叶绿素的药理功能及特性

叶绿素的药理功能及特性
叶绿素的药理功能及特性

叶绿素的药理功能及特性

■叶绿素的药理功能

叶绿素是植物中含的绿色色素,植物细胞内的叶绿体吸收太阳光能源,从水和空气中CO2合成糖等有机物。叶绿素结构类似动物血液中的红色素,为维持生命不可缺的重要物质。

叶绿素存在许多类似体,高等绿色植物和绿藻等含叶绿素a和b,褐藻、硅藻等含叶绿素a。为提高稳定性,食品和医药品中用叶绿素诱导体为多。

叶绿素有多种药理效果引起食品界的注目。铜叶绿素、铜叶绿素钠、铁叶绿素钠早在上世纪60年代初就被作为食品添加剂,用于口香糖、蔬菜等加工品的着色。日本研究表明,叶绿素的诱导体可作胃肠药、口臭防止药、洗口液等成分。

具体说,叶绿素有下列重要药理功能:

创伤治愈作用

叶绿素能促进切伤、火伤、溃疡等伤口的肉芽新生、加快治愈作用。对创伤、溃疡局部涂布能使创伤面干燥,加快肉芽及上皮细胞的产生,明显促进创伤治愈。

脱臭作用。叶绿素能除去饮食、香烟及新陈代谢产生的口臭、脚臭、腋下恶臭、饮酒后酒气臭。铜叶绿酸钠有显著抑制口臭的挥发性硫化物的效果。

抗过敏作用。铜叶绿酸钠对治疗顽固性慢性荨麻疹、顽固性慢性湿疹、支气管哮喘及冻疮均有明显效果。叶绿素的抗过敏作用强。

抗溃疡作用。据国外对鼠试验,对幽门结扎溃疡的鼠同时投服叶绿酸作制酸剂和抗胆碱药有明显抗溃疡效果。

肠蠕动功能亢进作用。叶绿素能使肠道蠕动轻度亢进,解消便秘。

抗变异原性。叶绿酸、叶绿素能和发癌物质Trp-p-2的活性体形成复合体,使其不活化,还能抑制黄曲霉素、苯并芘等变异原物质。

制癌作用。叶绿酸钠能使肝癌细胞的增殖消失。叶绿素提取物有抗肿瘤功能及大大提高肿瘤的光导疗法效果。

降血清胆固醇作用。叶绿素的分解物脱镁叶绿素及叶绿酸均有降低胆固醇效果。

叶绿素来自天然植物,安全性高,作为绿色的叶绿素的应用将更加广泛,在食品中作健康与功能食品添加剂。

■叶绿素的制造及性质

叶绿素制造,以小球藻等为原料,用丙酮等有机溶剂提取,得到叶绿素a、b的混合物。但这种天然的叶绿素受光线(特别是紫外线)和热分解、易褪色。对酸非常不稳定,其中金属镁容易脱离生成脱镁叶绿素,呈褐色。

将叶绿素中的镁用铜、铁等置换,能使稳定化。以酯结合的叶绿醇用碱加水分解得到叶绿酸,叶绿酸的钠或钾盐溶于水。市售的叶绿素,是将叶绿素的镁置换为铜的铜叶绿素,铜叶绿素被钠、铁置换成水溶性的铁叶绿酸钠。

叶绿素为黑绿~浓绿色的油或膏状,易溶于醚、丙酮等有机溶剂和油脂类,微溶于乙醇,不溶于水,因此因乳化剂呈分散性制剂。铜叶绿素外观、溶解性和叶绿素相同,色调呈强绿色。

铜叶绿素酸钠及铁叶绿酸钠是青黑色~暗绿色的粉末。易溶于水或稀酒精溶液中,不溶于油脂类中,但在酸性溶液中钠游离而使不溶于水,在钙镁离子等存在下,生成不溶性的盐,因此用水须非常注意。

叶绿素(着色剂)

Chlorophylls

定义叶绿素由三叶草、紫花苜蓿、荨麻等植物用溶剂萃取而得。当脱溶剂时,原叶绿素天然螯合存在的镁可全部或部分脱去而成为相应的叶绿酸。因此主要成分为叶绿酸和叶绿酸镁,尚可含有天然原料中所存在的油脂和蜡。按FAO/WHO(1998)规定,所用溶剂以丙酮、二氯甲烷、甲醇、乙醇、异丙醇和己烷为限。

主要成分叶绿酸a 镁,叶绿酸,叶绿酸b 镁,叶绿酸b 。

性状蜡状固体。呈橄榄绿至深绿色,视所结合的镁量而定,略带异臭。叶绿素a的熔点为150-153℃,叶绿素b的熔点为183-185℃。

与黄色的胡萝卜素和叶黄素共存于植物叶子叶绿体内。

对光和热敏感,在稀碱液中可皂化水解成鲜绿色的叶绿酸(盐)、叶绿醇和甲醇,在酸溶液中可成暗绿至绿褐色脱镁叶绿素。不溶于水。溶于乙醇、乙醚、丙酮等脂肪溶剂。

制法用有机溶剂(丙酮、丁醇、二氯甲烷、乙醇、石油醚、异丙醇、三氯乙烯、丁酮)萃取三叶草、雏菊、菠菜、甘蓝、荨麻等植物的叶或蚕粪而得,或萃取玉米长须制品的副产物,继之经除去(或不除去)络合物中镁,并除去溶剂而得。

用途食用绿色色素。用于糕点、饮料、利口酒等。实际上常直接使用植物的叶或干燥粉末。例如。茶末、艾蒿、菠菜、小球藻等。添加于胶姆糖可消除口臭。

限量FAO/WHO1984:一般干酪按GMP;果酱和果冻200mg/kg。

按日本规定,胶姆糖、糕点、饮料、配制酒等,用量为0.0001%-0.2%。

毒性ADI不作限制性规定(FAO/WHO.2001)

