点燃式天然气发动机动力性分析

点燃式天然气发动机动力性分析
点燃式天然气发动机动力性分析

点燃式天然气发动机动力性分析

摘要:天然气因具有能源来源丰富、燃料经济性好、排放少、发动机使用寿命长、维修费用少、怠速及过度工况运行稳定等优点,使天然气作为汽车的一种可替代能源得到了不断的应用。由于其成分、使用条件和目前技术水平等条件限制,使得在使用发动机上产生动力下降的问题,在一定程度上制约了天然气汽车的发展、推广与应用。本文对影响天然气发动机动力性下降的因素进行必要的分析,从混合气的热值、进气效率和充气量、分子变更系数等几个方面,对天然气发动机动力下降的可能因素进行了系统的分析。

关键词:天然气混合气的热值进气效率分子变更系数

天然气(Natural Gas,简称NG)是地表下岩石储集层中自然存在的以轻质碳氢化合物为主体的气体混合物的统称,其主要成分是甲烷(CH4)约占85%~95%。天然气按其来源有气田气、油田伴生气和煤成气之分。人们对天然气作为发动机燃料研究与应用已经有一百多年的历史。天然气具有能源来源丰富、燃料经济性好、排放少、发动机使用寿命长、维修费用少、怠速及过度工况运行稳定等优点,作为一种汽车燃料近年来得到了一定的发展。作为汽车燃料就其使用性能而言,与汽油、柴油相比较也有不足之处,如天然气作为汽车燃料在携带时有一定的困难,用现有的汽车以天然气为燃料时会造成发动机功率的下降。在目前的技术水平下,发动机的功率下降高达20%(如大功率较燃用汽油的下降幅度为15%~24% ,最大扭矩的下降幅度为10%~15%),在一定程度上制约了天然气汽车的发展、推广与应用。

天然气汽车按照燃料组成具有不同的形式,但是无论是纯(或专用)天然气汽车还是天然气—汽油两用燃料汽车都是采用点燃式,是天然气汽车的主体部分,因此,更好更为深入地研究点燃式天然气汽车发动机动力性,对提高其动力性、降低排放以及天然气汽车的普及具有重要的意义。

在汽车底盘不变的情况下,发动机的动力性可以通过发动机的平均有效压力来表示。平均有效压力是指单位气缸工作容积发出的有效功。显然,平均有效压力越大,发动机的作功能力越强。点燃式天然气发动机动力性也可以使用公式(1)进行分析,通过分析其影响参数就可以准确分析影响天然气发动机动力性原因的最主要因素。

(1)

式中:hu—燃料的低热值;α—过量空气系数;L0—燃料完全燃烧所需要的理论空气量;ηm—发动机的机械效率;ηv—发动机的充气效率;ηi—发动机的指示热效率;VT—实际进气量在进气状态下的体积;Vh—发动机气缸工作容积;mk—发动机每循环的实际进气量;ρo—大气的密度。

发动机动力学复习资料

15、 一、名词解释题 “内部平衡” 当考虑曲轴为柔性转子,发动机机体也是弹性体时,由于曲轴和机体承受 惯性力及其力 矩后产生周期性变形,此时即使发动机已达到完全的外部平衡,但变形的 结果仍会有一部分力和力矩 回传到机座,引起发动机振动并向外传递,发动机的这种平 衡称为“内部平衡”。 “外部平衡” 当假定曲轴为刚性转子发动机机体也是绝对刚体时,把内燃机当成一个 整体,来分析曲 柄连杆机构惯性力及其力矩对发动机支承、支架等外部构件作用时,所 达成的平衡称为外部平衡。 表示 ,即 什么叫发动机稳定工况? 在一个完整的曲轴总转矩变化周期内, 内燃机曲轴输出 的有用功与 作业机具的阻力功相等。 过量平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对旋转惯性力 的平衡叫做过量 平衡法 部分平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对一阶往复惯 性力的平衡叫做 部分平衡法 转移平衡 通过加大曲轴平衡重来部分平衡一阶往复惯性力的方法对整机的平衡 叫做转移平衡法 活塞拍击 :由于活塞的工作温度变化很大, 运动速度又很高, 不可能把与汽缸的配 合间隙做 得很小,加上连杆偏置的影响,导致活塞在上下止点附近,从靠近汽缸一侧转 变到靠近汽缸另一侧, 对汽缸产生的拍击作用,成为振源。 1、 2、 3、 4、 5、 6、 7、 何谓功率平衡 基于能量守恒定律和功能原理,在结构上或机构设计方面采取相关措 施,将机器的 速度波动限制在允许范围内,称为功率平衡。 何谓质量平衡 调整构件的质量分布及在结构上采取特殊的措施,将各惯性力和惯性力 矩限制在预 期的范围内,叫做质量平衡。 倾覆力矩 作用于机体,产生使发动机沿阻力矩方向翻转倾覆的趋势。 静平衡 在垂直于轴线的同一个平面(径向)内, 如果分布在回转件上各个质量的离 心惯性力合力 为零或质径积矢量和为零,称为静平衡。 曲轴回转不均匀性 用曲轴的旋转不平均度5来表示 8、 9、 10、 动平衡 分布在回转件上各个质量的离心惯性力合力为零; 合力矩也为零 ,这样的平衡叫做动平衡 . 质量代换 实际机构具有复杂的分布质量, 但可以根据动力学等效性原则用几个适当配 置的集中质量 (质点 )代替原来的系统,这样的方法叫做质量代换。 扭矩不均匀性 为了评价内燃机总转矩变化的均匀程度 ,通常用转矩不均匀度卩来 同时离心力在轴向所引起的 11、 12、 13、 14、

