高压电气设备在线检测技术论文

高压电气设备在线检测技术论文
高压电气设备在线检测技术论文

高压电气设备在线检测技术的探讨【摘要】在一定的时间段内在要对电网的运行情况进行检查,进而获得一些相对比较准确的数据信息,来判断电网性能的好坏,因此在这种情况下,电力监测设备应运而生,有很好的市场前景。基于此,本文对高压电气设备的在线检测技术进行了探讨。

【关键词】高压电气设备在线检测技术

在对高压电器设备进行各方面的性能检测过程中,要遵循“在线检测”的工作原理,即此刻运行的高压转变成试验电压。由于在检测的整个过程中,电系统始终都在得电状态,所以检测的工作人员可以参考设备的基本性能,也就是其绝缘性能,来为再次试验确定所需要的项目以及工作时间,这样可以减少试验设备给以后正常运行所产生的一些不必要的负面作用,与此同时,也能够精确地掌握设备运行时所处的各种情况,来提高电力设备运行过程中实效性。

一、传统的预防性试验存在的问题

(一)程序冗杂。由于监测时所需要的时间比较长,所以说技术人员技能的高低对检测结果是否准确有着必然的关系。(二)耗时较长。传统的试验要检测出系统中存在的问题,需要很长时间才能够检测出来。(三)电压较低。在试验时,整个电系统的电压都会降低,而且在实验过程中还会经常性的断电,这样很难检测出设备在运行时的电场、磁场、温度等的真实情况,影响判断的准确性。(四)停电操作。试验必须在断电的情况进行并且完成,可是由于

电气设备安装论文建筑电气安装论文

电气设备安装论文建筑电气安装论文 建筑电气安装及接地技术研究 摘要:笔者结合多年工作实践,以某工程为例,对高层建筑电气设备安装施工技术要点及接地保护安装措施进行了简要分析. 关键词:电气安装;接地技术;等电位联结 1工程概况 某高层综合楼是一座商住、办公综合性大楼,由一层地下室、四层裙楼及十八层主楼组成,建筑面积35000m2。本建筑楼层功能分区明显,高低压配电室没在地下一层,低压配电出线采用电缆母线槽沿电气竖井向各楼层送电。防雷等级为一级.接地采用TN-S系统。2施工前准备工作 这一阶段结合施工图纸及现场实际在图纸会审中提出,经由业主、监理及设计院协商,强电竖井内电气设备布置如下。 (1)配电干线中应急照明及中央空调各楼层风机盘管、新风机组动力电源改为分支电缆。 (2)由于竖井内电缆数量较多,增加一条600mm×200mm金属线槽,专供分支电缆使用。 (3)在电气竖井内增加一条-50×5专用接地铜排。 (4)调整前后强电竖井平面布置对比见图1。

(4)调整前后强电竖井平面布置。 3楼层板面电气安装施工 (1)孔洞预留当板面预埋时,首先立进行图上模拟作业,等比例安排电气设备在电气竖井内的相应位置,如发现尺寸不符.电气设备位置冲突等,应及时调整,以便后期电气竖井内电气设备正确安装。根据以上原则板面预埋作业时,600×200的桥架预留800×300的孔洞。1000×200的桥架预留1200×300的孔洞,1000A母线槽及-50×5接地铜排预留500×300的孔祠。 预埋时应统一参照点及时复核上一层电气竖井内所预留孔洞应与下一层电气竖井内的预留孔洞约坐标一致,减少偏差产生。 (2)电气管路预埋考虑到电气竖井内配电箱为明装,公共照明电源回路电管预埋至电气竖井时应根据配电箱位置预埋,管道应排列摊齐以方便下道工序施工,保证管路与配电箱正确连接,提高连接质量与观感标准。 4电气竖井内电气与设备安装 4.1母线槽安装 首先用钢卷尺在最高层的楼板预留孔位置量好母线槽两侧110槽钢的间距,用角尺及水平尺对〔10槽钢进行找平、找正,用Φ10以上膨胀螺栓将〔10槽钢固定在预留孔两侧。然后沿〔10槽钢的内边向底层各放一条垂线,依次固定各层预留孔位置上的槽钢。

