人教版数学-高中数学竞赛标准教材02第二章 二次函数与命题讲义

人教版数学-高中数学竞赛标准教材02第二章 二次函数与命题讲义
人教版数学-高中数学竞赛标准教材02第二章 二次函数与命题讲义

第二章 二次函数与命题

一、基础知识

1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-a

b 2,下同。 2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。当a <0时,情况相反。

3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。

1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1x 2}和{x |x 1

2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=a b 2-

,不等式②和不等式③的解集分别是{x |x a

b 2-≠}和空集?,f (x )的图象与x 轴有唯一公共点。 3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和?.f (x )图象与x 轴无公共点。

当a <0时,请读者自己分析。

4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=a b ac 442-,若a <0,则当x =x 0=a

b 2-时,f (x )取最大值f (x 0)=a

b a

c 442

-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0n 时,f (x )在[m, n ]上的最小值为f (n )(以上结论由二次函数图象即可得出)。

定义1 能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。

注1 “p 或q ”复合命题只有当p ,q 同为假命题时为假,否则为真命题;“p 且q ”复合命题只有当p ,q 同时为真命题时为真,否则为假命题;p 与“非p ”即“p ”恰好一真一假。 定义2 原命题:若p 则q (p 为条件,q 为结论);逆命题:若q 则p ;否命题:若非p 则q ;逆否命题:若非q 则非p 。

注2 原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。

注3 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。

定义3 如果命题“若p 则q ”为真,则记为p ?q 否则记作p ≠q .在命题“若p 则q ”中,如果已知p ?q ,则p 是q 的充分条件;如果q ?p ,则称p 是q 的必要条件;如果p ?q 但q 不?p ,则称p 是q 的充分非必要条件;如果p 不?q 但p ?q ,则p 称为q 的必要非充分条件;若p ?q 且q ?p ,则p 是q 的充要条件。

二、方法与例题

1.待定系数法。

例1 设方程x 2-x +1=0的两根是α,β,求满足f (α)=β,f (β)=α,f (1)=1的二次函数f (x ).

【解】 设f (x )=ax 2+bx +c (a ≠0),

则由已知f (α)=β,f (β)=α相减并整理得(α-β)[(α+β)a +b +1]=0,

因为方程x 2-x +1=0中△≠0,

所以α≠β,所以(α+β)a +b +1=0.

又α+β=1,所以a +b +1=0.

又因为f (1)=a +b +c =1,

所以c -1=1,所以c =2.

又b =-(a +1),所以f (x )=ax 2-(a +1)x +2.

再由f (α)=β得a α2-(a +1)α+2=β,

所以a α2-a α+2=α+β=1,所以a α2-a α+1=0.

即a (α2-α+1)+1-a =0,即1-a =0,

所以a =1,

所以f (x )=x 2-2x +2.

2.方程的思想。

例2 已知f (x )=ax 2-c 满足-4≤f (1)≤-1, -1≤f (2)≤5,求f (3)的取值范围。

【解】 因为-4≤f (1)=a -c ≤-1,

所以1≤-f (1)=c -a ≤4.

又-1≤f (2)=4a -c ≤5, f (3)=

38f (2)-3

5f (1), 所以38×(-1)+35≤f (3)≤38×5+35×4, 所以-1≤f (3)≤20.

3.利用二次函数的性质。

例3 已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R, a ≠0),若方程f (x )=x 无实根,求证:方程f (f (x ))=x 也无实根。

【证明】若a >0,因为f (x )=x 无实根,所以二次函数g (x )=f (x )-x 图象与x 轴无公共点且开口向上,所以对任意的x ∈R,f (x )-x >0即f (x )>x ,从而f (f (x ))>f (x )。

所以f (f (x ))>x ,所以方程f (f (x ))=x 无实根。

注:请读者思考例3的逆命题是否正确。

4.利用二次函数表达式解题。

例4 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )=x 的两根x 1, x 2满足0

a 1, (Ⅰ)当x ∈(0, x 1)时,求证:x

(Ⅱ)设函数f (x )的图象关于x =x 0对称,求证:x 0<.2

1x 【证明】 因为x 1, x 2是方程f (x )-x =0的两根,所以f (x )-x =a (x -x 1)(x -x 2),

即f (x )=a (x -x 1)(x -x 2)+x .

