初中尺规作图典型例题归纳总结

初中尺规作图典型例题归纳总结
初中尺规作图典型例题归纳总结

初中尺规作图典型例题归纳

典型例题一

例 已知线段a 、b ,画一条线段,使其等于b a 2+.

分析 所要画的线段等于b a 2+,实质上就是b b a ++.

画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段.

说明

1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.

2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图. 典型例题二

例 如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .

错解 如图(1),

(1)作射线AM ;(2)在射线AM 上截取AB =BC =a ,CD =b ,则线段AD 即为所求. 错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.

图(1) 图(2)

正解 如图(2),

(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;

(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.

典型例题三

例 求作一个角等于已知角∠MON (如图1).

图(1) 图(2)

错解 如图(2),

(1)作射线11M O ;(2)在图(1),以O 为圆心作弧,交OM 于点A ,交ON 于点B ;

(3)以1O 为圆心作弧,交11M O 于C ;(4)以C 为圆心作弧,交于点D ;(5)作射线D O 1.

则∠D CO 1即为所求的角.

错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧.

正解 如图(2),

(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;

(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.

典型例题四

例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .

分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .

作法 如下图

(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.

说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.

典型例题五

例 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形).

分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可.

作法 如图(2).

图(1) 图(2)

(1)过点C 作直线EF ,交AB 于点F ;

(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ;

(3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点;

(4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ;

(5)过点D 作直线CD ,CD 就是所求的直线.

说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.

典型例题六

例 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =?36,∠C =?44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).

分析 本题实质上是利用原题中的5个数据,列出所有与△ABC 全等的各种情况,依据是SSS 、SAS 、AAS 、ASA .

解 与△ABC 全等的三角形如下图所示.

典型例题七

例 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).

(2003年,桂林)

分析 这是尺规作图在生活中的具体应用.要把△ABC 分成面积相等的三个三角形,且都是从A 点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC 边的三等分点即可.

作法 如下图,

找三等分点的依据是平行线等分线段定理.

典型例题八

例 已知∠AOB ,求作∠AOB 的平分线OC .

错解 如图(1)

作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;

(2)分别以D 、E 为圆心,以大于2

1DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.

错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.

图(1) 图(2)

正解 如图(2)

(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;

(2)分别以D 、E 为圆心,以大于2

1DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.

典型例题九

例 如图(1)所示,已知线段a 、b 、h (h <b ).

求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .

图(1)

错解 如图(2),

(1)作线段BC =a ;

(2)作线段BA =b ,使AD ⊥BC 且AD =h .

则△ABC 就是所求作的三角形.

错解分析 ①不能先作BC ;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD ,再作AB ,最后确定BC .

图(2) 图(3)

正解 如图(3).

(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ;

(2)在DM 上截取线段DA =h ;

(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;

(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ;

(5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.

典型例题十

例 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).

分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .

作法 如下图

(1)作直线MN :

(2)在MN 上任取一点C ,过点C 作CE ⊥MN ;

(3)在CE 上截取CA =b ,在CM 上截取CB =a ;

(4)连结AB ,△ABC 就是所求作的直角三角形.

说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.

典型例题十一

例 如下图,已知钝角△ABC ,∠B 是钝角.

求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形).

分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;

(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图

(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁;

②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点;

③分别以G 、H 为圆心,以大于2

1GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高. (2)①分别以B 、C 为圆心,以大于

21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;

③连结AF ,则线段AF 就是所要求作的△ABC 中边BC 上的中线.

说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.

典型例题十二

例 如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .

图(1) 图(2)

分析 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点.

作法 如图(2)所示

(1)作∠MON 的平分线OP ;

(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.

说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.

(2)两条直线交于一点.

典型例题十三

例 如下图,已知线段a 、b 、∠α、∠β.

求作梯形ABCD ,使AD =a ,BC =b ,AD ∥BC ,∠B =∠α;∠C =∠β.

