不等缝宽多缝的夫琅禾费衍射及计算机模拟_顾菊观

不等缝宽多缝的夫琅禾费衍射及计算机模拟_顾菊观
不等缝宽多缝的夫琅禾费衍射及计算机模拟_顾菊观

多缝的夫琅和费衍射matlab仿真

4、多缝的夫琅和费衍射,使用平行光照明,观察衍射图样随点光源位置(光源上下移动)的变化 θ θ θ 图4-1 图4-2 多缝夫琅禾费衍射如图4-1所示。由于相邻单缝在P 点产生的夫琅禾费衍射的幅值与中心单缝的相同,只是产生一个相位差θλπδsin 2d = ,故,经证明,P 点处的光强为: 220)2 sin 2sin ()sin ()(δ δααN I P I =, 其中θλπαsin a =,θλ πδsin 2d =。 因而,程序代码如下: clear %清除原有变量 Lambda=600*(1e-9); %设置波长为600nm a=0.005*(1e-3); %设置衍射屏参数:缝宽为0.005mm , 0.005mm , 缝距为0.02mm 0.02mm d=0.02*(1e-3); f=0.01; %汇聚透镜焦距设置为1cm N=20; %设置缝数为20 ni=1000; x=linspace(-0.005,0.005,ni); %将衍射屏按照狭缝方向分为ni 个微元 for k=1:ni sn=x(k)/sqrt(x(k).^2+f^2); alpha=pi*a*sn/Lambda; %算各微元对应的α和δ值

delta=2*pi*d*sn/Lambda; I(k)=(sin(alpha)/alpha).^2*(sin(N*delta/2)/sin(delta/2)).^2; %求出各处的光强 end figure(gcf); %显示图像 NCLevels=250; Br=I*NCLevels; image(0,x,Br); colormap(gray(NCLevels)); title('二维强度分布'); 运行后结果如图4-2所示。 将光源上下移动的结果如图4-3所示: 图4-3 图4-4 点光源发出的光经过准直透镜后形成倾斜入射的平行光,倾斜角度为i 。此时,P 点强度的公式为: 220)sin ()sin ()(ββ αα N I P I =, 其中)sin (sin i a -=θλπα,)sin (sin i d -=θλ πβ。 故而程序代码如下,当0≠i 时,即光源上下移动,改变其的值,即可仿真出移动不同距离时的衍射图样。 程序代码如下: clear %清除原有变量 Lambda=600*(1e-9); %设置波长为600nm a=0.005*(1e-3); %设置衍射屏参数:缝宽为0.005mm ,

模拟夫琅禾费衍射的matlab源代码

源代码: N=512; disp('衍射孔径类型 1.圆孔 2.单缝 3.方孔') kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型 while kind~=1&kind~=2&kind~=3 disp('超出选择范围,请重新输入衍射孔径类型'); kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型 end switch(kind) case 1 r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/16,N/16-1,N)); D=(m.^2+n.^2).^(1/2); I(find(D<=r))=1; subplot(1,2,1),imshow(I); title('生成的衍射圆孔'); case 2 a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度 b=1000;% 单缝的长度 I=zeros(N,N); [m,n]=meshgrid(linspace(-N/4,N/4,N)); I(-a

413-夫琅禾费单缝衍射

413夫琅禾费单缝衍射 1. 选择题 1,在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上, 对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个。 (B) 4 个。 (C) 6 个。 (D) 8 个。 [ ] 2,一束波长为λ的平行单色光垂直入射到一单缝AB 上, 装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ] 3,在如图所示的单缝夫琅禾费衍射实验中,若将 单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条 纹 (A) 间距变大。 (B) 间距变小。 (C) 不发生变化。 (D) 间距不变,但明暗条纹的位置交替变化。 [ ] 4,在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮 纹的中心位置不变外,各级衍射条纹 (A) 对应的衍射角变小。 (B) 对应的衍射角变大。 (C) 对应的衍射角也不变。 (D) 光强也不变。 [ ] 5,在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小。 (B) 宽度变大。 (C) 宽度不变,且中心强度也不变。 (D) 宽度不变,但中心强度增大。 [ ] 6,在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹 (A) 宽度变小; 屏幕