(Ⅰ)当x ∈(0, x 1)时,x -x 1<0, x -x 2<0, a >0,所以f (x )>x .

其次f (x )-x 1=(x -x 1)[a (x -x 2)+1]=a (x -x 1)[x -x 2+a

1]<0,所以f (x )

(Ⅱ)f (x )=a (x -x 1)(x -x 2)+x =ax 2+[1-a (x 1+x 2)]x +ax 1x 2,

所以x 0=

a

x x a x x a 21221)(2121-+=-+, 所以012121222210

10x x < 5.构造二次函数解题。

例5 已知关于x 的方程(ax +1)2=a 2(a -x 2), a >1,求证:方程的正根比1小,负根比-1大。

【证明】 方程化为2a 2x 2+2ax +1-a 2=0.

构造f (x )=2a 2x 2+2ax +1-a 2,

f (1)=(a +1)2>0, f (-1)=(a -1)2>0, f (0)=1-a 2<0, 即△>0,

所以f (x )在区间(-1,0)和(0,1)上各有一根。

即方程的正根比1小,负根比-1大。

6.定义在区间上的二次函数的最值。

例6 当x 取何值时,函数y =2

224)1(5+++x x x 取最小值?求出这个最小值。 【解】 y =1-222)1(511+++x x ,令=+1

12x u,则0

? ??-u , 且当101=u 即x =±3时,y m in =20

19. 例7 设变量x 满足x 2+bx ≤-x (b <-1),并且x 2+bx 的最小值是2

1-

,求b 的值。 【解】 由x 2+bx ≤-x (b <-1),得0≤x ≤-(b +1).

ⅰ)-2b ≤-(b +1),即b ≤-2时,x 2+bx 的最小值为-214,422-=-b b ,所以b 2=2,所以2±=b (舍去)。

ⅱ) -

2

b >-(b +1),即b >-2时,x 2+bx 在[0,-(b +1)]上是减函数, 所以x 2+bx 的最小值为b +1,b +1=-21,b =-2

3. 综上,b =-23. 7.一元二次不等式问题的解法。

例8 已知不等式组???>+<-+-1

2022a x a a x x ①②的整数解恰好有两个,求a 的取值范围。

【解】 因为方程x 2-x +a -a 2=0的两根为x 1=a , x 2=1-a ,

若a ≤0,则x 11-2a .

因为1-2a ≥1-a ,所以a ≤0,所以不等式组无解。

若a >0,ⅰ)当0

1时,x 1

ⅱ)当a =

2

1时,a =1-a ,①无解。 ⅲ)当a >21时,a >1-a ,由②得x >1-2a , 所以不等式组的解集为1-a

又不等式组的整数解恰有2个,

所以a -(1-a )>1且a -(1-a )≤3,

所以1

综上,a 的取值范围是1

8.充分性与必要性。

例9 设定数A ,B ,C 使得不等式

A (x -y )(x -z )+

B (y -z )(y -x )+

C (z -x )(z -y )≥0 ①

对一切实数x ,y ,z 都成立,问A ,B ,C 应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A ,B ,C 的等式或不等式表示条件)

【解】 充要条件为A ,B ,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ).