叶绿素铜(着色剂)

定义叶绿素铜是指用溶剂从三叶草、紫花苜蓿、荨麻植物中的提取物,与某种铜盐加成并脱溶剂而成的物质。主要成分为脱镁叶绿素铜(叶绿酸铜)。

性状深绿色粘稠状物质,也可以是块、片、粉末。略有氨臭。耐光性好。脱臭效果强。加热则流动性佳。加酸则铜被氢置换,变为脱镁叶绿素,色转浅。加碱则皂化,叶绿醇和甲醇脱离,变成铜叶绿酸的碱金属盐而能溶于水。溶于乙醚、乙醇、正己烷及石油醚。不溶于水及50%的乙醇。

制法用丙酮水溶液或己烷、氯仿等萃取三叶草、紫花苜蓿、荨麻或干燥蚕粪或茶叶,得叶绿素,加丙酮或甲醇,再加盐酸酸化的氯化酮甲醇溶液,加热搅拌。待铜置换反应结束后,

馏去溶剂,将其溶解于己烷,用甲醇水溶液洗涤后,馏去己烷而得成品。按FAO/WHO(1998)规定,所用溶剂以丙酮、二氯甲烷、甲醇、乙醇、异丙醇和己烷为限。

用途食用绿色色素。

限量日本标准,1993(g/kg,以Cu计):水果蔬菜0.10;海带0.15;口香糖0.050;蜜豆冻0.0040;鱼肉馅料制品0.03;带馅点心(糕点面包除外)0.0064;巧克力0.001。

毒性 1.ADI0-15 (FAO/WHO,2001)。

2. LD50>400mg/kg(小鼠,静脉注射)。

.

叶绿素的光敏性质探究

叶绿素的光敏性质探究(与二氢卟吩e4对比) 研究背景 光敏剂的光漂白(photobleaching)是指在光的照射下,光敏剂所激发出来的荧光强度随着时间推移逐步减弱乃至消失的现象,这是光动力诊断临床应用中考虑光剂量和检测需用时间的一个重要因素。 长波红光在组织中具有较大的穿透深度,从而能保证足够的治疗深度:大的吸光度能保证充分利用光能量和尽可能减少药物剂量;光敏剂吸光度的大小是决定药物剂量的理论依据。过多的光敏剂分布于癌组织中势必会影响光的穿透深度,然而使用过少的光敏剂又不能产生应有的疗效。因此,光敏剂的使用剂量要依据其吸光度的大小和肿瘤组织的大小来权衡。 对于同一种光敏剂,它的漂白时间将随入射光的光能流率的增大而减小。再次,除了与光敏剂的类型有关外,还与初始浓度和入射光源的波长有关。初始浓度越大,光漂白时间越长。 实验意义:探究不同浓度的叶绿素在不同光源、不同时间的照射下,其吸光度随时间的变化,探测其光漂白特性,为更好地在临床应用上要保持光敏剂的有效杀伤浓度,且控制好光敏剂的激发时间,这样才能保证治疗的效果。 初步设想: 探究叶绿素在不同浓度,不同光源,不同光照时间对光的敏感性:(1)用紫外检测得到叶绿素的紫外可见吸收光谱,与二氢卟吩e4的光谱图比较。(最好能同时测定荧光光谱) (2)在叶绿素的最大吸收波长处检测浓度为0.05 mg/ml ,0.1 mg/ml ,0.2 mg/ml ,0.3 mg/ml, 0.4mg/ml的叶绿素的吸光度,并制作曲线图,验证其是否符合朗伯-比尔定律。 (3)实验设置了不同的六组光源:白光、红外光、黄光、绿光、蓝光、紫外光,分别对0.4mg/ml的叶绿素待测样品进行垂直照射10min、20min、30min、40min、50min、60min、80min、100min,取照射后的各样品进行紫外-可见吸收光谱的检测,通过光谱的变化,探究光敏剂叶绿素明显的光漂白特性。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