高温超高压技术在煤气发电中的应用

高温超高压技术在煤气发电中的应用 摘要:目前我国钢铁行业用于高炉煤气发电的机组大多为12~30 MW中温中压 参数机组,机组的热效率低。本文重点讨论高温超高压煤气发电这种高效发电技 术在钢铁企业富余煤气资源利用方面的优势,分析高温超高压技术高效发电的具 体原因,并对比了该技术与燃气蒸汽联合循环发电技术之间的差异。 关键词:钢铁企业;节能;高温超高压;煤气 近年来钢铁工业产能的不断增加,以及钢铁工业节能措施的逐步推进,钢厂 煤气富余量将进一步提升,煤气需求与价格波动也将会扩大,而现有煤气电厂能 力不能满足需要,致使富余煤气的放散增多,浪费能源并污染环境。 一、煤气锅炉发电技术的发展历程 在早期钢厂煤气锅炉发电技术中,尽管能够有效控制钢铁企业的煤气放散率,但是由于受钢厂规模和煤气量的影响,燃气锅炉机组较小,效率偏低,煤气锅炉 发电技术并非一种高效的煤气利用方式。随着钢铁行业技术的发展,钢铁生产过 程中逐渐减少了生产自用煤气的消耗量,煤气富裕量大大增加,提高煤气发电效 率带来的经济效益日益明显。在钢厂企业效益和国家节能减排政策的要求下,钢 厂煤气锅炉发电技术也在逐步跟进。到目前为止,钢厂富余煤气发电技术大致经 历了早期技术(中温中压或更低),第一代技术(中温中压或次高温次高压),第二代 技术(高温高压),第三代技术(高温超高压中间再热)等4个阶段。随着技术发展, 煤气锅炉发电技术的主机参数越来越高;机组规模越来越大,从早期的12MW一 直到目前的135MW;全厂热效率越来越高,高温超高压技术的热效率比早期的 技术已经提高了近50%;但是每生产1 kWh电所消耗的煤气量则越来越低,从最初的4.53m3/kwh降低到目前的2.98m3/kWh。目前,大多数钢铁企业的锅炉 煤气发电技术仍采用第二代(高温高压)技术,与高温超高压技术相比,高温高压 技术的发电效率要低近6%,钢厂最常见的50MW高温高压机组与65MW高温超 高压机组参数的比较,在同等煤气耗量(18.25万rn3/h)条件下,高温超高压机组 年供电量比高温高压机组年多发电0.72亿kWh,若按电价0.5元/kWh计算,年增效益近3600万元,在钢铁行业不景气的今天,对钢铁企业无异于雪中送炭。随着技术发展,目前高温超高压煤气发电技术机组规模覆盖也越来越广,武汉都 市环保工程技术股份有限公司自主研发的高温超高压机组主机参数已经突破了 65MW的限制,可以向更低参数方向发展,该公司已相继在河北、广西、山东等 地的钢厂建设了数十台套高温超高压机组。 二、煤气锅炉发电技术 1.纯烧高炉煤气锅炉发电技术。20世纪90年代中期,国内开始自主开发并引进国外全烧高炉煤气发电技术,纯烧高炉煤气锅炉发电技术由燃高炉煤气锅炉、 汽轮发电机及辅机等组成。通过高炉煤气管道将减压阀组减压后或TRT装置后 的低压高炉煤气送入锅炉进行燃烧,产生的过热蒸汽进入汽轮机,驱动汽轮机带 动发电机进行发电。 2.TRT(高炉煤气余压透平发电装置)。上世纪50年代中期,法国、比利时、 捷克、苏联等国开始对TRT进行试验研究。其中法国成功的开发了湿式TRT系统,苏联则开发了干式TRT系统。80年代,日本的TRT装置技术发展较快,三 井造船、日立造船、川崎重工等对TRT进行了改进,进一步提高了回收效率、 降低了投资。我国从60年代中期由武汉钢铁设计研究院开始研究、消化吸收国外TRT技术。80年代初期通过大量试验取得成功。

电气自动化毕业论文...doc

关于110KV变电所一次系统的设计 毕业院校:山东科技大学 系别电气自动化 专业班级: 12级 姓名:臧绍龙 指导教师:

目录 标题、摘要、关键词--------------------------------------2 前言----------------------------------------------------3 第一章原始资料分析-------------------------------------4 1.1 本所设计电压等级--------------------------------4 1.2 电源负荷----------------------------------------4 第二章电气主接线设计-----------------------------------6 2.1 主接线接线方式----------------------------------6 2.2电气主接线的选择---------------------------------8 第三章所用电的设计-------------------------------------10 3.1 所用电接线一般原则------------------------------10 3.2所用电接线方式确定------------------------------10 3.3备用电源自动投入装置----------------------------10 第四章短路电流计算-------------------------------------12 4.1 短路计算的目的----------------------------------12 4.2短路计算过程------------------------------------12 第五章继电保护配置-------------------------------------20 5.1 变电所母线保护配置-----------------------------20 5.2 变电所主变保护的配置---------------------------20 第六章防雷接地----------------------------------------22 6.1 避雷器的选择-----------------------------------22 6.2变电所的进线段保护-----------------------------23

电气工程及其自动化专业论文范文

学号:XXXXXXXXXXXXXXX 毕业论文(设计)说明书轨道交通供电系统的SCADA系统应用论 文 学生姓名××× 专业名称电气工程及其自动化 指导教师××× 网络教育学院

2011年6 月10 日 学号:XXXXXXXXXXXXXXX 华南理工大学网络教育学院毕业论文(设计) 轨道交通供电系统的SCADA系统应用论文 ××× 指导教师:××× 网络教育学院 专业名称:电气工程及其自动化 论文提交日期:2011年6月10日论文答辩日期:2011年6月18日 论文评阅人:×××××××××

华南理工大学网络教育学院专业本科生毕业论文开题情况表

目录 目录 (5) 摘要 (7) 第一章概述 (9) 1.1国内城市轨道交通的发展 (9) 1.2轨道交通供电系统的重要性及其要求 (10) 1.2.1系统的总体功能 (10) 1.2.2系统的基本要求 (11) 1.3供电系统的构成 (12) 1.4SCADA系统的角色和意义 (13) 1.5本设计的主要工作 (14) 第二章轨道交通供电系统介绍 (15) 2.1设备分类 (15) 2.2设备的功能和型式 (15) 2.2.1高压开关设备 (15) 2.2.2中压开关设备 (15) 2.2.3低压开关设备 (17) 2.2.4直流开关柜 (19) 2.2.5 微机保护装置 (19) 2.3本章小结 (21) 第三章SCADA系统的设计 (22) 3.1概述 (22)

3.2一般要求 (22) 3.3系统构成 (23) 3.4监控对象 (25) 3.4.166~110KV设备 (25) 3.4.2主变压器 (26) 3.4.310~35KV设备 (26) 3.4.4直流750V或直流1500V设备 (28) 3.4.5400V设备 (30) 3.4.6配电变压器 (31) 3.4.7交直流电源屏 (31) 3.4.8排流柜 (31) 3.4.9轨道电位限制装置 (31) 3.5技术指标 (32) 3.5.1控制中心主站系统技术指标 (32) 3.5.2变电所综合自动化系统技术指标 (32) 3.6中央监控系统 (33) 3.6.1中央监控系统的功能 (33) 3.6.2中央监控系统网络配置方案 (48) 3.6.3中央监控系统硬件配置方案 (50) 3.6.4系统软件配置方案 (51) 3.7供电复示系统 (51) 3.7.1系统功能 (51)

高压电气试验方案

高压电气试验方案 1 2020年4月19日

山东华聚能源东滩矿电厂超低排放改造工程 高压电气交接试验方案 施工单位: 编制: 审核: 批准: 日期:

目录 1. 目的1 2. 适用范围1 3. 编制依据1 4. 试验项目1 5. 试验人员1 6. 试验条件1 7. 电流互感器试验2 8. 真空断路器试验3 9. 过电压保护器试验8 10. 开关柜配电装置交流耐压试验9 11. 变压器试验11 12.电缆试验 19 13. 风险分析及防范措施22 14. 环境因素分析及文明施工22 2020年4月19日