发动机台架试验 -可靠性试验

学生实验报告实验课程名称:发动机试验技术

目录 一、试验目的 二、试验内容 1.试验依据 2.试验条件 3.试验仪器设备 4.试验样机 5.试验内容与方案 (1)交变负荷试验 (2)混合负荷试验 (3)全速负荷试验 (4)冷热冲击试验 (5)活塞机械疲劳试验 (6)活塞热疲劳试验 三、试验进度安排 四、试验结果的提供

摘要 国外在可靠性试验方面己做了许多有益的研究工作,但到目前为止尚未形成统一的试验方法,而且考虑到该试验的非普遍性及技术保密性,将来也不可能形成统一的试验规范。相对于热疲劳研究状况来讲,国内对机械疲劳的研究还比较少。为适应发动机比功率和排放法规日益提高的苛刻要求,发动机面临着更高机械负荷和热负荷的严峻考验。国内高强化发动机最大爆发压力已超过22 Mpa。活塞的机械疲劳损伤主要体现在销孔、环岸等部位。活塞环岸、销座及燃烧室等部位由于在较高的工作温度下承受着高频冲击作用的爆发压力,润滑状况较差,摩擦磨损,其他破坏可靠性的腐蚀磨损(缸套一环换向区、排气门/排气门座锥面等)、疲劳磨损(挺杆、轴瓦、齿轮表面等)、微动磨蚀(轴瓦钢背、飞轮压紧处、飞轮壳压紧处、湿缸套止口处等)、电蚀(火花塞电极等)和穴蚀(水泵叶轮等)这些都是可靠性试验的主要目标,也是实施可靠性设计、试验研究的重点部位。 众所周知,在内燃机整机上进行零部件可靠性试验成本昂贵。本文将参照原有的可靠性试验方法,通过看一些关于可靠性的零部件加速寿命实验技术制定一种评价内燃机可靠性的考核规范,包括活塞机械疲劳试验和活塞热疲劳试验,可迅速做出其可靠性恰当的评价,可以降低研发成本、缩短研发时间。 一、试验目的 1通过理解内燃机可靠性评估,评定发动机的可靠性。 1.1了解评估的多种理论方法,如数学模型法、上下限法、相似设备法、蒙特卡洛法、故障分析( 包括故障模式影响分析和故障树分析) 等。并掌握故障分析法。 1.2学会可靠性试验评估,为进行可靠性设计奠定基础理论,为发动机及相关零部件提供测试、验证以及改进的技术支持。 2掌握可靠性试验方法 2.1掌握内燃机可靠性综合性试验及专项试验。综合性试验的考核对象是零件的可靠性、零件表面性状的变化和发动机性能的保持性;专项试验是超水温( 耐热性) 、超负荷、混合负荷、交变负荷循环、超爆发压力、超速等试验。 二、试验内容 1试验依据 参考的试验标准: GB /T 19055-2003 汽车发动机可靠性试验方法 GB /T 18297-2001 汽车发动机性能试验方法 JB/T 5112-1999 中小功率柴油机产品可靠性考核 2试验条件 一般试验条件: 2.1燃料及机油:采用制造厂所规定的牌号,柴油中不得有消烟添加剂。

燃气轮机在船舶动力方面的应用

燃气轮机在船用动力方面的应用与发展 邵高鹏 (清华大学汽车系,北京 100084) 摘要:介绍船用燃气轮机的工作原理和特点,对比燃气轮机和内燃机性能的优缺点,总结燃气轮机应用于船用动力的现状和未来的发展方向。 关键词:船用燃气轮机;原理;应用;发展方向; 1.引言 燃气轮机动力装置在50年代开始用于船舶,在此之前,水面舰艇都已蒸汽轮机和内燃机作为其动力装置,大型舰船以蒸汽轮机为其主要的动力装置,蒸汽轮机的优势在于技术相对简单,制造相对容易,但是其同样存在油耗大,占用空间大等等劣势,而柴油机的单机功率有限,必须采用多机并用。并且由于燃气轮机汽固有的一些优点,使得它逐渐向柴油机动力在船舶动力上的统治地位发起了挑战。最初的燃气轮机还只能应用与军用舰艇,但是随着燃气轮机技术的发展,燃气轮机在商船上也逐步得到了推广。 2.船用燃气轮机的工作原理 船用内燃机的循环模式可以分为简单开式循环,其工作过程同内燃机类似,也可以分为吸气、压缩、做功及排气四个工作行程,但是与内燃机又有很大的不同,下图中是一种燃气轮机的结构示意图。 轴流压气机的转子高速回转,在压气机的进口处产生吸力,将新鲜空气吸入压气机,对应着吸气的过程。空气在轴流压气机中增压,压力和温度都有升高,空气继续流动经过扩压器,减速增压进入燃烧室中,此时的空气温度和压力都较高,比容很小,这就实现了空气的压缩过程。在空气进入燃烧室的同时,燃油同时喷入与空气混合形成可燃混合气,点燃后迅速燃烧,温度继续升高,而压力变化不大(由于流动损失的存在);高温高压的燃气,经过涡轮的静叶的导向之后冲击涡轮的动叶叶片,推动叶片使涡轮转子高速转动而产生转矩。涡轮常分为两级,第一级涡轮(高压涡轮)上产生的转矩用于驱动与之联动的压气机,第二级涡轮(动力涡轮)上产生的转矩经过传动轴和减速箱输出,这就是燃气轮机的燃烧和做工过