部分叶绿素荧光动力学参数的定义

部分叶绿素荧光动力学参数的定义: F0:固定荧光,初始荧光(minimalfluorescence)。也称基础荧光,0水平荧光,是光系统Ⅱ(PSⅡ)反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fm:最大荧光产量(maximalfluorescence),是PSⅡ反应中心处于完全关闭时的荧光产量。可反映经过PSⅡ的电子传递情况。通常叶片经暗适应20 min后测得。 F:任意时间实际荧光产量(actualfluorescence intensity at any time)。 Fa:稳态荧光产量(fluorescence instable state)。 Fm/F0:反映经过PSⅡ的电子传递情况。 Fv=Fm-F0:为可变荧光(variablefluorescence),反映了QA的还原情况。 Fv/Fm:是PSⅡ最大光化学量子产量(optimal/maximal photochemical efficiency of PSⅡin the dark)或(optimal/maximalquantum yield of PSⅡ),反映PSⅡ反应中心内禀光能转换效率(intrinsic PSⅡefficiency)或称最大PSⅡ的光能转换效率(optimal/maximalPSⅡefficiency),叶暗适应20 min后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降。 Fv’/Fm’:PSⅡ有效光化学量子产量(photochemicalefficiency of PSⅡin the light),反映开放的PSⅡ反应中心原初光能捕获效率,叶片不经过暗适应在光下直接测得。 (Fm’-F)/Fm’或△F/Fm’:PSⅡ实际光化学量子产量(actual photochemical efficiency of PSⅡin the light)(Bilger和Bjrkman,1990),它反映PSⅡ反应中心在有部分关闭情况下的实际原初光能捕获效率,叶片不经过暗适应在光下直接测得。 荧光淬灭分两种:光化学淬灭和非光化学淬灭。光化学淬灭:以光化学淬灭系数代表:qP=(Fm’-F)/(Fm’-F0’);非光化学淬灭,有两种表示方法,NPQ=Fm/Fm’-1或qN=1-(Fm’-F0’)/(Fm-F0)=1-Fv’/Fv。 表观光合电子传递速率以[(Fm’-F)Fm’]×PFD表示,也可写成:△F/Fm’×PFD×0.5×0.84,其中系数0.5是因为一个电子传递需要吸收2个量子,而且光合作用包括两个光系统,系数0.84表示在入射的光量子中被吸收的占84%,PFD是光子通量密度;表观热耗散速率以(1-Fv’/Fm’)×PFD表示。 Fmr:可恢复的最大荧光产量,它的获得是在荧光P峰和M峰后,当开放的PSⅡ最大荧光产量平稳时,关闭作用光得到F0’后,把饱和光的闪光间隔期延长到180s/次,得到一组逐渐增大(对数增长)的最大荧光产量,将该组最大荧光产量放在半对数坐标系中即成直线,该直线在Y轴的截距即为Fmr。以(Fm-Fmr)/Fmr可以反映不可逆的非光化学淬灭产率,即发生光抑制的可能程度。 FO(初始荧光),Fm(最大荧光),Fv= Fm-FO(可变荧光),Fv /Fm(PSII最大光化学效率或原初光能转换效率),Fv /FO(PSII的潜在活性),Yield(PSII总的光化学量子产额),ETR(表观电子传递速率),PAR(光合有效辐射),LT(叶面温度)。其中FO、Fm、Fv /FO测定前将叶片暗适应20 min。各参数日变化从6: 00~18: 00,每2h测定一次。 (Fv /Fm)和(Fv /FO)分别用于度量植物叶片PSII原初光能转换效率和PSII潜在活性,-(Yield)是PSII的实际光化学效率,反映叶片用于光合电子传递的能量占所吸收光能的比例,是PSII反应中心部分关闭时的光化学效率,其值大小可以反映PSII反应中心的开放程度。常用来表示植物光合作用电子传递的量子产额,可作为植物叶片光合电子传递速率快慢的相对指标。即在光合作用进程中,PSII每获得一个光量子所能引起的总的光化学反应。因此,较高的Yield值,有利于提高光能转化效率,为暗反应的光合碳同化积累更多所需的能量,以促进碳同化的高效运转和有机物的积累。同样毛蕊红山茶和长毛红山茶的Yield值也较高。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

科普知识---抗生素的药理、分类、特点

科普知识---抗生素的药理、分类、特点 抗生素对病菌的药理 1. 有的抗生素是干扰细菌的细胞壁的合成,使细菌因缺乏完整的细胞 壁,抵挡不了水份的 侵入,发生膨胀、破裂而死亡。 2. 有的抗生素是使细菌的细胞膜发生损伤,细菌因内部物质流失而死亡。 3. 有的抗生素能阻碍细菌的蛋白质合成,使细菌的繁殖终止。 4. 有的抗生素是通过改变细菌内部的代谢,影响它的脱氧核糖核酸的合 成,使细菌(还有肿瘤细胞)不能重新复制新的细胞物质而死亡。 抗生素的分类: 抗生素种类多,可按它的化学性质进行分类; 也可按抗菌的范围(抗菌谱)分类; 此外,还可将它们分为繁殖期杀菌抗生素、静止期杀菌抗生 素、快速制菌抗生素和慢效制菌抗生素等。

目前通常是采用将抗生素按抗菌的范围分类,即将种类繁多的 抗菌素区分为抗革兰氏阳性细菌抗生素、抗革兰氏阴性细菌抗 生素和广谱抗生素,广谱抗生素对革兰氏阳性与阴性细菌都有 抗菌作用; 此外,将某些专一抑制或杀灭霉菌的抗生素,列为抗真菌类抗 生素。 抗生素作用的特点: 抗生素是微生物的次生代谢产物,既不参与细胞结构,也不是细胞内的贮存性养料,对产生菌本身无害,但对某些微生物有拮抗作用,是微生物在种间竞争中战胜其他微生物保存自己的一种防卫机制。抗生素具有不同于化学药物的特点: ( 1 )抗生素则能选择性地作用于菌体细胞 DNA 、 RNA 和蛋白质合成系统的特定环节,干扰细胞的代谢作用,妨碍生命活动或使停止生长,甚至死亡。而不同于无选择性的普通消毒剂或杀菌剂。抗生素的抗菌活性主要表现为抑菌、杀菌和溶菌三种现象。这三种作用之间并没有截然的界限。抗生素抗菌作用的表现与使用浓度、作用时间、敏感微生物种类以及周围环境条件都有关系。 ( 2 )抗生素的作用具有选择性,不同抗生素对不同病原菌的作用不一样。对某种抗生素敏感的病原菌种类称为该抗生素的抗生谱(抗菌谱)。例如淡紫灰链霉菌产生的卮立霉素只对少数病毒有医疗作用,对细菌、真菌和其他多数病毒都没有作用。广谱抗生素对多种病原菌有抗生作用,例如青霉素对多种革兰氏阳性细菌都有良好药效,链霉素对多种革兰氏阳性和阴性细菌都有良好药效,对结核杆菌有特殊的疗效。( 3 )有效作用浓度。抗生素是一种生理活性物质。各种抗生素一般