先证必要性,①可改写为A (x -y )2-(B -A -C )(y -z )(x -y )+C (y -z )2≥0 ②

若A =0,则由②对一切x ,y ,z ∈R 成立,则只有B =C ,再由①知B =C =0,若A ≠0,则因为②恒成立,所以A >0,△=(B -A -C )2(y -z )2-4AC (y -z )2≤0恒成立,所以(B -A -C )2-4AC ≤0,即A 2+B 2+C 2≤2(AB +BC +CA )

同理有B ≥0,C ≥0,所以必要性成立。

再证充分性,若A ≥0,B ≥0,C ≥0且A 2+B 2+C 2≤2(AB +BC +CA ),

1)若A =0,则由B 2+C 2≤2BC 得(B -C )2≤0,所以B =C ,所以△=0,所以②成立,①成立。

2)若A >0,则由③知△≤0,所以②成立,所以①成立。

综上,充分性得证。

9.常用结论。

定理1 若a , b ∈R, |a |-|b |≤|a +b |≤|a |+|b |.

【证明】 因为-|a |≤a ≤|a |,-|b |≤b ≤|b |,所以-(|a |+|b |)≤a +b ≤|a |+|b |,

所以|a +b |≤|a |+|b |(注:若m>0,则-m ≤x ≤m 等价于|x |≤m ).

又|a |=|a +b -b |≤|a +b |+|-b |,

即|a |-|b |≤|a +b |.综上定理1得证。

定理2 若a ,b ∈R, 则a 2+b 2≥2ab ;若x ,y ∈R +,则x +y ≥.2xy

(证略)

注 定理2可以推广到n 个正数的情况,在不等式证明一章中详细论证。

三、基础训练题

1.下列四个命题中属于真命题的是________,①“若x +y =0,则x 、y 互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题。

2.由上列各组命题构成“p 或q ”,“p 且q ”,“非p ”形式的复合命题中,p 或q 为真,p 且q 为假,非p 为真的是_________.①p ;3是偶数,q :4是奇数;②p :3+2=6,q :③

p :a ∈(a ,b ),q :{a }?{a ,b }; ④ p : Q ?R, q : N =Z .

3. 当|x -2|

4. 不等式ax 2+(ab +1)x +b >0的解是1

5. x ≠1且x ≠2是x -11-≠x 的__________条件,而-2

6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.

7.若S={x |m x 2+5x +2=0}的子集至多有2个,则m 的取值范围是_________.

8. R 为全集,A ={x |3-x ≥4}, B =?

?????≥+125x x , 则(C R A )∩B =_________. 9. 设a , b 是整数,集合A ={(x ,y )|(x -a )2+3b ≤6y },点(2,1)∈A ,但点(1,0)?A ,(3,

2)?A 则a ,b 的值是_________.

10.设集合A ={x ||x |<4}, B ={x |x 2-4x +3>0},则集合{x |x ∈A 且x ?A ∩B }=_________.

11. 求使不等式ax 2+4x -1≥-2x 2-a 对任意实数x 恒成立的a 的取值范围。

12.对任意x ∈[0,1],有?????>+--<-+-0

304222k kx x k kx x ①②成立,求k 的取值范围。 四、高考水平训练题

1.若不等式|x -a |

2.使不等式x 2+(x -6)x +9>0当|a |≤1时恒成立的x 的取值范围是_________.

3.若不等式-x 2+kx -4<0的解集为R ,则实数k 的取值范围是_________.

4.若集合A ={x ||x +7|>10}, B ={x ||x -5|

5.设a 1、a 2, b 1、b 2, c 1、c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0解集分别为M 和N ,那么“2

12121c c b b a a ==”是“M=N ”的_________条件。

6.若下列三个方程x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是_________.

7.已知p , q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则r 是q 的_________条件。

8.已知p : |1-3

1-x |≤2, q : x 2-2x +1-m 2≤0(m>0),若非p 是非q 的必要不充分条件,则实数m 的取值范围是_________.

9.已知a >0,f (x )=ax 2+bx +c ,对任意x ∈R 有f (x +2)=f (2-x ),若f (1-2x 2)

10.已知a , b , c ∈R, f (x )=ax 2+bx +c , g (x )=ax +b , 当|x |≤1时,|f (x )|≤1,

(1)求证:|c |≤1;

(2)求证:当|x |≤1时,|g (x )|≤2;

(3)当a >0且|x |≤1时,g (x )最大值为2,求f (x ).