(B) 宽度变大; (C) 宽度不变,且中心强度也不变; (D) 宽度不变,但中心强度变小。 []7,在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于 (A) λ.(B) 1.5 λ. (C) 2 λ.(D) 3 λ. []8,在白光垂直照射单缝而产生的衍射图样中,波长为λ1的光的第3级明纹与波长为λ2-的光的第4级明纹相重合,则这两种光的波长之比λ1 /λ2为 (A) 3/4 (B) 4/3 (C) 7/9 (D) 9/7 []2. 判断题 1,对应衍射角不为零的衍射屏上某处,如果能将做夫琅和费单缝衍射的波面分割成偶数个半波带,则在屏幕上该处将呈现明条纹。 2,对应衍射角不为零的衍射屏上某处,如果能将做夫琅和费单缝衍射的波面分割成奇数个半波带,在屏幕上该处将呈现明条纹。 3,在用半波带法求解单缝夫琅和费衍射时,当衍射角不为零时,任何两个相邻的、完整的波带所发出的子波在屏幕上同一点引起的光振动将完全相互抵消。 4,用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是2。 3. 填空题 1,He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________. 2,在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为__________ 个半波带。 3,波长为λ的单色光垂直入射在缝宽a=4λ的单缝上.对应于衍射角?=30°,单缝处的波面可划分为______________个半波带。 4,在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589 nm) 中央明纹宽度为 4.0 mm,则λ2=442 nm (1 nm = 10-9m)的蓝紫色光的中央明纹宽度为

应用Matlab模拟光的夫琅禾费衍射的研究

应用Matlab模拟光的夫琅禾费衍射的研究 摘要:光的衍射是一种非常重要的光的物理现象。它指的是:光将障碍物绕过,偏离直线传播路径,然后进入阴影区里的现象。它也是光的波动表现的一种现象。衍射系统的组成有三个部分,它们分别是:光源、衍射屏、接收屏(用来接收衍射图样的屏幕)。通常情况下,我们根据衍射系统当中三个组成部分之间相互距离的大小,将衍射现象分为两类:一类叫做菲涅耳(Fresnel)衍射,剩下的一类叫做夫琅禾费(Fraunhofer,)衍射。 此文通过Matlab软件,进行编程,进而对夫琅禾费衍射过程进行模拟。然后给出衍射光强分布图形,又通过对光的波长、焦距、缝宽等因素的改变,得到了衍射光强的分布和它的变化规律,并在理论上作出了合理的解释。从而帮助我们更深刻的理解光的波动性原理。 关键词:Matlab;衍射;光学实验

目录 1 绪论 (1) 1.1光的衍射现象 (1) 1.2 Matlab模拟的意义 (1) 2 光的衍射理论 (3) 2.1 惠更斯原理 (3) 2.2 惠更斯——菲涅耳原理 (3) 3夫琅禾费衍射原理 (4) 3.1 夫琅禾费单缝衍射 (4) 3.2 夫琅禾费双缝衍射 (5) 4 夫琅禾费衍射模拟 (6) 4.1 单缝 (6) 4.2 矩孔 (12) 5 总结 (15) 参考文献 (15)

1 绪论 1.1光的衍射现象 自然界之中有一些光的现象,它们与人们已经发现的光的直线传播现象并不是百分百符合。这些现象相继在17世纪之后被科学家们发现。这就是由光的波动性表现出来的。在这些现象之中,人们第一个发现的光的现象便是衍射现象,而且还在发现的同时做了些实验与理论的研究和探讨。 第一次成功发现衍射现象的科学家是意大利的物理学者格里马第。在他的一部著作里描写了这样一个实验:让光通过很小的一个孔后射入到一个暗室里面,利用这种方法来形成点光源,然后在光路上面放置根直杆。这时发现了两个特殊的现象:一个是影子,它投在白色的屏幕之上,以光的直线传播理论假定的影子要比它的宽度要小;另一个就是在这个影子的边缘还呈现出大约2、3个条带,条带是彩色的,随着光的增强,增强到很强的时候,这些条带甚至进入影子里。此后,格里马第还在一个不透明的板上面挖一个圆孔,用它来代替直杆,这样就会在屏幕上就呈现一亮斑出来,然而亮斑的大小要比光线沿直线传播的时候稍微大一些。 “衍射”这个词汇就是在这个时候正式被定义到光学当中,格里马第用它来命名光线会绕过障碍物边缘的现象。可惜的是,格里马第并没有能够正确解释这一现象。一方面,他知道他所观察出的衍射现象与光的直线传播和光的微粒说两中当时处在统治地位的学说相矛盾;另一方面,他自己认为的观点是,光是一种稀薄而且感觉不到的光流体,在光遇到障碍物的时候,就会引起流体波动。 除此之外,有关与光的衍射的现象,胡克前辈也曾观察到。《显微术》是一个物理光学的初始建立的标志,它就是胡克著作的。在这本书中,写了在几何阴影中光衍射的现象。另外一个重复衍射实验的学者是牛顿。他的实验是仔细观察屏幕边缘、毛发影子等。在这些实验中,他得出了这样的结论:粒子能够同物体的粒子相互作用,且在它们通过这些物体的边缘时发生倾斜。 最终,光的衍射的正式定义为:光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴影里去的现象。 1.2 Matlab模拟的意义 在工程设计的领域之中,我们在理论的分析、物理上做实验后面,观察客观世界的规律性方面又发现一种新型手段:即计算机仿真科学。