叶绿素的药理功能及特性

叶绿素的药理功能及特性 ■叶绿素的药理功能 叶绿素是植物中含的绿色色素,植物细胞内的叶绿体吸收太阳光能源,从水和空气中CO2合成糖等有机物。叶绿素结构类似动物血液中的红色素,为维持生命不可缺的重要物质。 叶绿素存在许多类似体,高等绿色植物和绿藻等含叶绿素a和b,褐藻、硅藻等含叶绿素a。为提高稳定性,食品和医药品中用叶绿素诱导体为多。 叶绿素有多种药理效果引起食品界的注目。铜叶绿素、铜叶绿素钠、铁叶绿素钠早在上世纪60年代初就被作为食品添加剂,用于口香糖、蔬菜等加工品的着色。日本研究表明,叶绿素的诱导体可作胃肠药、口臭防止药、洗口液等成分。 具体说,叶绿素有下列重要药理功能: 创伤治愈作用 叶绿素能促进切伤、火伤、溃疡等伤口的肉芽新生、加快治愈作用。对创伤、溃疡局部涂布能使创伤面干燥,加快肉芽及上皮细胞的产生,明显促进创伤治愈。 脱臭作用。叶绿素能除去饮食、香烟及新陈代谢产生的口臭、脚臭、腋下恶臭、饮酒后酒气臭。铜叶绿酸钠有显著抑制口臭的挥发性硫化物的效果。 抗过敏作用。铜叶绿酸钠对治疗顽固性慢性荨麻疹、顽固性慢性湿疹、支气管哮喘及冻疮均有明显效果。叶绿素的抗过敏作用强。 抗溃疡作用。据国外对鼠试验,对幽门结扎溃疡的鼠同时投服叶绿酸作制酸剂和抗胆碱药有明显抗溃疡效果。 肠蠕动功能亢进作用。叶绿素能使肠道蠕动轻度亢进,解消便秘。 抗变异原性。叶绿酸、叶绿素能和发癌物质Trp-p-2的活性体形成复合体,使其不活化,还能抑制黄曲霉素、苯并芘等变异原物质。 制癌作用。叶绿酸钠能使肝癌细胞的增殖消失。叶绿素提取物有抗肿瘤功能及大大提高肿瘤的光导疗法效果。 降血清胆固醇作用。叶绿素的分解物脱镁叶绿素及叶绿酸均有降低胆固醇效果。 叶绿素来自天然植物,安全性高,作为绿色的叶绿素的应用将更加广泛,在食品中作健康与功能食品添加剂。 ■叶绿素的制造及性质 叶绿素制造,以小球藻等为原料,用丙酮等有机溶剂提取,得到叶绿素a、b的混合物。但这种天然的叶绿素受光线(特别是紫外线)和热分解、易褪色。对酸非常不稳定,其中金属镁容易脱离生成脱镁叶绿素,呈褐色。 将叶绿素中的镁用铜、铁等置换,能使稳定化。以酯结合的叶绿醇用碱加水分解得到叶绿酸,叶绿酸的钠或钾盐溶于水。市售的叶绿素,是将叶绿素的镁置换为铜的铜叶绿素,铜叶绿素被钠、铁置换成水溶性的铁叶绿酸钠。 叶绿素为黑绿~浓绿色的油或膏状,易溶于醚、丙酮等有机溶剂和油脂类,微溶于乙醇,不溶于水,因此因乳化剂呈分散性制剂。铜叶绿素外观、溶解性和叶绿素相同,色调呈强绿色。 铜叶绿素酸钠及铁叶绿酸钠是青黑色~暗绿色的粉末。易溶于水或稀酒精溶液中,不溶于油脂类中,但在酸性溶液中钠游离而使不溶于水,在钙镁离子等存在下,生成不溶性的盐,因此用水须非常注意。

叶绿素理化性质及含量

实验报告 课程名称: 植物生理学(乙)指导老师: 廖敏 成绩: 实验名称: 叶绿素理化性质和含量 实验类型: 定量探究型 同组学生姓名: 方昊 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填) 一、实验目的和要求 掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法; 二、实验内容和原理 以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量 分析。原理如下: 1. 叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取; 2. 叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素 分开; 3. 在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素; 4. 叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光; 5. 叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a 、b 及总量,而652可直接用于总量分析。 专业:农业资源与环境 姓名: 吴主光 学号: 3110100403 日期: 2013.10.17 地点: 生物实验中心 装 订 线

三、主要仪器设备 1. 天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等 四、操作方法、实验步骤以及实验现象 定性分析: 鲜叶5g+95%30ml(逐步加入),磨成匀浆 过滤入三角瓶中,观察荧光现象:透射光绿色,反射光红色。 皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H2O1ml分层后观察:上层呈黄色,为类胡萝卜素,吸收蓝紫光;下层呈绿色,为叶绿素,吸收红光和蓝紫光。 取代反应(1):加醋酸约2ml,变褐(去镁叶绿素);取1/2加醋酸铜粉加热,变鲜绿色,为铜代叶绿素。 取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热,观察: 3 min变为褐绿色的去镁叶绿素, 5 min后,变为深绿色的铜代叶绿素。 叶绿素和类胡萝卜素的吸收光谱测定: 皂化反应的上层黄色石油醚溶液(稀释470nm OD 0.5-1) 反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)(稀释663nm OD 0.5-1) 在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰. 叶绿素定量分析:鲜叶0.1g,加1.9mlH2O,磨成匀浆,取0.2ml加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。 五、实验数据记录和处理