11.设实数a ,b ,c ,m 满足条件:m

c m b m a ++++12=0,且a ≥0,m>0,求证:方程ax 2+bx +c =0有一根x 0满足0

五、联赛一试水平训练题

1.不等式|x |3-2x 2-4|x |+3<0的解集是_________.

2.如果实数x , y 满足:??

???=->->+44020222y x y x y x ,那么|x |-|y |的最小值是_________.

3.已知二次函数f (x )=ax 2+bx +c 的图象经过点(1,1),(3,5),f (0)>0,当函数的最小值取最大值时,a +b 2+c 3=_________.

4. 已知f (x )=|1-2x |, x ∈[0,1],方程f (f (f )(x )))=2

1x 有_________个实根。 5.若关于x 的方程4x 2-4x +m=0在[-1,1]上至少有一个实根,则m 取值范围是_________. 6.若f (x )=x 4+px 3+qx 2+x 对一切x ∈R 都有f (x )≥x 且f (1)=1,则p +q 2=_________. 7. 对一切x ∈R ,f (x )=ax 2+bx +c (a

a b c b a -++的最小值为_________. 8.函数f (x )=ax 2+bx +c 的图象如图,且ac b 42-=b -2ac . 那么b 2-4ac _________4. (填>、=、<)

9.若a

10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x 的系数等于较小的根,二次项系数都是1。证明:这种练习不可能无限次继续下去,并求最多能延续的次数。

11.已知f (x )=ax 2+bx +c 在[0,1]上满足|f (x )|≤1,试求|a |+|b |+|c |的最大值。

六、联赛二试水平训练题

1.设f (x )=ax 2+bx +c ,a ,b ,c ∈R, a >100,试问满足|f (x )|≤50的整数x 最多有几个?

2.设函数f (x )=ax 2+8x +3(a <0),对于给定的负数a ,有一个最大的正数l (a ),使得在整个区间[0,l (a )]上,不等式|f (x )|≤5都成立。求l (a )的最大值及相应a 的值。

3.设x 1,x 2,…,x n ∈[a , a +1],且设x =∑=n

i i x n 1

1, y =∑=n j j x n 121, 求f =y -x 2的最大值。 4.F (x )=ax 2+bx +c ,a ,b ,c ∈R, 且|F (0)|≤1,|F (1)|≤1,|F (-1)|≤1,则对于|x |≤1,求|F (x )|的最大值。

5.已知f (x )=x 2+ax +b ,若存在实数m ,使得|f (m)|≤41,|f (m+1)|≤4

1,求△=a 2-4b 的最大值和

最小值。

6.设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R, a ≠0)满足下列条件:

1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;

2)当x ∈(0, 2)时,f (x )≤2

21??

? ??+x ; 3)f (x )在R 上最小值为0。

求最大的m(m>1),使得存在t ∈R ,只要x ∈[1, m]就有f (x +t )≤x .

7.求证:方程3ax 2+2bx -(a +b )=0(b ≠0)在(0,1)内至少有一个实根。

8.设a ,b ,A ,B ∈R +, a

?+≤+++++++++AB ab ab AB b a b a b a b b b a a a n n n n 9.设a ,b ,c 为实数,g (x )=ax 2+bx +c , |x |≤1,求使下列条件同时满足的a , b , c 的值: (ⅰ)??

? ??21g =381;

(ⅱ)g (x )m ax =444;

(ⅲ)g (x )m in =364.