夫琅禾费双缝衍射的原理

双缝衍射原理 图1双缝衍射装置 Fig.1. Double-slit diffraction equipment 双缝衍射的实验装置如图1所示:一光栅有N 条缝,透光的缝宽度为a ,不透光的挡板宽度为b ,入射光波为λ。 双缝间距为d=a+b ,d 称为光栅常数。如图,在θ方向,相邻两条缝之间的 光程差为δ=dsin θ,相位差为λ θπλδπ?sin 22d ==?,假设每一个单缝引起的光波振幅为'A ?,根据多个等幅同频振动的合振幅公式:()()2/sin 2/sin ?????=n A A ,所有缝在θ方向产生的振幅为()()v Nv A N A A sin sin 2/sin 2/sin '' '?=???=??,其中λθπsin d v =。汇聚点的光强为2'0)sin sin (v Nv I I =,其中2''0A I ?=。当N=1,可知:'0I 是单缝引起的光强。根据单缝衍射的公式20)sin (u u I I =,可得光栅衍射的光强公式20)sin (u u I I =2)sin sin (v Nv ,其中u=λθπsin a 。 (1)当N=1时,光强公式变为单缝衍射的公式20)sin (u u I I =,因此2)sin (u u 称为单缝衍射因子。 (2)当N=2时,根据光栅衍射公式可得:v u u I I 220cos 4)sin ( =[2]。 3双缝衍射的强度分布和谱线图 仍利用MATLAB 软件,根据双缝衍射的算法,输入程序,得到的衍射强度分布和谱线图。下面改变参数对双缝衍射进行讨论分析。 3.2.1改变缝宽a 观察双缝衍射图样变化

用matlab实现夫琅禾费多缝衍射代码

n=3; a=-4*pi:0.01*pi:4*pi; P=1-sin(n*a).^2./sin(a).^2; plot(a,P) lgray=zeros(256,3); for i=0:255 lgray(i+1,:)=(255-i)/255; end imagesc(P) colormap(lgray) matlab GUI3ìDòè?2?′ú?? function varargout = duofengyanshe(varargin) % DUOFENGYANSHE M-file for duofengyanshe.fig % DUOFENGYANSHE, by itself, creates a new DUOFENGYANSHE or raises the existing % singleton*. % % H = DUOFENGYANSHE returns the handle to a new DUOFENGYANSHE or the handle to % the existing singleton*. % % DUOFENGYANSHE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DUOFENGYANSHE.M with the given input arguments. % % DUOFENGYANSHE('Property','Value',...) creates a new DUOFENGYANSHE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before duofengyanshe_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to duofengyanshe_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

实验一夫琅和费单缝衍射实验

实验一 夫琅和费单缝衍射实验 1实验目的 1)观察单缝夫琅和费衍射现象,加深对夫琅和费衍射理论的理解。; 2)会用光电元件测量单缝夫琅和费衍射的相对光强分布,掌握单缝夫琅和费衍射图样的特点及规律; 3)探讨利用夫琅和费单缝衍射规律对狭缝缝宽等参数进行测量。 2实验仪器 1)GDS-Ⅱ型光电综合实验平台主机; 2) 650nm波长半导体激光光源; 3)可调宽度的狭缝; 4)50mm焦距的凸透镜; 5)二维调整架; 6)通用磁性表座; 7)接收屏; 8)衰减片; 9)硅光电池及A/D转换装置、CCD 3实验原理 光束通过被测物体传播时将产生“衍射”现象,在屏幕上形成光强有规则分布的光斑。这些光斑条纹称为衍射图样。衍射图样和衍射物(即障碍物或孔)的尺寸以及光学系统的参数有关,因此根据衍射图样及其变化就可确定衍射物(被测物)的尺寸。 按光源、衍射物和观察衍射条纹的屏幕三者之间的位置可以将光的衍射现象分为两类:菲涅耳衍射(有限距离处的衍射);夫琅和费衍射(无限远距离处的衍射)。若入射光和衍射光都是平行光束,就好似光源和观察屏到衍射物的距离为无限远,产生夫琅和费衍射。由于夫琅和费衍射的理论分析较为简单,所以先论夫琅和费衍射。 半导体激光器发出相当于平行单色光的光束垂直照射到宽度为b的狭缝AB,经透镜在其焦平面处的屏幕上形成夫琅和费衍射图样。若衍射角为?的一束平行光经透镜后聚焦在屏幕上P点,如图4.9-1所示,图中AC垂直BC,因此衍射角为?的光线从狭缝A、B两边到达P点的光程差,即它们的两条边缘光线之间的光程差为 ? BC=(1) b sin p点干涉条纹的亮暗由BC值决定,用数学式表示如下:

夫琅禾费单缝衍射

§16.2 单缝和圆孔的夫琅禾费衍射 §16.2.1 单缝的夫琅禾费衍射 ( 1 ) 单缝衍射的实验装置和现象 夫琅禾费衍射是平行光的衍射,在实验中可借助于两个透镜来实现。位于物方焦面上的点光源经透镜L1后成为一束平行光,照射在开有一条狭缝的衍射屏上。衍射屏开口处的波前向各方向发出子波或衍射光线,方向相同的衍射光线经透镜L2后会聚在象方焦面上的同一点,各个方向的衍射光线在屏幕上形成了衍射图样,它在与狭缝垂直的方向上扩展开来。衍射图样的中心是一个很亮的亮斑,两侧对称地分布着一系列强度较弱的亮斑,中央亮斑的宽度为其他亮斑的两倍,且它们都随狭缝宽度的减小而加宽。如果用与狭缝平行的线光源代替点光源,则在接收屏幕上将会看到一组平行于狭缝的衍射条纹。 图16 - 4 单缝的夫琅禾费衍射 ( 2 ) 单缝衍射的光强分布公式 考虑点光源照明时的单缝夫琅禾费衍射。取z轴沿光轴,y轴沿狭缝的走向,x轴与狭缝垂直。因为入射光仅在x方向受到限制,衍射只发生在x - z平面内,因此具体分析可在该平面图中进行。按惠更斯 菲涅耳原理,我们可以把单

缝内的波前AB分割为许多等宽的窄条,它们是振幅相等的相干子波源,朝各个方向发出子波。由于接收屏幕位于透镜L2的象方焦面上,因此角度θ相同的衍射光线将会聚于屏幕上同一点进行相干叠加。 图16 - 5 衍射矢量图 设入射光与光轴Oz平行,则在波面AB上无相位差。为求单缝上、下边缘A和B到点的衍射光线间的光程差?L和相位差δ,自A点引这组平行的衍射光线的垂线AN,于是就是所要求的光程差。设缝宽为b,则有 (16.4) (16.5) 矢量图解法:用小矢量代表波前每一窄条对点处振动的贡献,由A点作一系列等长的小矢量,首尾相接,逐个转过相同的小角度,最后到达B点,总共转过的角度就是单缝上、下边缘到点的衍射光线间的相位差δ. 若取波前每一窄条的面积,则由这些小矢量连成的折线将化为圆弧,其圆心角2α = δ. 由于整个缝宽AB内的波前在点处产生的合振幅等于弦长,而在的点处的合振幅A0等于弧长,故有 ,

基于Matlab的夫琅禾费衍射光学仿真

基于Matlab的夫琅禾费衍射光学仿真 摘要计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。 关键词:计算机仿真夫琅禾费衍射Matlab Fraunhofer Diffraction Optical Simulation Based on Matlab Abstract The computer simulation technology is based on a variety of disciplines and theoretical, with the computer and the corresponding software tools, we can analyze the virtual experimentation and solve the problem of a comprehensive technology. Computer simulation of early known as the Monte Carlo method, is a random problem solved using the method of random number test. Key words:Computer simulation Fraunhofer diffraction Matlab 一、引言

计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中。到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 计算机仿真的三个基本活动: 1. 数学模型建立:实际上是一个模型辩识的过程。所建模型常常是忽略了一些次要因素的简化模型。 2. 仿真模型建立:即是设计一种算法,以使系统模型能被计算机接受并能在计算机上运行。显然,由于在算法设计上存在着误差,所以仿真模型对于实际系统将是一个二次简化模型。 3. 仿真实验:即是对模型的运算。需要设计一个合理的、服务于系统研究的仿真软件。 二、本文的主要工作 本文主要使用matlab语言进行光学实验仿真,通过Matlab软

利用夫琅和费单缝衍射对单缝宽度的测量

观察衍射现象的实验装置一般是由光源、衍射屏和接受屏三部分组成。按它们相互间距离的不同情况,通常将衍射分为两类:一类是衍射屏离光源或接受屏的距离为有限远时的衍射,称为菲涅尔衍射;另一类是衍射屏与光源和接受屏的距离都是无穷远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。若衍射屏上有一单狭缝,宽度为a,则在接受屏上将出现一组明暗相间的平行直条纹。 一、实验目的 1、观察单缝衍射现象,了解单缝宽度对衍射条纹的影响。 2、学习测量单缝宽度的一种方法。 二、实验原理 让一束单色平行光通过宽度可调的缝隙,射到其后的接收屏上。,若缝隙的宽度a足够大,接收屏上将出现亮度均匀的光斑。随着缝隙宽度a变小,光斑的宽度也相应变小。但当缝隙宽度小到一定程度时, 光斑的区域将变大,并且原来亮度均匀的光斑变成了一系列亮暗相间的条纹。根据惠更斯-菲涅耳原理,接收屏上的这些亮暗条纹,是由于从同一个波前上发出的子波产生干涉的结果。为满足夫琅禾费衍射的条件,必须将衍射屏放置在两个透镜之间。实验光路图如图 17-1所示。 x k 2 12 图17-1夫琅禾费单缝衍射光路图