利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数F_v_F_m_谭昌伟

第3  2卷,第5期 光谱学与光谱分析Vol.32,No.5,pp 1287-12912 0 1 2年5月 Spectroscopy and Spectral Analysis May,2 012 利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数Fv /Fm谭昌伟1,黄文江2,金秀良1,王君婵1,童 璐1,王纪华2,郭文善1* 1.扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州 2250092.国家农业信息化工程技术研究中心,北京 100097 摘 要 为进一步评价遥感监测紧凑型玉米叶绿素荧光参数Fv/Fm的可行性,通过开展小区紧凑型玉米试验,分析紧凑型玉米整个生育期Fv/Fm与高光谱植被指数的相关关系,建立紧凑型玉米Fv/Fm高光谱监测模型。结果表明,紧凑型玉米Fv/Fm与选取的高光谱植被指数均呈极显著正相关,其中结构敏感色素指数(SIPI)与Fv/Fm的相关性最好,相关系数(r)为0.88。用SIPI建立紧凑型玉米Fv/Fm的监测模型,其决定系 数(R2 )为0.812  6,均方根误差(RMSE)为0.082。研究表明,利用高光谱植被指数可以有效地监测紧凑型玉米整个生育期的Fv/Fm。 关键词 高光谱植被指数;Fv/Fm;监测模型;紧凑型玉米 中图分类号:S127 文献标识码:A DOI:10.3964/j .issn.1000-0593(2012)05-1287-05 收稿日期:2011-10-30,修订日期:2012-01- 25 基金项目:国家自然科学基金项目( 40801122,41101395),江苏高校优势学科建设工程项目和公益性行业(农业)科研专项经费项目(200803037 )资助 作者简介:谭昌伟,1980年生,扬州大学农学院讲师 e-m ail:tanwei010@126.com*通讯联系人 e-mail:g uows@yzu.edu.cn引 言 国内外大量的研究表明,叶绿素荧光(chlorophy ll fluo-rescence,CF)作为光合作用的指示性探针,已被广泛应用于光合作用机理研究、分析植物对环境胁迫的响应机理和探测 植物体内光合器官运转状况等[ 1- 3]。随着高光谱遥感技术的迅速发展,其很快的被广泛应用到农业的品质鉴定、估产和 病虫害等各方面。Wright[4]和王纪华等[5] 对小麦的蛋白质品质进行了研究;Wim等[6]利用TM影像数据源,使用影像融 合技术重新构建了NPP估产模型,分别对小麦和水稻进行 估产,任建强等[7] 使用MODIS数据源、CASA模型对黄淮 海平原的冬小麦进行估产并取得了较好的效果;Bronson[8]和Hansen等[9]对作物的氮素含量和氮素利用率、Fensholt等[10 ]对叶面积指数(LAI )进行了研究;在作物的病害方面:Adams等 [11] 分别对大豆和蚕豆斑点葡萄孢子病和大豆黄痿 病进行了研究,并建立相关的评估指标。然而对于叶绿素荧光参数与光谱植被指数关系的研究鲜见报道。本工作以紧凑型玉米(以下称为玉米)作为研究对象,利用获取的叶绿素荧光参数与植被指数,构建以光谱植被指数为支撑的叶绿素荧光参数的遥感监测模型,实时准确获取玉米的叶绿素荧光参数信息。 1 实验部分 1.1 试验设计 2010年7月至9月间试验在扬州大学试验农场(119°18′ E,32°26′N) 开展,供试品种为3个紧凑型品种(系):农华8号、金海5号和郑单958。对玉米冠层进行了光谱测量和光合有效辐射测定。为了在田间栽培条件下更大范围地表现出玉米长势差异和生化组分变异,于拔节期安排了一个从不施 氮到施重氮(级差450kg,0~900kg ·ha-1 )3个氮肥水平处理,即N1:不施氮肥;N3:施氮450kg·ha-1 ;N4:施氮900kg ·ha-1 ,使之表现为缺氮、适量氮、过量氮。3次重复,行距×株距为70cm×60cm,每区面积为20m×20m。 常规水分管理。1.2 光谱测试 分别在玉米拔节期(7月23日)、喇叭口期(8月7日)、吐丝期(8月29日)、乳熟期(9月5日) 进行4次光谱测定。采用美国ASD Fieldsp ec FR2 500型野外光谱辐射谱仪,光谱范围350~2 500nm,分辨率在350~1 000nm光谱区为1.4nm,1 000~2  500nm区为2nm,光谱重采样间隔为1nm。在晴朗无云、北京时间10:30~14:00,选择代表性植株进行测定,测定前后用参考板标定,测定时传感器探头向下,距

对于叶绿素荧光全方面的研究

对于叶绿素荧光全方面的研究 叶绿素荧光现象的发现 将暗适应的绿色植物突然暴露在可见光下后,植物绿色组织发出一种暗红色,强度不断变化的荧光。荧光随时间变化的曲线称为叶绿素荧光诱导动力学曲线。最直观的表现是,叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象。其本质是,叶绿素吸收光后,激发了捕光色素蛋白复合体,LHC将其能量传递到光系统2或光系统1,期间所吸收的光能有所损失,大约3%-9%的所吸收的光能被重新发射出来,其波长较长,即叶绿素荧光。 叶绿素荧光动力学研究的特点 1、叶绿素荧光动力学特性包含着光合作用过程的丰富信息 光能的吸收和转换 能量的传递与分配 反应中心的状态 过剩光能及其耗散 光合作用光抑制与光破坏 2、可以对光合器官进行“无损伤探查” 3、操作步骤简单快捷 光合作用的光抑制 光抑制是过剩光能造成光合功能下降的过程。过剩光能指植物所吸收的光能超出光化学反应所能利用的部分。过去人们把光抑制与光破坏等同起来,认为发生了光抑制就意味着光和机构遭到破坏。甚至把光抑制、光破坏、光氧化等,沦为一体。 光抑制的基本特征表现为: 光合效率下降说明叶片吸收的光能不能有效地转化为化学能。光破坏:PSII 是光破坏的主要场所,破坏也可能发生在反应中心也可能发生在与次级电子受体结合的蛋白上。发生光破坏后的结果:电子传递受阻、光合效率下降。当过剩的光能,不能及时有效地排散时,会对光合机构造成不可逆的伤害,如光氧化、光漂白等等。一切影响二氧化碳同化的外界因素,如低温、高温、水分亏缺、矿质元素亏缺等都会减少对光能的利用,导致过剩光能增加,进而加重光破坏。 植物防御破坏的措施 1、减少对光能的吸收 增加叶片的绒毛、蜡质 减少叶片与主茎夹角 2、增强代谢能力 碳同化 光呼吸 氮代谢 3、增加热耗散 依赖叶黄素循环的热耗散 状态转换 作用中心可逆失活 光合作用