分析 假定梯形已经作出,作AE ∥DC 交BC 于E ,则AE 将梯形分割为两部分,一部分是△ABE ,另一部分是AECD .在△ABE 中,已知∠B =∠α,∠AEB =∠β,BE =b -a ,所以,可以首先把它作出来,而后作出AECD .

作法 如下图.

(1)作线段BC=b;

(2)在BC上截取BE=b-a;

(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;

(4)以EA、EC为邻边作AECD.

四边形ABCD就是所求作的梯形.

说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.

典型例题十四

例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.

(2002年,青岛)分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.

解如下图,图中C点就是蓝方指挥部的位置.

典型例题十五

例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).

(2002年,大连)

图(1) 图(2)

分析 因为A 、B 、C 三点在⊙O 上,所以OA =OB =OC =R .根据到线段AB 、BC 各端点距离相等的点在线段的垂直平分线上,故分别作线段AB 、BC 垂直平分线即可.

解 如图(2)

说明 角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.

典型例题十六

例 如图,是一块直角三角形余料,?=∠90C .工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上.试协助工人师傅用尺规画出裁割线.

分析 要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.

作法 如图.

① 作ACB ∠的角平分线CD ,交AB 于点G ;

②过G 点分别作AC 、BC 的垂线,垂足为E 、F .则四边形ECFG 就是所要求作的正方形.

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

初中数学总复习尺规作图大全

中考总复习---尺规作图专项训练 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。题目二:作已知线段的中点。 已知:如图,线段a . 已知:如图,线段MN. 求作:线段AB,使AB = a . 求作:点O,使MO=NO(即O是MN的中点). 题目三:作已知角的角平分线。题目四:作一个角等于已知角。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 题目五:已知三边作三角形。题目六:已知两边及夹角作三角形。 已知:如图,线段a,b,c. 已知:如图,线段m,n, ∠α. 求作:△ABC,使AB = c,AC = b,BC = a. 求作:△ABC,使∠A=∠α,AB=m,AC=n.题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β ,线段m .求作:△ABC,使∠A=∠α,∠B=∠ β ,AB=m. 课堂测试

C B A C B A A C B C B 1.如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2.如图,107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 3、过点C 作一条线平行于AB ; 4、过不在同一直线上的三点A 、B 、C 作圆O ; 5、过直线外一点A 作圆O 的切线。 6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹) 7、某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1 )按圆形设计,利用图1画出你所设计的圆形花坛示意图; (2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 . C B A