1.目的: 为保证山东华聚能源东滩矿电厂超低排放改造项目电气安装工程电气设备安装 的施工质量,确定高压配电装置制造和安装质量符合有关规程规定,保证电气设备安全投运。特编制该高压配电装置交接试验方案。 2.适用范围: 适用于山东聚能源东滩矿电厂超低排放改造项目电气安装工程高压配电装置交 接试验。 3.编制依据: 3.1 施工图纸及安装手册 3.2 《电气装置安装工程电气设备交接试验标准》(GB50150—) 3.3 开关柜技术资料。电气设备产品技术说明书; 4.试验项目: 4.1电流互感器试验: 4.1.1极性试验 4.1.2绕组的直流电阻试验 4.1.3绕组绝缘电阻试验 4.1.4交流耐压试验 4.2母线试验: 4.2.1绝缘电阻试验 4.2.2交流耐压试验 2020年4月19日

4.3真空断路器试验: 4.3.1耐压前测量绝缘电阻 4.3.2测量每相导电回路的接触电阻 4.3.3测量分、合闸线圈的直流电阻和绝缘电阻 4.3.4断路器操动机构试验 4.3.5测量分、合闸时间,分、合闸同期性和合闸时触头的弹跳时间 4.3.6断口交流耐压试验 4.3.7耐压后测量绝缘电阻 4.4 变压器试验: 4.4.1测量绕组连同套管的直流电阻。 4.4.2测量绕组连同套管的绝缘电阻和吸收比。 4.4.3绕组连同套管的工频交流耐压试验。 4.5.4额定电压下的冲击合闸试验 4.5.5 检查相位 4.4.6测量噪音 4.5电缆试验 4.6过电压保护器试验 5.试验人员: 试验负责人: 1人;试验员:3人 6.试验条件: 6.1所有参与试验人员资质证书齐全。 6.2试验作业指导书编制完成并经过详细的技术交底。 1 2020年4月19日

超高压技术应用综述

摘要:高压科学与技术是一门相对年青、正处在加速发展阶段的新兴学科,宇宙中的绝大部分凝聚态物质均处在高压状态下,在超高压极端条件下,凝聚态物质中的原子/分子距离将缩短,相互作用显著增强,原子内层电子可参与成键,原有的结构会被破坏,导致结构相变、物性变化(改变电磁相互作用状态)及核子间的强相互作用(核反应),合成新材料,甚至出现新的物理现象。 关键词:超高压技术;材料合成;金刚石;立方氮化硼 1 引言 压力(强)对于大家并不陌生,就像温度一样是我们生活中常见的一个非常重要的热力学要素。我们在厨房里使用高压锅做饭,我们在高压气罐里储存液化石油气作为燃料,我们给自行车的轮胎里充入气体,…… 一般情况液体或气体压力在0.1mpa~1.6mpa称为低压,1.6mpa~10mpa称为中压,10~100MPa称为高压,100MPa以上称为超高压.本文阐述的UHP技术的压力通常在100~1000MPa.或更高。而把液体或气体加压到100MPa以上的技术称为“超高压技术”(ultra-high pressure, 简称UHP)。[1] 2 综述 高压科学与技术是一门相对年青、正处在加速发展阶段的新兴学科,宇宙中的绝大部分凝聚态物质均处在高压状态下,在超高压极端条件下,凝聚态物质中的原子/分子距离将缩短,相互作用显著增强,原子内层电子可参与成键,原有的结构会被破坏,导致结构相变、物性变化(改变电磁相互作用状态)及核子间的强相互作用(核反应),合成新材料,甚至出现新的物理现象。因此,物质在超高压等极端条件下的行为研究被视为未来最有可能取得重大科学突破的研究领域,可广泛应用于国防、新能源、新材料、地学、行星科学、化学、凝聚态物理、生物医学等领域。其中应用于材料领域最经典的例子为人造金刚石、立氮化硼(cBN)等超硬材料的高温高压合成。 高压科学与技术领域按实验条件分为动高压与静高压。动态超高压技术是利用冲击波作动力而在试样中获得的瞬时高压,动态产生的高压数值,可高达几百万甚至几千万个大气压,同时伴随着骤然升温。利用外界机械加载方式,通过