叶绿素理化性质的测定

一、原理 叶绿素是一种二羧酸—叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开;叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光镜检查或用分光光度计精确测定;叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。 皂化反应式如下: 二、仪器与用具 20ml刻度试管;10ml小试管;试管架;分光镜;石棉网;药匙;烧杯(100ml);酒精灯;玻棒;铁三角架;刻度吸量管2ml、5ml各1支;火柴。 三、试剂 1. 95%乙醇;苯;醋酸铜粉末;5%的稀盐酸; 2. 醋酸-醋酸铜溶液:6g醋酸酮溶于100ml 50%的醋酸中,再加蒸馏水4倍稀释而成; 3. KOH-甲醇溶液:20g KOH溶于100ml甲醇中,过滤后盛于塞有橡皮塞的试剂瓶中。 四、方法 用叶绿体色素乙醇溶液和水研磨匀浆,进行以下实验。 1.光对叶绿素的破坏作用 (1)取4支小试管,其中两支各加入5ml用水研磨的叶片匀浆,另外两支各加入2.5ml叶绿体色素乙醇提取液,并用95%乙醇稀释1倍。 (2)取1支装有叶绿素乙醇提取液的试管和1支装有水研磨叶片均浆的试管,放在直射光下,另外两支放到暗处,40min后对比观察颜色有何变化,解释其原因。 2.荧光现象的观察 取1支20ml刻度试管加入5ml浓的叶绿体色素乙醇提取液,在直射光下观察溶液的透射光与反射光颜色有何不同?解释原因。 3.皂化作用(绿色素与黄色素的分离) (1)在做过荧光现象观察的叶绿体色素乙醇提取液试管中加入1.5ml 20%KOH-甲醇溶液,充分摇匀。

5种叶绿素荧光参数

5种叶绿素荧光参数:1.Fv/Fo 2.PSI Light 3.ETR 3.Y(II) 4.Act Light 5.Means Light 目前主要研究的小分子RNA 1.miRNA(微小RNA) 2.siRNA(小分子干扰RNA) 3.piRNA(PIWI结合RNA) 5种常见的植物胁迫形式:低温干旱盐碱高温洪涝 十种常见的激素; 茉莉酸生长素细胞分裂素赤霉素脱落酸水杨酸乙烯油菜素内酯萘乙酸吲哚乙酸吲哚丁酸 常见的组蛋白修饰乙酰化甲基化泛素化糖基化羰基化等 什么叫做组蛋白密码?组蛋白在翻译后的修饰中会发生改变,从而提供一种识别标志,为其他蛋白与DNA结合产生协同或拮抗效应,它是一种动态转录调控成分, 活性氧常见的5种形式:超氧自由基超氧阴离子过氧化氢含氧自由基过氧阴离子 蛋白质翻译后修饰的意义:是指mRNA被翻译成蛋白质后,对蛋白质上个别氨基酸残基进行共价修饰的过程。他可以使蛋白 质的结构更加复杂,功能更加完善,调节更为精细,作用更专一。正式蛋白质的翻译后修饰使得一个基因并不只对应一种蛋白质,增加了蛋白质的结构和功能的多样性,从而赋予生命更多复杂的过程。 常见的修饰方式:泛素化,磷酸化,糖基化,脂基化,甲基化,乙酰化 9、植物防御反应的生化原理:1.病原体的侵入可以激活所有细胞中的多种防御反应;2.超敏反应使局部细胞迅速死亡;3.在植物抗性反应的早期常常会产生有反应活性的氧化物;4.在植物不相容相互作用过程中,诱导生成了一种哺乳动物的信号分子——一氧化氮;5.细胞壁加固和细胞外酶活有助于植物的抗病反应;6.苯甲酸和水杨酸可能参与了大量的植物防御反应;7.防御 坏死营养型真菌以及诱导某些植物防御基因时所需的茉莉酮酸和乙烯可能会加剧病症;8.致病相关蛋白和其他防御相关蛋白包 括真菌细胞壁降解酶类、抗维生素多肽和信号转导级联途径中的组分;9.植物抗生素包括有机次生代谢物和无机次生代谢物;10.蛋白酶的抑制剂由食草的靶昆虫诱导;11.转录后基因沉默是植物应对治病病毒的一种特异性防御反应;12.平行的信号途径协调复杂而高度局域化的植物防御反应; 10.植物体内ROS(活性氧)与NO在植物防御反应中的作用及二者的协同关系 1.ROS在植物防御中的作用,H2O2可能直接对病原体有毒,在铁存在时,H2O2会产生活性极强的羟基自由基。另一种看法是,它或者通过各种富含羟脯氨酸或脯氨酸的糖蛋白与多糖基质交联,或者通过过氧化物酶的作用提高木质素多聚物的合成速率,从而加固植物细胞壁的结构,这两种作用都可以提高植物细胞壁对微生物穿透和酶促降解的抵抗能力。某些ROS还可能有信号转导功能。 2.NO是哺乳动物用以调控免疫,神经和血管系统中多种生物过程的一种信号分子。植物在识别无病毒病原菌的同时,即迅速 从头合成NO. 局部发生的超敏反应是遗传不相容相互作用的一贯特征,但是ROS大量的生成不足以诱导植物细胞的死亡,而可能可以抑制病原体的生长。NO可以加强ROS诱导植物细胞死亡的能力。已知NO可以与血红素结合,因此可以抑制用以解除H2O2毒性的 过氧化氢酶和抗坏血酸盐过氧化物酶。植物细胞悬浮培养物和叶子中加入可以产生NO的化合物,会使好几个与防御和细胞保 护相关基因的mRNA的积累。NO诱导ROS的大量积累导致细胞死亡。NO和活性氧共同提高植物病原体过程中提高协同作用。