发动机可靠性试验方法

GB/T 19055-2003 汽车发动机可靠性试验方法 南京汽车质量监督检验鉴定试验所. GB/T 19055-2003 前言 本标准与GB/T 18297-2001《汽车发动机性能试验方法》属于同一系列标准,系汽车发动机试验方法的重要组成部分。 本标准自实施之日起,代替QC/T 525—1999。

本标准的附录A为规范性附录。 本标准由中国汽车工业协会提出。 本标准由全国汽车标准化技术委员会归口。 本标准起草单位:东风汽车工程研究院。 本标准主要起草人:方达淳、吴新潮、饶如麟、鲍东辉、周明彪。 引言 本标准系在JBn 3744—84即QC/T 525—1999《汽车发动机可靠性试验方法》长期使用经验的基础上参考国外的先进技术,制定了本标准。 本标准对QC/T 525—1999的重大技术修改如下: ——拓展了标准适用范围,不仅适用于燃用汽、柴油的发动机,还适用于燃用天然气、液化石油气和醇类等燃料的发动机; ——修改了可靠性试验规范,对最大总质量小于3.5t的汽车用发动机采用更接近使用工况的交变负荷试验规范;对最大总质量在3.5t~12t之间的汽车用发动机采用混合负荷试验规范,以改进润滑状态;冷热冲击试验过去仅在压燃机上进行,现扩展到点燃机,并增加了“停车”工况,使零部件承受的温度变化率加大; ——修改了全负荷时最大活塞漏气量的限值,首次推出适用于不同转速范围的非增压机、增压机、增压中冷机的限值计算公式,使评定更为合理; ——为使汽车发动机满足国家排放标准对颗粒排放物限值的要求,修改了额定转速全负荷时机油/燃料消耗比的限值(由原来1.8%改为0.3%); ——增加“试验结果的整理”的内容,并单独列为一事,要求对整机性能稳定性、零部件损坏和磨损等进行更为规范和详尽的评定; ——增加“试验报告”的内容,并单独列为一章,明确试验报告主要内容,使试验报告更为规范。 ——增加了附录A《汽车发动机可靠性评定方法》,使评定更为准确和全面, ——鉴于汽车发动机排放污染物必须满足国家排放标准的要求,在认证时按排放标准进行专项考核,故本标准不再涉及。. 汽车发动机可靠性试验方法 1 范围 本标准规定厂汽车发动机在台架上整机的一般可靠性试验方法,具中包括负荷试验规范(如交变负荷、混合负荷和全速全负荷)、冷热冲击试验规范及可靠性评定方法。 本标准适用于乘用车、商用车的水冷发动机,不适用于摩托车及拖拉机用发动机。该类发动机属往复式、转子式,不含自由活塞式。其中包括点燃机及压燃机;二冲程机及四冲程机;非增压机及增压机(机械增压及涡轮增压、水对空及空对空中冷);适用于燃用汽油、柴油、天然气、液化石油气和醇类等燃料的发动机。 新没计或重大改进的汽车发动机定型、转厂生产的发动机认证以及现生产的发动机质量检验均可按本标准规定的办法进行可靠性试验。 本标准还可作为发动机制造厂和汽车制造厂之间交往的技术依据。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适州于本标准。 GB/T 15089 机动车辆及挂车分类 GB/T 17754 摩擦学术语

发动机台架试验--可靠性试验概要

学生实验报告 实验课程名称:发动机试验技术 开课实验室:内燃机实验室 2013 年 5月 29 日

目录 一、试验目的 二、试验内容 1.试验依据 2.试验条件 3.试验仪器设备 4.试验样机 5.试验内容与方案 (1)交变负荷试验 (2)混合负荷试验 (3)全速负荷试验 (4)冷热冲击试验 (5)活塞机械疲劳试验 (6)活塞热疲劳试验 三、试验进度安排