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

2018全国高中数学联赛试题

2018年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共 8小题,每小题 8分,共64分. 1.设集合{1,2,3,,99}A = ,{2}B x x A =∈,{2}B x x A =∈,则B C 的元素个数 . 解析:因为{1,2,3,,99}A = ,所以{2,4,6,,198}B = ,{1,2,3,,49}C = ,于是 {2,4,6,,48}B C = ,共24个元素. 2.设点P 到平面α Q 在平面α上,使得直线PQ 与α所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 . 解析:过点P 作平面α的垂线,这垂足为O ,则点Q 的轨迹是以O 为圆心,分别以1ON =和3OM =为半径的扇环,于是点Q 所构成的区域的面积为21S S S =-= 9 8πππ-=. 3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 . 解析:(直接法)将1,2,3,4,5,6随机排成一行,共有6 6720A =种不同的排法,要使 abc def +为偶数,abc 为与def 同为偶数或abc 与且def 同为奇数. (1)若,,a b c 中一个偶数两个奇数且,,d e f 中一个奇数两个偶数. 共324种情形; (2)若,,a b c 中一个奇数两个偶数且,,d e f 中一个偶数两个奇数. 共324种情形; 共有648种情形.综上所述,abc def +是偶数的概率为 6489 72010 =. (间接法)“abc def +是偶数”的对立事件为“abc def +是偶数”, abc def +是偶数分成两种情况:“abc 是偶数且def 是奇数”或“abc 是奇数且def 是偶数”,每 P O M N α

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

全国高中数学联赛试题及答案教程文件

2009年全国高中数学联赛试题及答案

全国高中数学联赛 全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。 全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。全卷包括4道大题,其中一道平面几何题. 一 试 一、填空(每小题7分,共56分) 1. 若函数( )f x = ()()()n n f x f f f f x ??=??????,则() ()991f = . 2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横 坐标范围为 . 3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ?? ??-? ≥≤≤,N 是随t 变化的区 域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = . 4. 使不等式 1111 200712 213 a n n n +++ <-+++对一切正整数n 都成立的最小正整数a 的值为 . 5. 椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积 OP OQ ?的最小值为 . 6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩 上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示) 8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8) |z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2), 则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1- 2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则 ,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

不等式高中数学竞赛标准教材

第九章不等式(高中数学竞赛标准教材) 第九章不等式 一、基础知识不等式的基本性质:(1)a>b a-b>0;(2)a>b, b>c a>c;(3)a>b a+c>b+c;(4)a>b, c>0 ac>bc;(5)a>b, c<0 acb>0, c>d>0 ac>bd; (7)a>b>0, n∈N+ an>bn; (8)a>b>0, n∈N+ ; (9)a>0, |x|a x>a或x<-a; (10)a, b∈R,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b∈R,则(a-b)2≥0 a2+b2≥2ab; (12)x, y, z∈R+,则x+y≥2 , x+y+z 前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b 矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立; -|a|≤a≤|a|, -|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为 |a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2 ≥0,所以x+y≥ ,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)= (a+b+c)(a2+b2+c2-ab-bc-ca)= (a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a3+b3+c3≥3abc,即x+y+z≥ ,等号当且仅当x=y=z时成立。二、方法与例题 1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1 设a, b, c∈R+,试证:对任意实数x, y, z, 有x2+y2+z2 【证明】左边-右边= x2+y2+z2 所以左边≥右边,不等式成立。例2 若alog(1-x)(1-x)=1(因为0<1-x2<1,所以 >1-x>0, 0<1-x<1). 所以 |loga(1+x)|>|loga(1-x)|. (2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析 说明: 1. 评阅试卷时,请依据本评分标准。选择题只设6分和0分两档,填空题只设9分和0分两档;其 他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。 2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当 划分档次评分,5分为一个档次,不要再增加其他中间档次。 一、选择题(本题满分36分,每小题6分) 本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。请将正确答案的代表字母填在题后的括号内。每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。 1.使关于x 的不等式36x x k -+-≥有解的实数k 的最大值是( ) A .63- B .3 C .63+ D .6 2.空间四点A 、B 、C 、D 满足,9||,11||,7||,3||====DA CD BC AB 则BD AC ?的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个 6.记集合},4,3,2,1,|7777{ },6,5,4,3,2,1,0{4 4 33221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的

