级学号姓名 .一选择题 1.已知A、B、C为三个不共线的点,P为△ABC所在平面内一点,若 + + +,则点P与△ABC的位置关系是 () A、点P在△ABC内部 B、点P在△ABC外部 C、点P在直线AB上 D、点P在AC边上 2.已知三点A(1,2),B(4,1),C(0,-1)则△ABC的形状为 () A、正三角形 B、钝角三角形 C、等腰直角三角形 D、等腰锐角三角形 3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若 |F|=|G|,则θ的值为() A、300 B、600 C、900 D、1200 4.某人顺风匀速行走速度大小为a,方向与风速相同,此时风速大小为v,则此人实际感到的风速为 () A、v-a B、a-v C、v+a D、v 二、填空题 5.一艘船以5km/h的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h。 6.两个粒子a,b从同一粒子源发射出来,在某一时刻,以粒子源为原点,它 们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b相对于粒子a 的位移; (2)求S在S a 方向上的投影。 三、解答题 7.如图,点P是线段AB上的一点,且AP︰PB=m︰n,点O是直线AB外一点,设OA =a,OB =b,试用,,, m n a b的运算式表示向量OP.

8.如图,△ABC 中,D ,E 分别是BC ,AC 的中点,设AD 与BE 相交于G ,求证:AG ︰GD=BG ︰GE=2︰1. G E D C B A 9.如图, O 是△ABC 外任一点,若1 ()3 OG OA OB OC =++,求证:G 是△ABC 重心(即三条边上中线的交点). 10.一只渔船在航行中遇险,发出求救警报,在遇险地西南方向10mile 处有一只货船收到警报立即侦察,发现遇险渔船沿南偏东750,以9mile/h 的速度向前航行,货船以21mile/h 的速度前往营救,并在最短时间内与渔船靠近,求货的位移。

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

平面向量典型例题

平面向量经典例题: 欧阳学文 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c= (1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+ 2b与c垂直,则k=( ) A.-1 B.-3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3),

∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k =-3. (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C.6 11 D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0, ∴λ=6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向 量a、b间的夹角为( ) A.150° B.120°

C .60° D.30° [答案] B [解析] 如图,在?ABCD 中, ∵|a|=|b|=|c|,c =a +b ,∴△ABD 为正三角形,∴∠BAD=60°,∴〈a ,b 〉=120°,故选B. (理)向量a ,b 满足|a|=1,|a -b|=3 2,a 与b 的夹角 为60°,则|b|=( ) A.12 B.13 C.14 D.15 [答案] A [解析] ∵|a-b|=32,∴|a|2+|b|2-2a·b=3 4, ∵|a|=1,〈a ,b 〉=60°, 设|b|=x ,则1+x2-x =34,∵x>0,∴x=1 2 .

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O 为ABC ?重心,则OA +OB +OC =0 (2)水渠横断面是四边形ABCD ,DC =1 2 AB ,且|AD |=|BC |,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于() A.-2B.-1 3 C.-1 D.-2 3 [答案] C [解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=() A.-1 B.- 3 C.-3 D.1 [答案] C [解析]a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3. (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为() A.-6 11B.- 11 6 C.6 11 D. 11 6 [答案] C [解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11. 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为() A.150°B.120° C.60°D.30° [答案] B [解析]如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴〈a, b〉=120°,故选B. (理)向量a,b满足|a|=1,|a-b|= 3 2,a与b的夹角为60°,则|b|=() A.1 2 B. 1 3 C.1 4 D. 1 5 [答案] A

平面向量应用举例教案

龙文教育个性化辅导教案提纲 学生: 日期: 年 月 日 第 次 时段: 教学课题 平面向量应用举例-----导学案 教学目标 考点分析 1. 掌握向量的加减运算法则和向量的数量积运算 2. 掌握向量在数学和物理中的应用 教学重点 理解并能灵活运用向量加减法与向量数量积的法则. 教学难点 理解并能灵活运用向量加减法与向量数量积的意义和性质 教学方法 问答式、启发式教学 教学过程:上节课知识点复习回顾及习题疑难解惑 第一课时:2.5.1 向量在几何中的应用举例 一、复习准备: 1.提问:向量的加减运算和数量积运算是怎样的? 2.讨论:① 若o 为ABC ?的重心,则OA +OB +OC =0 ②水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? 二、讲授新课: 1.平面向量在平面几何中的应用: ① 平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来例如,向量数量积对应着几何中的长度.如图: 平行四边行ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+ (平移),DB AB AD a b =-=- ,222||AD b AD == (长度) .向量AD ,AB 的夹角为DAB ∠ ② 讨论:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. ③ 用向量方法解平面几何问题的步骤(一般步骤) (1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量. (2) 通过向量运算研究几何运算之间的关系,如距离、夹角等. (3) 把运算结果"翻译"成几何关系. 2.教学例题: ① 出示例1:求证:平行四边形两条对角线的平方和等于四条边的平方和. 分析:由向量的数量积的性质,线段的长的平方可看做相应向量自身的内积. 练习:已知平行四边形ABCD ,AB =a ,BC = b ,且||||a b =,试用向量a b ,表示BD 、AC ,并计算BD .AC ,判断BD 与AC 的位置关系. ② 出示例2:如图,在OBCA 中,OA a = ,OB b = ,||||a b a b +=-,求证四边形O BCA 为矩形 分析:要证四边形O BCA 为矩形,只需证一角为直角. ③ 练习:AC 为O 的一条直径,ABC ∠为圆周角,求证90ABC ∠=? ④ 出示例3:在ABC 中,M 是BC 的中点,点N 在边AC 上,且2AN NC =,AM BN 与相交于点P ,如 图,求:AP PM 的值. 3. 小结:向量加减法与向量数量积的运算法则;向量加减法与向量数量积的意义和性质. 三、巩固练习: 1. 已知平行四边形ABCD ,E F 、在对角线BD 上,并且BE=FD ,求证AECF 是平行四边形. 2. 求证:两条对角线互相垂直平分的四边形是菱形.

相关文档
最新文档