四、试验结果的提供

摘要 国外在可靠性试验方面己做了许多有益的研究工作,但到目前为止尚未形成统一的试验方法,而且考虑到该试验的非普遍性及技术保密性,将来也不可能形成统一的试验规范。相对于热疲劳研究状况来讲,国内对机械疲劳的研究还比较少。为适应发动机比功率和排放法规日益提高的苛刻要求,发动机面临着更高机械负荷和热负荷的严峻考验。国内高强化发动机最大爆发压力已超过22 Mpa。活塞的机械疲劳损伤主要体现在销孔、环岸等部位。活塞环岸、销座及燃烧室等部位由于在较高的工作温度下承受着高频冲击作用的爆发压力,润滑状况较差,摩擦磨损,其他破坏可靠性的腐蚀磨损(缸套一环换向区、排气门/排气门座锥面等)、疲劳磨损(挺杆、轴瓦、齿轮表面等)、微动磨蚀(轴瓦钢背、飞轮压紧处、飞轮壳压紧处、湿缸套止口处等)、电蚀(火花塞电极等)和穴蚀(水泵叶轮等)这些都是可靠性试验的主 要目标,也是实施可靠性设计、试验研究的重点部位。 众所周知,在内燃机整机上进行零部件可靠性试验成本昂贵。本文将参照原有的可靠性试验方法,通过看一些关于可靠性的零部件加速寿命实验技术制定一种评价内燃机可靠性的考核规范,包括活塞机械疲劳试验和活塞热疲劳试验,可迅速做出其可靠性恰当的评价,可以降低研发成本、缩短研发时间。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

汽车高等动力学分析

侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风、或者曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F y,相应地在地面上产生地面侧向反作用力F Y,F Y即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使F Y没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 侧偏角:车轮与地面接触印迹的中心线与车轮平面错开一定距离,而且不再与车轮平面平行,车轮印迹中心线跟车轮平面的夹角即为侧偏角。 高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比 H/B×100% 叫高宽比. 附着椭圆:它确定了在一定附着条件下切向力与侧偏力合力的极限值。 转向灵敏度:汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值称为稳态横摆角速度增益,也就是转向灵敏度。(即稳态的横摆角速度与前轮转角之比) 稳定性因数:稳定性因数单位为s2/m2,是表征汽车稳态响应的一个重要参数。 侧倾轴线:车厢相对于地面转动时的瞬时轴线称为车厢侧倾轴线。 侧倾中心:车厢侧倾轴线通过车厢在前,后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。 悬架的侧倾角刚度:悬架的侧倾角刚度是指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢总的弹性恢复力偶矩。 转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 切向反作用力控制的三种类型:总切向反作用力控制,前后轮间切向力分配比例的控制,内外侧车轮间切向力分配的控制。 侧翻阈值:汽车开始侧翻时所受的侧向加速度称为侧翻阈值。 汽车的平顺性:汽车的平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员的主观感觉的舒适性来评价。 1.汽车的操纵稳定性:是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 2.汽车的操纵稳定性是汽车主动安全性的重要评价指标。 3.时域响应与频域响应表征汽车的操纵稳定性能。 4.转向盘输入有两种形式:角位移输入和力矩输入。 5.外界干扰输入主要指侧向风和路面不平产生的侧向力。 6.操纵稳定性包含的内容:1)转向盘角阶跃输入下的响应;2)横摆角速度频率响应特性;3)转向盘中间位置操纵稳定性;4)转向半径; 5)转向轻便性;6)直线行驶性能;7)典型行驶工况性能;8)极限行驶能力(安全行驶的极限性能) 7.转向半径:评价汽车机动灵活性的物理量。 8.转向轻便性:评价转动转向盘轻便程度的特性。 9.时域响应:路面不平敏感性和侧向风敏感性。 10.汽车是由若干部件组成的一个物理系统。它是具有惯性、弹性、阻尼的等多动力学的特点,所以它是一个多自由度动力学系统。 11.车辆坐标系:x轴平行于地面指向前方(前进速度),y轴指向驾驶员的左侧(俯仰角速度),z轴通过质心指向上方(横摆角速度) 12.汽车时域响应可分为不随时间变化的稳态响应和随时间变化的瞬态响应。 13.汽车转向特性的分为:不足转向、中性转向、过多转向。