下面来推导单缝缝宽的测量公式 。中央亮条纹的宽度可用其两侧暗条纹之间的角距离来表示,由于对称性, 主极大的角宽度为从点O 到第一暗条纹中心的角距离的两倍,所以从点O 到第一暗条纹中心的角距离,称为主极大的半角宽度。主极大的半角宽度就是第一暗条纹的衍射角θ,近似等于a /λ。中央亮条纹的宽度等于各次极大的两倍,也就是说,各次极大的角宽度都等于中央亮条纹的半角宽度,并且绝大部分光能都落在了中央亮条纹上。 在远场条件下,即单缝至屏距离a z >>时,各级暗条纹衍射角k θ很小,k k θθ≈sin ,于是第k 级暗条纹在接收屏上距中心的距离k x 可写为f x k k θ=。而 第k 级暗条纹衍射角k θ满足 a k k λθ= sin (17-1)所以 f x a k k ≈λ (17-2) 于是,单缝的宽度为 k x f k a λ= (17-3) (17-3)式中k 是暗条纹级数,f 为单缝与接收屏之间的距离, x k 为第k 级暗条纹距中央主极大中心位置O 的距离。 若已知波长nm 30.589=λ,测出单缝至光屏距离f 、第k 级暗纹离中央亮纹中心之间的距离x k ,便可用公式(17-3)求出缝宽 。 三、实验仪器 狭缝装置,透镜架,二维平移底座,三维平移底座,宽度可调单缝,钠光灯,测微目镜,测微目镜架,升降调节座,透镜(焦距分别为150mm 和300mm )。

关于夫琅禾费单缝衍射实验教学研究的文献综述

关于夫琅禾费单缝衍射实验教学研究的文献综述 1引言 光的衍射现象是光波动性的一个主要标志,也是光波在传播过程中的最重要 属性之一,光的衍射在近代科学技术中占有极其重要的地位。光的单缝衍射实验 是光学中非常重要的一个实验,但是在实验教材描述比较简单,学生未能全面掌 握操作技巧,实验时存在一些重要的实际操作问题,在教学中学生经常会遇到一 些容易忽视但又十分重要的问题。通过对夫琅禾费单缝衍射实验前的实验设计、 实验过程中的控制和监视、实验后数据的深入分析,不仅为学生掌握衍射方面的 知识提供准确的实验参考依据,为教师教学质量的提高起到一定的作用,而且也 可以为学生实验提供实验参考,提高实验的效率,培养学生的实验操作能力,分 析和探究问题的能力。 2研究的发展与现状 2.1夫琅禾费衍射发展与现状 关于光发生的衍射的具体机理及规律,惠更斯提出了次波说,惠更斯认为: 任何时刻波面上的没一点都可以作为次波的波源,各自发出的球面次波;在以后 的任何时刻,所有这些次波波面的包络面形成整个波在该时刻的新的波面。但是 惠更斯次波说不涉及波的时空周期特性—波长、振幅和相位,因而不能说明在障 碍物的边缘波的传播方向偏离直线的现象。菲涅耳对惠更斯的原理进行了改进, 补充描述了次波的基本特性—振幅和相位的定量表达式,并增加了“次波相干叠 加”的原理,以严密的数学,推导出严密的数学推理导出了菲涅耳衍射积分,发 展成为了惠更斯—菲涅耳原理,但是由于此积分式相当复杂,历史上对于此积分 的进一步研究,只是选取了几种几何形状较简单的开孔和障碍物,并且是在相对 于孔径法线对称的前提下来进行推导和演示的,如:单缝、圆孔、园屏等,结果 能圆满地解释光的衍射现象。 麦克斯韦在1865年的理论研究中指出,电磁波以光速传播,说明光是一中 电磁现象。这个理论在1888年赫兹在实验室证实。至此,确立的光的电磁理论 基础,光的电磁理论发展起来后,基尔霍夫从波的微分方程出发,利用场论中的格林函数得到了基尔霍夫衍射公式:01 (P )(G U )4U G U ds n n π∑ ??=-???? ,基尔霍夫衍射公式可以给出与实际符合很好的结果,因而在实际中得到广泛的应用。上世 纪六十年代激光的出现,数学中的傅里叶和通讯中的线性系统理论引入光学,使 得我们对许多光学现象的内在联系从理论上上级数学方法上获得更加系统的理 解。成为目前迅速发展的光学信息处理、像质评价、成像理论的基础。 光学研究的发展完全符合:实验—假说—理论—实验的认知规律。正确的理