顺序排列,则第2020个数是( ) A . 43273767575+++ B .43272767575+++ C .43274707171+++ D .4327 3707171+++ 二、填空题(本题满分54分,每小题9分) 本题共有6小题,要求直接将答案写在横线上。 7.将关于x 的多项式2019 3 2 1)(x x x x x x f +-+-+-=Λ表为关于y 的多项式=)(y g ,202019192210y a y a y a y a a +++++Λ其中.4-=x y 则=+++2010a a a Λ . 8.已知)(x f 是定义在),0(+∞上的减函数,若)143()12(2 2 +-<++a a f a a f 成立,则a 的取值范围是 。 12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列 ,,,,321Λa a a 若,2005=n a 则=n a 5 . 三、解答题(本题满分60分,每小题20分) 13.数列}{n a 满足:.,2 36 457,12 10N n a a a a n n n ∈-+= =+ 证明:(1)对任意n a N n ,∈为正整数;(2)对任意1,1-∈+n n a a N n 为完全平方数。 14.将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球. 设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法) 15.过抛物线2 x y =上的一点A (1,1)作抛物线的切线,分别交x 轴于D ,交y 轴于B.点C 在抛物线

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

精选最新高中数学竞赛活动方案

高中数学竞赛活动方案1 一、活动目的 为激发学生学习数学的兴趣,增强学生学数学,用数学的动力,丰富学生的课余生活,促进数学教学质量的提高。通过竞赛奖励数学能力突出,表现优异的学生。拟于12月2日(第十四周星期二)举行高中数学竞赛。 二、比赛时间:12月2日晚6:20---8:20 三、比赛地点:学校阶梯教室(或高二级两个活动室) 四、活动对象: 高一、高二年级学生(各级参赛选手分别60人) 五、活动方式: 以年级备课组为单位,各年级分别命题,同时开展数学竞赛 六、题型及评分标准:(总分100分) 1、填空题共15题,每题4分,共60分 2、解答题共05题,每题8分,共40分 七、奖项设置: 分级设奖,每级设一等奖3名、二等奖4名、三等奖8名。获奖学生颁发奖品,一等奖的指导教师颁发荣誉证书。 八、命题人: 高一级:邓华贵 高二级:杨水源 九、工作人员: 总负责:刘青青 协调:杨汉林、杨福生、(横幅、摄影) 监考:高一级:周丽群、邓华贵

高二级:胡芫祯丁敏 评卷人员:高一级:谢大钰、邓华贵、肖珍、周丽群 高二级:钟水兵、杨水源、胡芫祯、丁敏 备注:因活动时间为晚上,所以工作人员按晚自习蹲班发放加班费。 高中数学竞赛活动方案2 一、竞赛目的 为了激发学生学习数学的兴趣和营造你追我赶的学习氛围,特组织本次活动。 二、竞赛内容:根据我校实际情况,以年级为单位,以本为本,适当拓展,力求难易适中。限时120分钟。 三、参赛对象:各年级学生报名与老师推荐相结合 参赛时间:20xx年12月21日 星期天,晚上8点30分 参赛人数:高一、高二、高三 四、评奖设置: 个人奖,年级各多少名,按分数高低评出一、二、三等奖若干名。 五、试卷拟定人:高一、高二、高三 参赛场地:(教研室定) 监考老师(兼司铃员):高一、高二、高三 试卷批改:高一、高二、高三 六、活动总结 竞赛活动结束后试卷批改教师开始批改试卷,试卷批改结束,将参赛成绩统计交到教研处,由教研室进行成绩审核和奖励确定。

高中数学竞赛讲义(五)──数列

高中数学竞赛讲义(五) ──数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。其中a1 叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。 定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1. 定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d. 定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式: S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn. 定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。 定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=; 当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。 定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈ N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作 定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等 比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n ≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。 定理5 对于齐次二阶线性递归数列x n=ax n-1+bx n-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则x n=c1a n-1+c2βn-1,其中c1, c2由初始条件x1, x2的值确定;(2)若α=β,则x n=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值确定。 二、方法与例题 1.不完全归纳法。

相关文档
最新文档