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

初中数学教学论文 尺规作图的教学分析

尺规作图的教学分析 尺规作图以严密的逻辑推理,成为数学教学中独具一格的教学内容,由于其独特的知识结构,多年来在初中教学中未有深入的涉及和研究,对学生的教学要求,只局限于五种基本尺规作图法的理解和操作,随着新课程对学生能力培养的要求,对尺规作图的要求也提出了更高的要求:除了要熟练操作五种基本图形作法外,还要结合几何推理,对目标图形进行作图原理推究、作图方法探索。这在一定程度上,对尺规作图的课堂教学带来了一定的挑战,在近段时间关于尺规作图的课堂教学教研活动中,笔者深有感触:尺规作图的教学在接轨于新课标的总思想和接轨于中考要求方面需要加大力度,笔者就课后交流和个人亲身教学体会,谈谈对尺规作图教学的一些想法。 1. 教材对尺规作图的基本要求 任何一个知识点的学习,都离不开基本概念的理解和基本技能的掌握,三基是知识的根本点,对学生所学的相关知识及新知识结构起着固本作用,三基只有得到彻实有效的实施和应用,三基才能得到充分的发展和延伸。我们对尺规作图这块内容的教学,同样需要熟练掌握五种基本图形的基本画法,正确理解它们的作图原理,在实际问题中能简单地应用。教材(华师大版)对五种基本作图的内容编排,是浅显易懂,对课堂例题及训练题也是从绝大数学生的实际认知能力出发而设,以照顾全体学生在学习中都能获益为主要目标,在课后作业练习题中,也是对五种基本图形作法中稍加组合应用,注重的是基本作图法的理解、技能的掌握以及有条件类型题的作图,这类题学生能直接根椐条件,选择相应作图方法作图,主要目的都是巩固理解五种基本图形,虽然题目类型缺乏灵活性,但这些全是固本知识,是知识的根本点,能为学生作图方法的深入研究提供有效的保证。新教材编写虽然浅显易懂,习题也简单,却需要教师补充一部分内容,这是新教材的一个特色,是给教师提供的一个弹性空间,可以根据学生具体情况,适当补充一些需要的题型,提升学生的能力。 2. 尺规作图应落实的教学尺度 2.1尺规作图教练中的难度 在学生的实际学习中,对五种基本作图法的单一应用是没有问题的,但部分学生由于几何意识薄弱,对稍加组合的基本图形作法的应用,思维发挥尚有一定差异,主要原因在于双基落实过程中,深度不够,也就是说几何推理+操作的综合能力不够到位,需要在教学过程中把握好难度分寸,给学生补充一些能激化思维、提升思维的内容,以达到对基本作图法的灵活应用。 笔者给学生做过这样一个试验,如例1,学生在解答时,因作图意向方法非常清楚,因此学生能很快画出角平分线和过点P的垂线,得二线交点Q。但当笔者把题目作了适当变形时,学生选择作图方法,显得缺乏应有的章法,暴露出学生在受教过程中,对目标图形的几何分析和基本图形作法插入应用,缺乏应有理性认识。若在平时能经常给学生训练例1类的变形题,学生对尺规作图的理性认识将上升一个台阶。 例1如图1-1,已知∠AOB,点P在OA上,找出点Q,使点Q到∠AOB两边距离相等,并且PQ⊥OA; 图1-1 图1-2 图1-3 变形1 有二条直线型公路AB和CD,如图1-2,因在点C的左边有障碍物,因此公路要在点C处开始转弯与公路AB相接,要求画出连接二公路的圆弧,且圆弧与二公路是相切。 变形2 有二条直线型公路AB和CD,如图1-3,因在点C的左边是障碍物,因此公路要修建一个圆弧连接公路AB、CD,要求画出圆弧的半径为r,且圆弧与二公路是相切。 变形1只是对图1-1中的∠O部分擦去,直线说成是公路,很多学生只能画出过点C的垂线,却不会去画二条公路延长线的夹角平分线。变形2是对变形1改进,有了变形1的经验,学生只能画角平分线确定圆心所在的一条直线,画第二条确定圆心所在的直线有点困难,本题和变形1相比,难度稍