夫琅禾费衍射的Matlab仿真

夫琅禾费衍射的Matlab仿真 110512班 11051057 李陟凌 夫琅禾费衍射,是认为光源和观察屏离衍射屏(孔)处于无穷远处的衍射现象。实验装置如图: S为单色点光源,放置在透镜L1的物方焦点处,所得平行光垂直入射到障碍物,借助于透镜L2将无穷远处的衍射图样移至L2的像方焦面上观察。 若障碍物为单缝,设缝宽度为a ,观察屏上点P与透镜L2光心连线的方位角为θ,由几何成像理论,此角正好也是相应平面波分量的方位角。若取入射光波长为λ,透镜L2的焦距为f,根据惠更斯- 菲涅耳原理,可得单缝夫琅禾费衍射强度分布公式为: I=I0sin2α 2 (公式1) 式中I 0为接收屏中央的强度,α=θ 2 =πasinθ λ 。 阿贝成像原理的演示实验中提及到夫琅禾费衍射,然而没有相应的演示实验装置,由此我产生了用数学软件模拟其衍射图样的想法。根据公式1,代入λ、a、θ等值,就可以得到接收屏每一点的光强度值,调用imagesc()函数就可以得到干涉条纹样。但这种方法只适用于单缝等简单情况。为了模拟较复杂的二维孔洞产生的衍射图样,我查阅了资料,得到如下的方法: 设衍射屏的振幅透射系数为t(x,y),根据菲涅耳——基尔霍夫衍射积分,若观察平面到衍射屏的距离z 满足如下近似条件: 则在单位振幅的相干平面光波照射下,可得衍射屏的夫琅禾费衍射光场复振

幅及强度分布分别为: 式中T = F[t(x,y)]表示衍射屏振幅透射系数t(x,y)的傅里叶变换。上式表明,在单位振幅的相干平面光波照射下,夫琅禾费衍射光场的复振幅分布正比于衍射屏振幅透射系数的傅里叶交换;衍射光场复振幅表达式中的相位因子并不影响观察屏上衍射图样的强度分布,若略去常系数,则衍射图样的强度分布直接等于衍射屏透射光场复振幅的傅里叶变换的模值平方。 将衍射屏制作成输入图像,用imread()函数读入,然后利用傅里叶变换函数fft2()对其进行傅里叶变换,得到其傅里叶频谱。由函数fft2()实现的傅里叶变换频谱的直流分量位于图像的左上角,而由透镜实现的光学傅里叶变换的直流分量位于图像中心。因此,为了得到模拟的光学傅里叶变换,需调用函数fftshift()将零频移到频谱中心。 Matlab程序如下:

浙江省大学物理试题库413-夫琅禾费单缝衍射教学文案

浙江省大学物理试题库413-夫琅禾费单缝 衍射

浙江工商大学 学校 413 条目的4类题型式样及交稿式样 1. 选择题 题号:41311001 分值:3分 难度系数等级:1 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为 (A) 2 个。 (B) 4 个。 (C) 6 个。 (D) 8 个。 [ ] 答案:(B ) 题号:41311002 分值:3分 难度系数等级:1 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ] 答案:(B ) 题号:41312003 分值:3分 屏

难度系数等级:2 在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大。 (B) 间距变小。 (C) 不发生变化。 (D) 间距不变,但明暗条纹的位置交替变化。 [ ] 答案:(C ) 题号:41312004 分值:3分 难度系数等级:2 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹 (A) 对应的衍射角变小。 (B) 对应的衍射角变大。 (C) 对应的衍射角也不变。 (D) 光强也不变。 [ ] 答案:(B ) 题号:41314005 分值:3分 难度系数等级:4 屏幕

一单色平行光束垂直照射在宽度为1.0 mm的单缝上,在缝后放一焦距为2.0 m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为 (1nm=10?9m) (A) 100 nm (B) 400 nm (C) 500 nm (D) 600 nm[] 答案:(C) 题号:41312006 分值:3分 难度系数等级:2 在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小。 (B) 宽度变大。 (C) 宽度不变,且中心强度也不变。 (D) 宽度不变,但中心强度增大。[] 答案:(A) 题号:41312007 分值:3分 难度系数等级:2 在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹 (A) 宽度变小; (B) 宽度变大; (C) 宽度不变,且中心强度也不变; (D) 宽度不变,但中心强度变小。[] 答案:(B) 题号:41313008