茶的药理特性

茶的药理特性 茶的药理特性---茶已被公认为是最好的保健饮料。人们长期的饮茶实践充分证明,饮茶不仅能增进营养,而且能预防疾病。 (一)传统用法 茶的传统用法,即指中医与民间淬的用茶防治疾病的各种方法。 1、茶为万病之药 数千年来,有关饮茶与健康的记载很多。特别是我国古代,茶常被当作药物使用,在祖国的医药学宝库中,茶作为单方或复方而入药的,颇为常见。 (1)茶药与茶疗 茶文化与中医药,两者间有着十分密切的关系,而且都与神农氏这一传说有关。 由于茶叶有很好的医疗效用,所以唐代即有“茶药”(见代宗大历十四年王圆题写的“荼药”)一词;宋代林洪撰的《山家清供》中,也有“茶,即药为”的论断。可见,茶就是药,并为药书(古称本草)所收载。但近代的习惯,“茶药”一词则仅限於方中含有茶叶的制剂。 由于茶叶有很多的功效,可以防、治内外妇儿各科的很多病症,铁观音的功效。所以,茶不但是药,而且是如同唐代陈藏器所强调的:“茶为万病之药”。此外,明代于慎行《谷山笔尘》也称茶能“疗百病绋瘥”。 茶不但有对多科疾病的治疗效能,而且有良好的延年益寿、抗老强身的作用。铁观音的功效1983年林乾良氏又提出“茶疗”这一词汇。茶疗的实施,有两个层次的概念。狭义的茶疗,仅指应用茶叶,未加任何中西药。当然,这是茶疗的基石与主体。没有这一基石与主体,茶疗就不能成立。由于茶叶在传统应用上其功效已有二十四项之多(见下文),所以光是茶叶一味也足以构成茶疗体系。茶疗的第二层次概念,就是广义上的茶疗,即可在茶叶外酌加适量的中、西药物,构成一个复方来应用。当然,也包括某些方中无茶,但在煎服法中规定用“茶汤送下”的复方。这实际上是茶、药并服。 (2)茶的本草理论 茶的本草记述,以唐代苏敬等撰的《新修本草》(又称《唐本草》)为最早,列于本部中品。其文甚简,计正文45字,注文50字。正文:“茗,苦荼。茗,味甘、苦,微寒,无毒。主瘘疮,利小便,去痰、热渴,令人少睡,秋(据《证类本草》与《植物名实图考长编》应作春)采之。苦荼,主下气,消宿食,作饮加茱萸、葱、姜等良。” 注文:“《尔雅·释木》云:檟,苦荼。注:树小如栀子,冬生叶,可煮作羹饮。今呼早采者为荼,晚取者为茗,一名,蜀人名之苦荼,生出南、汉中山谷。”

第4章第1节_叶绿素荧光参数及意义-v2.

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝 光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明 各参数顺序按照数据传输软件上传出数据的顺序 SL(T):饱和脉冲强度。 AL(T):光化光强度。 Total T:测量总时长。 FR T:远红光时长。 Dark T:黑暗时长。 Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度 Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度 Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。 Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。 Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。 Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。 Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。 Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