电气设备管理系统论文设计65250

电气设备管理系统论文 vb 电气设备管理系统 摘要: 目前的公司企业,对于大型电气设备的使用十分频繁,对于大型设备的管理也成为现代企业管理之中不可或缺的一部分。因此,开发这样一套软件成为很有必要的事情。 本管理信息系统是针对企业的实际需求开发设计的,利用计算机运算速度快、存储信息容量大、处理逻辑问题强、功能强大的优势,从企业管理特别是查询与决策信息的管理需求出发,针对性强,功能齐备,旨在通过帮助该企业物资管理实现信息化,以提高企业管理的效率。 经过分析,我们使用 MICROSOFT公司的 ACCESS 2000和VISUAL BASIC开发工具,利用其提供的各种面向对象的开发工具,尤其是数据窗口这一能方便而简洁操纵数据库的智能化对象,首先在短时间建立系统应用原型,然后对初始原型系统进行需求迭代,不断修正和改进,直到形成用户满意的可行系统。 关键词: 系统管理控件窗体设计数据库 第2页 目录 摘要及关键词。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 Abstract And Keywords。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 第一章引言 1 1.1 课题研究的目的 5 1.2 课题研究的意义 5 1.3 课题的可行性分析 5 1.3.1 课题调研 5 1.3.2 可行性分析 5 第二章系统设计准备阶段 6 2.1 VB基础 6 2.2 数据库系统设计 7 第三章应用系统开发工具 12 3.1 对软件和硬件的要求 12 3.2 运行需求 12 3.3 其他需求 12 3.4 数据库应用系统开发简介 13 3.5 电气设备管理系统 13 第四章系统分析与数据库的实现 15

超高压技术在乳品中的应用

超高压技术在乳品中的应用 (超高压技术的原理及在乳品等食品原料中的应用) 随着生活水平的提高,人们对食品的消费理念不再仅仅局限于安全卫生,而是对食品的色、香、味、营养成分等各方面提出了更高的要求。 超高压技术处理食品不仅能够灭菌,还能最大限度的保持食品的原有功能成分和营养物质,同时还克服了辐照、微波和电磁场等加工技术存在的缺陷,能够节约资源、减少污染。 虽然我国的超高压技术在食品加工中的应用仍处于起步阶段,但目前已有企业采用国产的超高压设备与技术加工鲜牡蛎、鲜海参、鲜果汁等食品成功并已上市。这意味着我国在超高压技术装备制造方面已取得突破性进展,这对推动超高压技术在我国食品领域的产业发展具有重要的意义。 1、超高压技术概念 超高压技术也叫超高压杀菌技术,是指利用100MPa以上的压力,在常温或较低温度条件下,使食品中的酶、蛋白质

及淀粉等生物大分子改变活性、变性或糊化,同时杀死细菌等微生物的一种食品处理方法。 超高压技术在食品杀菌、加工技术领域具有独特的优点:1)作用均匀、瞬时、高效; 2)易控制,操作安全,能耗低,污染少; 3)可保持食品固有的营养品质和风味; 4)改善生物多聚体的结构,调整食品质构; 5)不同压力作用影响性质不同。 2、超高压技术的加工原理 超高压加工食品的原理是:当食品在超高压状态下时,其中的小分子(如水分子)间的距离会缩小,而食品中的蛋白质等大分子团构成的物质仍保持原状。这时水分子就会产生渗透和填充作用,进入并且粘附在蛋白质等大分子团内部的氨基酸周围,从而改变了蛋白质的性质,当压力下降为常压时,“变性”的大分子链会被拉长,使其部分立体结构遭到破坏,从而使蛋白质凝固、淀粉变性、酶失活或激活,细菌等微生物被杀死,食品的组织结构改善,促成新型食品生成。