利用夫琅和费单缝衍射对单缝宽度的测量

利用夫琅与费单缝衍射对角宽度的测量 观察衍射现象的实验装置一般就是由光源、衍射屏与接受屏三部分组成。按它们相互间距离的不同情况,通常将衍射分为两类:一类就是衍射屏离光源或接受屏的距离为有限远时的衍射,称为菲涅尔衍射;另一类就是衍射屏与光源与接受屏的距离都就是无穷远的衍射,也就就是照射到衍射屏上的入射光与离开衍射屏的衍射光都就是平行光的衍射,称为夫琅禾费衍射。若衍射屏上有一单狭缝,宽度为a,则在接受屏上将出现一组明暗相间的平行直条纹。 一、实验目的 1、观察单缝衍射现象,了解单缝宽度对衍射条纹的影响。 2、学习测量单缝宽度的一种方法。 二、实验原理 让一束单色平行光通过宽度可调的缝隙,射到其后的接收屏上。,若缝隙的宽度a 足够大,接收屏上将出现亮度均匀的光斑。随着缝隙宽度a 变小,光斑的宽度也相应变小。但当缝隙宽度小到一定程度时, 光斑的区域将变大,并且原来亮度均匀的光斑变成了一系列亮暗相间的条纹。根据惠更斯-菲涅耳原理,接收屏上的这些亮暗条纹,就是由于从同一个波前上发出的子波产生干涉的结果。为满足夫琅禾费衍射的条件,必须将衍射屏放置在两个透镜之间。实验光路图如图17-1所示。 r r 0O X'x k f θ L 1L 2 S 2S 1 图17-1夫琅禾费单缝衍射光路图

下面来推导单缝缝宽的测量公式 。中央亮条纹的宽度可用其两侧暗条纹之间的角距离来表示,由于对称性, 主极大的角宽度为从点O 到第一暗条纹中心的角距离的两倍,所以从点O 到第一暗条纹中心的角距离,称为主极大的半角宽度。主极大的半角宽度就就是第一暗条纹的衍射角θ,近似等于a /λ。中央亮条纹的宽度等于各次极大的两倍,也就就是说,各次极大的角宽度都等于中央亮条纹的半角宽度,并且绝大部分光能都落在了中央亮条纹上。 在远场条件下,即单缝至屏距离a z >>时,各级暗条纹衍射角k θ很小,k k θθ≈sin ,于就是第k 级暗条纹在接收屏上距中心的距离k x 可写为f x k k θ=。而 第k 级暗条纹衍射角k θ满足 a k k λθ= sin (17-1)所以 f x a k k ≈λ (17-2) 于就是,单缝的宽度为 k x f k a λ= (17-3) (17-3)式中k 就是暗条纹级数,f 为单缝与接收屏之间的距离, x k 为第k 级暗条纹距中央主极大中心位置O 的距离。 若已知波长nm 30.589=λ,测出单缝至光屏距离f 、第k 级暗纹离中央亮纹中心之间的距离x k ,便可用公式(17-3)求出缝宽 。 三、实验仪器 狭缝装置,透镜架,二维平移底座,三维平移底座,宽度可调单缝,钠光灯,测微目镜,测微目镜架,升降调节座,透镜(焦距分别为150mm 与300mm)。

夫琅禾费衍射现象的观察和分析

夫琅禾费衍射现象的观察和分析1、单缝夫琅和费衍射现象的观察与分析 狭缝在垂直方向狭缝在水平方向 衍射 图样 特点所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、亮 度最大,从中央往两边,其它亮条纹的亮度依次减 小所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、亮度最大,从中央往两边,其它亮条纹的亮度依次减小 测量狭缝宽度(λ=632.8nm)狭缝到 衍射图样的距离 L(mm) 零级亮斑 的宽度 2x k(mm) θ ? ( d λ θ 2 = ?) 缝宽d(mm) (计算结果) x k L d λ = 缝宽d(结 果测量) 零级亮纹图样变化特点 缝宽变化(从小到大)600.0 20.5 0.03230.04 0.10mm 随着狭缝宽度的逐渐增大,零级亮纹 的宽度、角宽度在逐渐减小 600.0 6.9 0.01170.11 0.20mm 677.8 2.2 0.00370.35 0.30mm 677.8 1.5 0.00250.52 0.40mm 狭缝在垂直和水平方向 衍射图样特点1、所成图像的方向与狭缝的方向相互垂直,出现明暗相间的条纹,其中中央零级亮条纹的宽度最宽、 亮度最大,从中央往两边,其它亮条纹的亮度依次减小。 2、随着狭缝宽度的逐渐增大,零级亮纹的宽度、角宽度在逐渐减小。