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

尺规作图的教学分析

[初中数学论文] 尺规作图的教学分析 尺规作图以严密的逻辑推理,成为数学教学中独具一格的教学内容,由于其独特的知识结构,多年来在初中教学中未有深入的涉及和研究,对学生的教学要求,只局限于五种基本尺规作图法的理解和操作,随着新课程对学生能力培养的要求,对尺规作图的要求也提出了更高的要求:除了要熟练操作五种基本图形作法外,还要结合几何推理,对目标图形进行作图原理推究、作图方法探索。这在一定程度上,对尺规作图的课堂教学带来了一定的挑战,在近段时间关于尺规作图的课堂教学教研活动中,笔者深有感触:尺规作图的教学在接轨于新课标的总思想和接轨于中考要求方面需要加大力度,笔者就课后交流和个人亲身教学体会,谈谈对尺规作图教学的一些想法。 1. 教材对尺规作图的基本要求 任何一个知识点的学习,都离不开基本概念的理解和基本技能的掌握,三基是知识的根本点,对学生所学的相关知识及新知识结构起着固本作用,三基只有得到彻实有效的实施和应用,三基才能得到充分的发展和延伸。我们对尺规作图这块内容的教学,同样需要熟练掌握五种基本图形的基本画法,正确理解它们的作图原理,在实际问题中能简单地应用。教材(华师大版)对五种基本作图的内容编排,是浅显易懂,对课堂例题及训练题也是从绝大数学生的实际认知能力出发而设,以照顾全体学生在学习中都能获益为主要目标,在课后作业练习题中,也是对五种基本图形作法中稍加组合应用,注重的是基本作图法的理解、技能的掌握以及有条件类型题的作图,这类题学生能直接根椐条件,选择相应作图方法作图,主要目的都是巩固理解五种基本图形,虽然题目类型缺乏灵活性,但这些全是固本知识,是知识的根本点,能为学生作图方法的深入研究提供有效的保证。新教材编写虽然浅显易懂,习题也简单,却需要教师补充一部分内容,这是新教材的一个特色,是给教师提供的一个弹性空间,可以根据学生具体情况,适当补充一些需要的题型,提升学生的能力。 2. 尺规作图应落实的教学尺度 2.1尺规作图教练中的难度 在学生的实际学习中,对五种基本作图法的单一应用是没有问题的,但部分学生由于几何意识薄弱,对稍加组合的基本图形作法的应用,思维发挥尚有一定差异,主要原因在于双基落实过程中,深度不够,也就是说几何推理+操作的综合能力不够到位,需要在教学过程中把握好难度分寸,给学生补充一些能激化思维、提升思维的内容,以达到对基本作图法的灵活应用。 笔者给学生做过这样一个试验,如例1,学生在解答时,因作图意向方法非常清楚,因此学生能很快画出角平分线和过点P的垂线,得二线交点Q。但当笔者把题目作了适当变形时,学生选择作图方法,显得缺乏应有的章法,暴露出学生在受教过程中,对目标图形的几何分析和基本图形作法插入应用,缺乏应有理性认识。若在平时能经常给学生训练例1类的变形题,学生对尺规作图的理性认识将上升一个台阶。 例1如图1-1,已知∠AOB,点P在OA上,找出点Q,使点Q到∠AOB两边距离相等,并且PQ⊥OA;

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

初中中考尺规作图十例(打印)

a M 尺规作图 【知识归纳】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB ,使AB = a . 作法: (1) 作射线AP ; (2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。 (2)题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O ,使MO=NO (即O 是MN 的中点). 作法: (1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O . 则点O 就是所求作的MN的中点。 (3)题目三:作已知角的角平分线。 已知:如图,∠AOB , 求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB 作法: ( 1)以O 为圆心,任意长度为半径画弧, 分别交OA ,OB 于M ,N ; (2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。 则射线OP 就是∠AOB 的角平分线。

③②① P B A P (4)题目四:作一个角等于已知角。 已知:如图,∠AOB 。 求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB 作法: (1)作射线O ′A ′; (2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ′为圆心,以OM 的长为半径画弧,交O ′A ′于M ′; (4)以M ′为圆心,以MN 的长为半径画弧,交前弧于N ′; (5)连接O ′N ′并延长到B ′。 则∠A ′O ′B ′就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。 已知:如图,P 是直线AB 上一点。 求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。 作法: (1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ; (2)分别以M 、N 为圆心,大于MN 2 1 的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。 则直线CD 是求作的直线。 (6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。 求作:直线CD ,使CD 经过点P , 且CD ⊥AB 。 作法: (1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ; (2)分别以M 、N 圆心,大于MN 2 1 长度的一半为半径画弧,两弧交于点(3)过P 、Q 作直线CD 。 则直线CD 就是所求作的直线。

(完整版)初中最基本的尺规作图总结

尺规作图 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

初中最基本的尺规作图总结

尺规作图一、熟练掌握尺规作图题的规范语言 用直尺作图的几何语言:1. ①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 用圆规作图的几何语言:2. ①在××上截取××=××;;②以点×为圆心,××的长为半径作圆(或弧)③以点×为圆心,××的长为半径作弧,交××于点×;. ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;1.已知: 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 一般要保留作图当不要求写作法时,作法:能根据作图的过程写出每一步的操作过程.3.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找.痕迹. 作法 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,可见在解作图题不需要写出作法,而且在许多中考作图题中,又往往只要求保留作图痕迹,. 时,保留作图痕迹很重要五种基本作图:1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。 已知:如图,线段a .