-航空发动机可靠性研究

航空发动机可靠性研究 摘要:可靠性是航空发动机正常工作的重要指标。本文介绍了航空发动机可靠性在国内外的发展概况,可靠性评价指标,简要介绍了影响发动机可靠性的因素,提高可靠性的主要措施。关键词:可靠性;结构强度;评价指标 1.引言 可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力[1]。研究装备的可靠性是为了提高装备的完好性和任务的完成性,保障装备和人员的安全,减少寿命内的费用。航空发动机是在高温高压的环境中以高速旋转的形式进行高负荷工作的动力机械,是一种集热力气动、燃烧、传热、结构强度、控制测试技术及材料、工艺等多学科于一身,温度、压力、应力、间隙和腐蚀等工作条件非常苛刻,且对质量、可靠性、寿命等要求又极高的复杂系统。 航空发动机工作时在高温高压的环境中以高转速运转,所受的载荷复杂多变,且由于现代大推重比航空发动机的设计性能要求,使得其结构日趋单薄。因此航空发动机出现的故障模式多,故障出现的几率高,故障的危害大,使用寿命短。因此,航空发动机可靠性是设计时必须考虑的重要因素,同时也是航空发动机性能能否得到发挥的重要衡量指标。 飞机的可靠性可以如下定义:可靠性是飞机按设计状态与使用、维护、修理、贮存和运输条件,在描述完成飞行任务能力所有的参数规定值范围内,在某一时间里保持的一种特性。[2] 2.航空发动机可靠性研究的现 状[1] 2.1国外航空发动机可靠性发展概况 航空发动机研制的难度大、周期长、费用高、风险多。西方发达国家只有四大公司-美国的普·惠公司、通用动力公司、英国的罗·罗公司和法国的斯奈克玛公司,才具有独立研制的实力。他们在研制航空发动机的过程中对可靠性问题有着深刻的认识和教训。20世纪60年代末,美国普·惠公司为F-15战斗机发展了新一代推重比为8的高性能涡扇发动机F100。在同年代中,F100的性能是出类拔萃的,特别是其跨/超声速性能有显著的提高。但它的可靠性却未能与其高性能相匹配。F15装备部队后,在使用过程中发动机暴露出很多可靠性问题。F100发动机在最初使用的5年时间里先后发生了500余次旋转失速,47次涡轮工作叶片和导向叶片损坏,60次主燃油泵故障,10次加力泵轴承故障,8次4号轴承故障以及120多起其它各类故障。这些故障使F15战机大批停飞,严重影响了飞机的安全性和战斗力。F100发动机从开始研制到正式投产,军方投资4.57亿美元,时间为5年。但为了解决其可靠性和耐久性问题,却花费了6.6美元和11年的时间进行徘故和改进。同时期,TF30发动机和TF34发动机以及英国罗·罗公司研制的RB211发动机也存在类似的可靠性问题。 F100出现可靠性不高的原因是多方面的,但是最主要的原因是在研制中片面过于追求高性能,而忽视了可靠性问题,发动机的设计没有取得性能、可靠性、维修性等方面的平衡。 片面追求高性能而忽视可靠性,也造成了许多结构故障。据美国空军材料实验室统计,在1963年-1978年15年间,美国空军战斗机发生了3824起飞行事故,其中发动机故障引起1664起,占43.5%,而其中由结构强度和疲劳寿命方面问题导致的事故占90%以上。美国军方和宇航部门在总结单纯

军舰动力装置概况——燃气轮机

军舰动力装置概况——燃气轮机美国FT-8舰用燃气轮机 (一)研制背景和研制打算 FT-8燃气轮机由普拉特?惠特尼(P&W)公司的JT8D-219航空涡扇发动机派生。JT8D-219是JT8D系列中的最新型号,1985年开始投入使用。研制时充分利用了FT-4燃气轮机的成功体会,并移植了普拉特?惠特尼公司的PW2037和PW4000航空发动机的先进技术。在设计上突出了机组的高效率、高寿命和高可靠性。JT8D系列是一型成熟的航空发动机,20余年来已生产14000余台,并装在3000多架民航飞机上,如波音727、737、DC-9、MD-82等。累计运行了两亿八千五百万飞行小时,平均单台寿命超过1 8000h。 FT-8是1986年开始设计的。派生时将低压压气机改为8级,前两级用JTSD的风扇改成,第3级至第8级除对第3级压气机叶型作修改外,其他5级不变。进口导流叶片与前2级静子叶片可调。高压压气机共7级,7级高压压气机不变,重新设计了燃烧室和燃料系统。高、低压涡轮叶片加大了冷却,并设计了涡轮间隙操纵结构。动力涡轮4级,涡轮效率93.6%,燃气轮机总效率38.7%,是当代同等功率燃气轮机中最高的。 (二)系统组成和要紧性能 FT-8燃气轮机由进气道、低压压气机、高压压气机、燃烧室、高压涡轮、动力涡轮、排气装置和操纵系统等部套组成。 高压涡轮。单级轴流式。涡轮叶片和导向叶片为气冷,涡轮叶片材料为MAR-M-247,导向叶片为MAR-M-509,轮盘为In718。叶片涂层为N iCoCrAly。 低压涡轮。2级轴流式,第1级气冷。所有叶片材料皆为MAR-M-247,轮盘皆为Was-paloy。除第2级导向叶片涂层为PtAl外,其余叶片涂层皆为NiCoCrAly。 动力涡轮。4级轴流式,叶片材料除第3和第4级导向叶片为In7 18外,皆为In738。轮盘为Ing01。第1和第2级涡轮叶片及导向叶片涂层为PW A73铝硅,轴采纳PW All0铝涂层。