常见药物的药理作用特点与机制

第一重点:药物的药理作用(特点)与机制 1. 毛果芸香碱:M样作用,M受体激动药(用阿托品拮抗)。缩瞳、调节眼内压和调节痉挛。用于青光眼。 2. 新斯的明:胆碱脂酶抑制剂。用于重症肌无力,术后腹气胀及尿潴留,阵发性室上性心动过速,肌松药的解毒。禁用于支气管哮喘,机械性肠梗阻,尿路阻塞。M样作用可用阿托品拮抗。 3. 碘解磷定:胆碱脂酶复活药,有机磷酸酯类中毒的常用解救药。应临时配置,静脉注射。 4. 阿托品:M受体阻滞药。竞争性拮抗Ach或拟胆碱药对M胆碱受体的激动作用。用于解除平滑肌痉挛,抑制腺体分泌,虹膜睫状体炎,眼底检查,验光,抗感染中毒性休克,抗心律失常,解救有机磷酸酯类中毒。禁用于青光眼及前列腺肥大患者禁用。用镇静药和抗惊厥药对抗阿托品的中枢兴奋症状,同时用拟胆碱药毛果芸香碱或毒扁豆碱对抗“阿托品化”。同类药物莨菪碱。合成代用品:扩瞳药:后马托品。解痉药:丙胺太林。抑制胃酸药:哌纶西平。溃疡药:溴化甲基阿托品。 5. 东莨菪碱山莨菪碱作用特点:东莨菪碱中枢镇静及抑制腺体分泌作用强于阿托品。还有防晕止吐作用,可治疗帕金森氏病。山莨菪碱可改善微循环。主要用于各种感染中毒性休克,也用于治疗内脏平滑肌绞痛,急性胰腺炎。 6. 筒箭毒碱:肌松作用,全麻辅助药。呼吸肌麻痹用新斯的明解救。 7. 琥珀胆碱:速效短效肌松药,插管时作为全麻辅助药。禁用于胆碱酯酶缺乏症病人,与氟烷合用体温巨升的遗传病人,青光眼,高血钾患者(持续去极化,释放K过多)如偏瘫、烧伤病人,以免引起心脏意外。使用抗胆碱脂酶药患者禁用。 8. 去甲肾上腺素:α受体激动药。用于休克,上消化道出血。不良反应有局部组织坏死,急性肾功能衰竭,停药后的血压下降。禁用于高血压、动脉粥样硬化,器质性心脏病,无尿病人与孕妇。主要机理为收缩外周血管。 9. 去氧肾上腺素(苯肾上腺素):α1受体激动药,防治脊髓麻醉或全身麻醉的低血压。速效短效扩瞳药。 10. 可乐定:α2受体激动药。用于降血压。中枢性降压药。降压快而强,使用于中度高血压。尚可用于偏头痛以及开角型青光眼的治疗,也用于吗啡类镇痛药成瘾者的戒毒。(见后) 11. 肾上腺素:α、β受体激动药。用于心脏停搏,过敏性休克,支气管哮喘,减少局麻药的吸收,局部止血。不良反应:剂量过大可发生心律失常,脑溢血,心室颤动。禁用于器质性心脏病,高血压,冠状动脉粥样硬化,甲状腺机能亢进及糖尿病。主要机理为兴奋心脏,兴奋血管,舒张支气管平滑肌。 12. 多巴胺:α、β受体激动药。作用特点:主要激动多巴胺受体,也能激动α和β1受体,用于抗休克。可与利尿药合用治疗急性肾功能衰竭。(对肾脏的特色是直接激动肾脏的多巴胺受体,增加肾脏血流量,排钠利尿,注意补充血容量,纠正酸中毒)。可用于抗慢性心功能不全。 13. 间羟胺作用特点:激动α受体,作用弱而持久,用于各种休克早期。 14. 麻黄碱:α、β受体激动药,较肾上腺素弱而持久。特点是有中枢作用。可产生快速耐药性,停药一定时间后可恢复。用于防止低血压,治疗鼻塞,过敏,缓解支气管哮喘。大量长期应用可引起失眠、不安、头痛、心悸。

阿司匹林的药理特性及临床应用

阿司匹林的药理特性及临床应用要文波(电子信息与电气工程学部 1108班 201181377) 摘要:阿司匹林属于解热镇痛药,尽管运用于临床已有百余年,但有关其药理特性及临床应用的研究一直在进行。 关键词:阿司匹林:作用机理:临床应用 引言:阿司匹林问世之初主要用于止痛、退热的治疗,后广泛用于伤风、感冒、头痛、神经痛、关节痛、急性和慢性风湿痛及类风湿痛等疾病的治疗,现如今逐渐转变到用于抗血栓,尤其在心血管事件的二级预防中应用最广,减少了大约25%的心血管事件的发生。因此,对于阿司匹林的研究有着深远的历史和现实意义。 1阿司匹林的药理特性与机理 1.1药理特性 阿司匹林Aspirin化学名为2-(乙酰氧基)苯甲酸(2-(Acetyloxy)benzoic acid)。又名:乙酰水杨酸。此品为白色结晶或结晶性粉末;无臭或微带醋酸臭,味微酸,遇湿气即缓慢水解。在乙醇中易溶,在氯仿或乙醚中溶解,在水或无水乙醚中微溶,在氢氧化钠溶液或碳酸钠溶液中溶解,但同时分解。Mp.135~140℃。 Aspirin呈弱酸性,pKa为3.49,解热镇痛作用比水杨酸钠强,而且其副作用较低。 Aspirin 还能抑制血小板中血栓素A2(TXA2)的合成,具有强效的搞血小板凝聚的作用,因此现在Aspirin 已经用于心血管系统疾病的预防和治疗。近来研究还表明:Aspirin 和其它非甾体抗炎药对结肠癌也有预防作用,而且其应用范围还在不断被拓展。Aspirin的副作用主要有对胃粘膜的刺激作用,甚至可引起十二指肠出血等症。这主要是由于游离羧基存在的关系。因此将Aspirin制成盐、酰胺或酯。 虽然人们一直努力去寻找“更好”的Aspirin,但尚未发现一种优于Aspirin 的药物。通过构效关系研究,人们得到如下结论:阴离子是活性的必要结构,如果酸性降低,虽保持其镇痛作用,但抗炎活性减少。置换羧基成酚羟基可以影响疗效和毒性。羧基与羟基的位置若从邻位移到间位或对位,可使活性消失。 Aspirin水解生成Salicylic Acid较易氧化,在空气中可逐渐变为淡黄、红棕甚至深棕色。水溶液变化更快。其原因是由于分子中酚羟基被氧化成醌型有色物质。碱、光线、升高温度及微量铜、铁等离子可促进反应进行。Aspirin 代谢主产物为葡萄糖醛酸或甘氨酸的结合物,并以此种形式排出体外。 1.2机理 1.21阿司匹林防癌机理 研究显示,阿司匹林有抑制炎症蛋白质的作用,在肠癌、乳腺癌等实体癌症中,这类蛋白质的水平通常都很高。2006 年10 月美国《FASEB》杂志上刊登的一项研究揭示了阿司匹林抑制癌症的重要线索:阿司匹林能抑制肿瘤形成新的血管,使肿瘤不能生长。以往的研

相关文档
最新文档