AB = a . AB,使求作:线段作法: AP;)作射线(1AB=a . AP上截取)在射线(2 AB就是所求作的图形。则线段 题目二:作已知线段的中点。MN. 已知:如图,线段 . MNO是的中点)求作:点O,使MO=NO(即作法:(1)分别以M、N为圆心,大于 的相同线段为半径画弧, Q;两弧相交于P, O.(2)连接PQ交MN于就是所求作的MN的中点。O则点与MN有何关系?)(试问:PQ 题目三:作已知角的角平分线。,已知:如图,∠AOB )。(即OP平分∠AOB 使∠求作:射线OP, AOP=∠BOP 作法: 1)以O为圆心,任意长度为半径画弧,(;,N分别交OA,OB于M、N为圆心,大于(2)分别以M 内于P;的相同线段为半径画弧,两弧交∠AOB 。(3)作射线OP 则射线OP 就是∠AOB的角平分线。题目四:作一个角等于已知角。MON(如图1).求作一 个角等于已知角∠

尺规作图初中数学中考题汇总

(第8题图) 选择题(每小题x 分,共y 分) (2011长春)8.如图,直线 l 1ABC 1 2 (2011浙江绍兴,8,4分)如图,在ABC ?中,分别以点A 和点B 为圆心,大于 1 2 AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD .若ADC ?的周长为10,7AB =,则ABC ?的周长为( ) D M N C A B 【答案】C 二、填空题(每小题x 分,共y 分) 〔2011南京市〕11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以 A 为圆心,AO 长为半径画弧,两弧交于点 B ,画射线OB ,则cos ∠AOB 的值等于 _______1 2 ____. (2011重庆市潼南县)19.(6分)画△ABC,使其两边为已知线段a 、b ,夹角为β. (要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不 写作法). (第11题) B A M O B A C D 图2 图3

已知: 求作: 19. 已知:线段a 、b 、角β -------------1分 求作:△ABC 使边BC=a ,AC= b ,∠C=β ------------2分 画图(保留作图痕迹图略) --------------6分 (2011佛山)22、如图,一张纸上有线段AB ; (1)请用尺规作图,作出线段AB 的垂直平分线(保留作图痕迹,不写作法和证明); (2)若不用尺规作图,你还有其它作法吗请说明作法(不作图); (2011?宿迁市)28.(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC = 2 1 ,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度; (2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由. 19题图a b β A B

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

2020省重点中学中考尺规作图题专题复习

1 C B A C B A C B A 尺规作图 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作角的平分线; 4、作线段的中垂线; 5、已知三边,两边和其夹角或两角和其夹边作三角形; 6、已知底边和底边上的高作等腰三角形; 7、过直线上一点作直线的垂线;8、过直线外一点作直线的垂线. 题 1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2、 如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P ,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 3、 三条公路两两相交,交点分别为,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 4、 过点C 作一条线平行于AB ; 5、过不在同一直线上的三点A 、C 作圆O ; 6、过直线外一点作圆O 二、几何画图: 1.只利用一把有刻度的直尺,用度量的方法,按下列要求画图: 1)画等腰三角形ABC 的对称轴: 2)画∠AOB 的对称轴 2.有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径并定出圆心.要求在图上保留画图痕迹,写出画法. 3.某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同的方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些). 4.某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供至少两种分法。要求:画出图形,并简要说明分法。 5.如图所示,在正方形网格上有一个三角形ABC. ①作△ABC 关于直线MN 的对称图形(不写作法); ②若网格上的最小正方形的边长为1.求△ABC 的面积. 1的正方形,我们把以格点连线为边的多边形称为 .如图(一)中四边形ABCD 就是一个“格点四边形” D C B A

解三角形知识点汇总和典型例题(新)

中小学1对1课外辅导专家 文成教育学科辅导教案讲义 授课对象 授课教师 徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课 使用教具 人教版教材 教学目标 熟练掌握三角形六元素之间的关系,会解三角形 教学重点和难 点 灵活解斜三角形 参考教材 人教版必修5第一章 教学流程及授课详案 解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);

相关文档
最新文档