汽车发动机-国标汇总

十、汽车发动机标准 GB 3847—2005 GB 11340—2005 车用压燃式发动机和压燃式发动机汽车排气烟 度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染物排 放限值及测量方法 GB 3843—1983、 GB 14761.6—1993、 GB 3847—1999、 GB/T 3846-1993、 GB 18285—2000中的压燃式发 动机汽车部分 GB 14761.4—1993、 GB 11340—1989 GB 14762—2008 重型车用汽油发动机与汽车排气污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005 装用点燃式发动机重型汽车燃油蒸发污染物 排放限值及测量方法(收集法)GB 14761.3—1993、GB 14763—1993 GB 17691—2005 车用压燃式、气体燃料点燃式发动机与汽车排气 污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶 段)GB 17691—2001、 GB 14762—2002中的气体燃料点燃式发动机部分 GB 18285—2005 点燃式发动机汽车排气污染物排放限值及测量 方法(双怠速法及简易工况法)GB 14761.5—1993、 GB/T 3845—1993、 GB 18285—2000中的点燃式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB 18352.3—2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2—2001 GB 20890—2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181—2001 汽车排放术语和定义GB/T 5181—1985 GB/T 16570—1996 汽车柴油机架装直列式喷油泵安装尺寸 GB/T 17692—1999 汽车用发动机净功率测试方法 GB/T 18297—2001 汽车发动机性能试验方法 GB/T 18377—2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010 歧管式催化转化器 QC/T 33—2006 汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T 281—1999 (2009) 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987* QC/T 282—1999 (2009) 汽车发动机曲轴止推片技术条件ZB T12 004—1987* QC/T 288.1—2001 (2009) 汽车发动机冷却水泵技术条件QC/T 288—1999 QC/T 288.2—2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289—2001 (2009) 汽车发动机机油泵技术条件QC/T 289—1999 QC/T 468—2010 汽车散热器QC/T 468—1999 QC/T 469—2002(2009) 汽车发动机气门技术条件QC/T 469—1999

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得:

汽车发动机可靠性分析研究

可靠性工程结课论文 题目:汽车发动机可靠性分析 学院:机电学院 专业:机械电子工程 学号: 201100384216 学生姓名:郭守鑫 指导教师:尚会超 2014年6月1日

目录 摘要 (3) 关键词 (3) 前言 (3) 1. 可靠性及可靠性技术的概念 (4) 2. 可靠性分析方式 (5) 2.1 指数分布 (5) 2.2 正态分布 (5) 2.3 威布尔分布 (6) 3. 汽车发动机可靠性评定指标 (6) 4. 当前汽车发动机可靠性方面存在的主要问题 (7) 4.1 设计、工艺质量问题 (7) 4.2 常见的共性问题 (8) 5. 可靠性综合评估认定 (8) 6. 如何提高汽车发动机的可靠性 (9) 参考文献 (9)

汽车发动机可靠性分析 郭守鑫 (中原工学院机电学院河南郑州 451191) 摘要:发动机是汽车的的核心部分,其技术性能的好坏是决定汽车行驶性能的关键因素。而其中汽车发动机的可靠性是关系到主要技术性能“何时失效”的问题,这是汽车发动机至关重要的技术指标。本文针对汽车发动机可靠性及其相关问题进行分析研究,主要论述了发动机可靠性分析方法、评定指标、试验方法以及国内外发展状况、当前汽车发动机可靠性方面存在的问题和提高汽车发动机可靠性的一些意见。 【关键词】汽车发动机;可靠性;分析方法;评定指标 Abstract:The core part of the car engine, and its technical performance quality is a key factor in determining performance cars. Automotive engine reliability which is related to the main technical performance "when failure" problem, which is crucial to the car engine specifications. This paper for automotive engine reliability analysis and related issues,discusses the reliability analysis methods engines, evaluation indicators, testing methods and the development of domestic and international situation, the current existing car engine reliability problems and improve the reliability of the car engine some comments. 【Keywords】automobile engine; reliability; analysis; assessment index 前言 众所周知,当前汽车行业总体火爆,人们对汽车的需求量在日益增长。然而由于发动机质量问题而引发的汽车整体质量问题也是数见不鲜,甚至导致一些事故的发生,它所引发的一连串问题却硬生生的摆在消费者和制造厂商之间。在如何保证汽车整体质量的问题上,保证汽车发动机的质量至关重要,其中很大程度就是由汽车发动机可靠性所决定。 发动机的可靠性涉及到主机厂的设计、制造、装配、供应和售后服务等各部门;涉及到配套件、外协件的供应厂商和协作厂商;涉及到各种类型发动机用户的操作人员、维修人员和设备管理部门等。这种协同环境既有主机厂内部各个部门的协同,又有主机厂与多家配套件、外协件的供应厂商的协同,还有主机厂与多家典型用户的协同。 我国发动机水平与国外先进国家比还有较大的差距:产品的检验精度很高,但加工精度差,精度保持性差,简单模仿多,细化分析少,用户维护保养差,这

汽车发动机可靠性分析研究报告

个人资料整理 仅限学习使用 可靠性工程 结课论文 题 目 汽车发动机可靠性学 院: 机电学院 专 业 : 机械电子工程 学 号: 201800384216 学生姓 名: 郭守鑫 指导教 师: 尚会超 2018 年 6 月 1 日

5 5 关键 1. 可靠性及可靠性技术的概 2. 可靠性分析方 2.1 2.2 正态分 目录

2.3威布尔分 3. 汽车发动机可靠性评定指 4. 当前汽车发动机可靠性方面存在的主要问 4.1设计、工艺质量问 4.2常见的共性问 ·8 5. 可靠性综合评估认 ·8 6. 如何提高汽车发动机的可靠 参考文