2、圆孔夫琅禾费衍射现象的观察与分析 衍射图样的特点 出现明暗相间的圆环,其中央为亮度最强的亮圆,从中央圆环依次往外,亮圆环的亮 度逐渐减小 测量圆孔直径 狭缝到衍射图样 的距离L(mm) 零级亮圆 的直径 d(mm) θ ? L d = ?θ 直径D(计算结果) θ λ ? =22 .1 D 零级亮纹图样变化特点 改变圆孔直径1058.6 1.6 0.015 0.00112 随着圆孔直径的逐渐增 大,中央零级亮圆环的 直径、角宽度在逐渐减 小 1058.6 2.9 0.027 0.00268 812.5 4.2 0.052 0.00359 765.8 6.9 0.090 0.00788

ch3-4夫琅禾费单缝衍射

§3—4夫琅禾费衍射
一,夫琅禾费衍射的实验装置
透过衍射屏的光场,可以看成是由被狭缝限制的波面上每一点发出 的球面子波的叠加.由于每个球面子波均包含各种方向的光线,因此透 射光场也可以看成是各种具有不同方向的平面波的叠加,并且每个方向 的平面波均来自所有子波的贡献.同一方向平面波在无限远或透镜的像 方焦平面上会聚于同一点,满足相长干涉条件时,该点为亮点;满足相 消干涉时,该点为暗点.
L0 L C
λ
F0 S
θ
P P0
f
夫琅禾费衍射

二,夫琅禾费单缝衍射
1. 复数积分法
P点光来自同一方向,倾斜因子相同. 不同方向的光,满足近轴条件,倾斜因子为常数1. 傍轴条件下菲涅耳-基尔霍夫衍射公式
i ~ E ( Pθ ) = λr0
F (θ 0 ,θ ) = 1
~ E0 (Q)eikr dxdy ∫∫
∑0
Δr = x sin θ
r = r0 + Δr = r0 x sin θ
a
x r
Δx
P
r0
θ
o
f

~ ~ E ( Pθ ) = C
a/2
a / 2
∫e
ik ( r x sin θ )
~ ikr0 dx = Ce
a/2
a / 2
e ikx sin θ dx ∫
式中 α = ka sin θ 2
~ ikr0 sin( ka sin θ 2) ~ sin α ikr0 = Ce = aC e k sin θ 2 α
其中衍射场中心P0点复振幅(θ=0):
~ ikr0 ~ E ( p 0 ) = aC e
Pθ点复振幅和光强:
sin α ~ ~ E ( Pθ ) = E ( P0 )
α
sin α Iθ = I 0 α
2
单缝衍射引因子:
Iθ sin α = I0 α
2

夫良禾费单缝衍射实验

Guizhou Minzu University 《信息光学》实验论文 论文题目: 学院(系): 专 业: 年 级: 姓 名: 学 号: 完成时间:

目录 摘要 (2) 1前言 (2) 1.1光的衍射 (2) 1.2衍射与干涉 (2) 1.3衍射的应用 (3) 2夫琅禾费衍射原理 (4) 2.1惠更斯—菲涅耳原理 (4) 2.2夫琅禾费衍射 (5) 2.3实现夫琅禾费衍射的几种方法 (6) 2.4菲涅耳半波带分析法 (8) 3夫琅禾费衍射图样的特点与光强计算 (11) 3.1图样特点 (11) 3. 2光强的计算 (12) 3. 3衍射条纹的分布 (13) 3. 4夫琅禾费单缝衍射光强分布 (14) 4实验分析 (15) 5实验总结 (17) 参考文献 (18)

夫良禾费衍射实验 摘要:光的衍射是我们所熟知的现象,在日常生活中也有着广泛的应用,在信息光学课程的学习中,我们在光的衍射的基础上进一步了解了什么是夫琅禾费衍射,分析了几种实现夫琅禾费衍射的方法和原理及光强分布特点,通过实验与理论相结合,得出了夫琅禾费单缝衍射的光强公式。 关键词:夫琅禾费;单缝衍射; 前言 1.1光的衍射 光波遇到障碍物以后会或多或少地偏离几何光学传播定律的现象。几何光学表明,光在均匀媒质中按直线定律传播,光在两种媒质的分界面按反射定律和折射定律传播。但是,光也是一种电磁波,当一束光通过有孔的屏障以后,其强度可以波及到按直线传播定律所划定的几何阴影区内,也使得几何照明区内出现某些暗斑或暗纹。 光的衍射是指光波在传播过程中遇到障碍物时,所发生的偏离直线传播的现象。光的衍射,也可以叫做光的绕射,即光可以绕过障碍物,传播到障碍物的几何阴影区域中,并在障碍物后的观察屏上呈现出光强的不均匀分布。通常将观察屏上的不均匀光强分布称为衍射图样。 1.2衍射与干涉 干涉现象和衍射现象都是光具有波动性的重要特征,那么,它们有怎样的区别和联系呢,简单地说,干涉是若干光束的叠加,更确切地讲应该是,当参与叠加的各束光本身的传播行为可近似用几何光学直线传播的模型描写时,这个叠加

相关文档
最新文档