汽车发动机可靠性分析 郭守鑫<中原工学院机电学院河南郑州451191 ) 摘要:发动机是汽车的的核心部分,其技术性能的好坏是决定汽车行驶性能的关键因素。而其中汽车发动机的可靠性是关系到主要技术性能“何时失效” 的问题,这是汽车发动机至关重要的技术指标。本文针对汽车发动机可靠性及其相关问题进行分析研究,主要论述了发动机可靠性分析方法、评定指标、实验方法以及国内外发展状况、当前汽车发动机可靠性方面存在的问题和提高汽车发动机可靠性的一些意见。 【关键词】汽车发动机;可靠性;分析方法;评定指标 Abstract :The core part of the car engine, and its technical performance quality is a key factor in determining performance cars. Automotive engine reliability which is related to the main technical performance "when failure" problem, which is crucial to the car engine specifications. This paper for automotive engine reliability analysis and related issues,discusses the reliability analysis methods engines, evaluation indicators, testing methods and the development of domestic and international situation, the current existing car engine reliability problems and improve the reliability of the car engine some comments. 【Keywords】automobile engine 。reliability 。analysis 。assessment index 前言 众所周知,当前汽车行业总体火爆,人们对汽车的需求量在日益增长。然而由于发动机质量问题而引发的汽车整体质量问题也是数见不鲜,甚至导致一 些事故的发生,它所引发的一连串问题却硬生生的摆在消费者和制造厂商之 间。在如何保证汽车整体质量的问题上,保证汽车发动机的质量至关重要,其

联合循环燃气轮机发电厂简介.doc

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组 成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回 收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽 轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机 各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美 国 GE公司的 MS9001E燃气轮机 , 其热效率为 33.79%,余热锅炉为杭 州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1 简介 燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的 结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部 分: 1、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送 入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空 气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀 作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和 寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分 为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转 型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用 于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行 可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、 热电联产。埕岛电厂采用的MS9001E燃气轮发电机组是50Hz,3000 转/ 分,直接传动的发电机。该型燃气轮发电机组最早于1987 年投入商

军用航空发动机可靠性和寿命管理

2003年1月第5卷第1期 中国工程科学Engineering Science Jan.2003Vol 15No 11 研究报告 [收稿日期] 2002-06-20;修回日期 2002-09-18 [作者简介] 徐可君(1963-),男,山东莱州市人,海军航空工程学院青岛分院副教授,博士生 军用航空发动机可靠性和寿命管理 徐可君,江龙平 (海军航空工程学院青岛分院航空机械系,山东青岛 266041) [摘要] 以西方军用航空发动机可靠性和寿命管理为蓝本,阐述了可靠性和寿命管理的基本要素,并结合我 国航空发动机可靠性和寿命管理的现状,讨论了我国航空发动机可靠性和寿命管理工作存在的差距和误区,指出了我国航空发动机可靠性寿命管理工作落后的根源在于管理观念落后、管理体制不健全、基础工作薄弱、标准不完善。参照西方国家的管理理念,构建和完善我国航空发动机可靠性和寿命管理是必要的,但完全照搬西方标准并不可取。正确做法是结合我国的现状,走出一条合乎国情的道路。[关键词]  航空发动机;可靠性;寿命;管理[中图分类号]V235 [文献标识码]A [文章编号]1009-1742(2003)01-0082-07 1 引言 20世纪70年代中期,发达国家在追求高性能 军用航空发动机的研制思想指导下,突出推重比、 高涡轮前燃气温度和高增压比。如美国,15年间涡轮前燃气温度提高了430℃,推重比增加了1倍,耗油率降低了15%,与此相适应,涡轮部件的周向应力提高了92%。引发的突出矛盾是,一方面高增压比、高涡轮前燃气温度使得构件所承受的气动负荷、热负荷和离心负荷大幅度增加,另一方面高推重比又要求减轻零件的质量,提高构件的工作应力,其结果使得发动机的结构故障显著增加。据统计,在1963—1978年的15年间,美空军战斗机由发动机引起的飞行事故有1664起,占全部飞行事故的4315%,而其中因结构强度和疲劳寿命问题导致的事故占90%以上。具有代表性的F100发动机,装备部队后故障频频,致使1979年F100发动机曾短缺90~100台,1980年亦有90架F -15、F -16战斗机无发动机可装,战备完好率下降。美军方在总结单纯追求高性能,忽视可靠性和耐久性的惨痛教训基础上,提出了设计发动机 时必须从规定发动机的最高性能转向制定更高耐久 性,于1984年11月30日发布了M IL -STD -1783《发动机结构完整性大纲》(ENSIP )。ENSIP 是一项对发动机设计、分析、研制、生产及寿命管理的有组织、有步骤的改进措施,其目的在于通过显著减少发动机在使用期间发生的结构耐久性问题,确保发动机结构安全,延长使用期限,降低寿命期成本。结构完整性的内容有:结构耐久性准则,耐久性设计要求,维修性准则,材料与处理特性计划,环境说明,地面广泛检验,使用与跟踪政策。F404发动机的研制遵循了结构完整性要求,采取了作战适用性、可靠性、维护性、费用、性能和重量的优先顺序,取得了良好的效果。 国产发动机在使用中亦曾多次发生结构故障,并造成事故。如WP -6发动机涡轮轴折断、九级盘镉脆、五级盘破裂,WP -7发动机四级盘爆破,其他各型发动机转子与静子叶片损伤、折断等。这些故障均属结构完整性问题。有资料表明,国产发动机结构完整性故障约占故障总量的6215%。为此,国内从1984年起相应开展了结构完整性研究工作。但由于基础工作薄弱,认识不统一,致使可

汽车的可靠性

汽车的可靠性 1 可靠性的定义 广义可靠性由三大要素构成:可靠性、耐久性和维修性。通常所说的可靠与不可靠,只是对汽车本身的质量而言。 1.1可靠性 汽车的可靠性是指汽车产品在规定的使用条件下和规定的时间内,完成规定功能的能力。 汽车可靠性包括四个因素:汽车产品、规定条件、规定时间和规定功能。 汽车产品是指汽车整车、总成或零部件,它们都是汽车可靠性研究的对象。 规定条件是指规定的汽车产品工作条件,它包括:气候情况、道路状况、地理位置等环境条件,载荷性质、载荷种类、行驶速度等运行条件,维修方式、维修水平、维修制度等维修条件,存放环境、管理水平、驾驶技术等管理条件。 规定时间是指规定的汽车产品使用时间,它可以是时间单位(小时、天数、月数、年数),也可以是行驶里程数、工作循环次数等。在汽车工程中,保修期、第一次大修里程、报废周期都是重要的特征时间。 规定功能是指汽车设计任务书、使用说明书、订货合同及国家标准规定的各种功能和性能要求。不能完成规定功能就是不可靠,称之为发生了故障或失效。 根据故障的危害程度不同.汽车故障通常分类: 1)致命故障。指危及人身安全、引起主要总成报废、造成重大经济损失、对周围环境造成严重危害的故障。 2)严重故障。指引起主要零部件或总成损坏、影响行驶安全、不能用易损备件和随车工具在短时间(30min)内排除的故障。 3)一般故障。指不影响行驶安全的非主要零部件故障,可用易损备件和随车工具在短时间(30min)内排除。 4)轻微故障。指对汽车正常运行基本没有影响,不需要更换零部件,可用随车工具(5min内)较容易排除的故障。 1.2 汽车的耐久性:是指汽车进入极限技术状态之前,经预防维修(不更换主要总成和大修)维持工作能力的性能。 1.3维修性:是指在规定条件下使用的产品,在规定时间内按规定的程序和方法进行维修时,保持或恢复到能完成规定功能的能力。 1.4 汽车的使用期限:是指新车开始使用直至报废为止的使用延续时间(或行程)。使用期限分为技术使用期限、经济使用期限和合理使用期限。 2 可靠性的评价指标 对产品进行可靠性评价时,可将产品分为可修产品和不可修产品两种类型。 2.1 不可修产品的可靠性评价

发动机动力学计算

课程名称:发动机动力学 课程代码:8200240 发动机动力学计算基本内容 以495型柴油机为例: 一已知条件 二 动力学计算的主要内容 (一)活塞运动规律的运算 活塞位移x, 速度v ,加速度J 的计算,并绘制曲线图 (),( ),( x f v f J f ααα== = (二)曲柄连杆机构的动力计算 1,作用在活塞上的气体压力的计算 A ,进气行程 0180CA α=? '0()g g p p p bar =-,'g p ——气缸内绝对压力计算时候取'00.9g a p p p ==

0p ——大气压力取01p bar = B ,压缩行程 180360CA α=? 11 00( )()n n a c g a a cx c V s h p p p p p V x h +=-=-+(bar ),a V ——气缸总容积,a h c V V V =+ h V ——气缸工作容积,2 4 h D V S π= c V ——燃烧室容积,1 h c V V ε= - cx V ——压缩过程中活塞处于任意位置时候的气缸容积 cx h c V F x V =+, h F ——活塞顶面积,2 4 h D F π= x ——活塞位移,()()1cos 1cos 24x R λαα?? =-+-???? c h ——当量余隙高度 1 c s h ε= -,1n ——平均压缩多变指数 1100 1.41n n =- n ——标定转速 当360CA α=?时,取(0.450.5)()g c z c p p p p =+-其中 z p ——最高爆发压力(一般自己选择)75z p bar =,1n c a p p ε= C ,膨胀行程 380540CA α=? 2 2200( )0()()n n n c c z g z z z bx bx c pV p h V p p p p p p p V V x h =-=-=-+ ()bar z p ——最高爆发压力 取75z p bar =并选定z p 出现在370CA α=?处 z V ——膨胀始点的气缸容积,z c V V ρ= ρ——初期膨胀比 取 1.635ρ=,bx V ——膨胀过程中活塞处于任意位置的气缸容积 bx h c V F x V =+,2n ——膨胀平均多变指数,取2 1.18n = D ,排气行程 540720CA α=? 01 1.151g r p p p =-=- ()bar r p ——排气终点压力,取01.15r p p = 2,往复惯性力 J p

相关文档
最新文档