电气专业论文文献综述

沧州师学院 专业外语阅读文献综述 学院机械与电气工程学院 姓名昊 学号1414216125 专业电气工程及其自动化 班级2014级1班 2017 年 1 月

PLC技术简介与应用 摘要:随着电子计算机技术的不断发展,PLC 技术在电气化自动控制制造与研发领域中的应用变得越来越广泛,发挥着不可替代的作用。PLC 技术在电气设备自动化控制中的应用是以微软的处理器作为基础,结合了现在的计算机技术,自动控制技术,现代通讯技术等的优势,极大的扩充了 PLC 技术在电气设备自动化控制应用中的适用领域,有很强的实效性。PLC 技术有着高灵活性、高可靠性、便捷性,和工业机器人、CAD/CAM 并称现代自动化工业的三大顶梁柱。本文介绍何为 PLC 技术,PLC 技术在电气设备自动化控制中的优势与应用,希望能有一定的借鉴作用。 关键词:PLC 技术;电气设备;自动化控制 一.PLC 技术的概念 PLC 是英语可编程控制器 Programmable logic Controller 的缩写,以微处理器为依托,结合通信,计算机,互联网和自动控制技术开发而成的工业上的控制装置。 PLC 技术起源于 20 世纪 70 年代,被成功的运用于汽车工业中。随着 PLC 技术运算,处理速度,控制各种功能的进步与商业化,它在电气设备自动化中的应用领域也变得越来越广泛,形成了仪表-电器-计算机控制的一体化模式。 PLC 技术在产品中的应用与生产,是以 DCS 集散控制系统和 FCS 总线控制系统作为主要的控制形式。 PLC 技术在将来的发展中,将不仅仅是作为一个基础系统,而是一种全分布式,开放式的控制系统。 二.PLC的结构 P L C 技术的本质是应用于工业控制的计算机技术,因此,它的硬件结构组成同大多数计算机结构是基本一致的,都包括有:电源、C P U( 中央处理器)、存储器、功能模块、通信模块、输入/ 输出接口电路等等。 三.PLC的工作原理概述 第一个步骤,输入采样。在这个步骤当中,可编程控制器读取采样数据主要通过扫描的方式,然后利用输入I/O输出映像区中所对应的单元对这些数据进行存储。在数据采样被输入之后,继续执行输出刷新操作对转入用户程序。 第二个步骤,程序执行。在用户程序执行的过程中,可编程控制器对用户程序进行扫描的执行顺序总是自上而下,在扫描的过程中,其运算按照固定的顺序和路线进行,其中,扫描顺序也是由左至右,由上至下,而扫描线路则是由用户程序的各个触电构成。 第三个步骤,系统输出刷新。在这一阶段所要完成的操作是可编程控制器在

超高压液压技术与应用

超高压液压技术与应用 发表时间:2017-11-06T11:36:55.797Z 来源:《基层建设》2017年第19期作者:马建国[导读] 摘要:超高压液压技术对工作环境、液压元件、介质、密封性等指标都提出了较高的要求,通常情况下只有在环境压力超过32MPa 时才能称之为超高压,需要应用特殊的液压元件和介质,同时确保液压系统具有良好的密封性,才能保证超高压系统的安全、可靠运行,否则将会削弱系统性能,甚至引发严重的安全事故,造成的经济损失也将不可估量。 山东奥邦机械设备制造有限公司山东省德州市 251100 摘要:超高压液压技术对工作环境、液压元件、介质、密封性等指标都提出了较高的要求,通常情况下只有在环境压力超过32MPa时才能称之为超高压,需要应用特殊的液压元件和介质,同时确保液压系统具有良好的密封性,才能保证超高压系统的安全、可靠运行,否则将会削弱系统性能,甚至引发严重的安全事故,造成的经济损失也将不可估量。本文将对超高压液压技术的具体应用策略加以分析,以期增加对该技术的了解和掌握,进而实现超高压液压技术的推广应用。 关键词:超高压液压技术;流量;介质;密封 近年来,超高压液压技术被广泛的应用于各类生产和实践中,为我国冶金、建筑、交通运输行业的发展提供了强有力的支持和保障。然而超高压液压技术需要在特殊的环境下才能有效发挥作用,同时对液压介质和液压元件有着特殊的要求,所以需要对超高压液压技术的相关指标进行探索和研究,为超高压液压系统创建良好的运行环境,确保超高压液压技术的优势得到最大化的展现,从而更好的为相关领域的发展提供服务。 一、超高压小流量 一般来说,超高压液压技术主要应用于压力达到特定标准以上的环境中,由于超高压液压系统的运行压力较高,导致其流量非常小,无法在大流量液压系统中运行,因此当前使用的超高压液压系统流量普遍较小,每分钟仅为1L左右。而且超高压液压系统的压力和介质状态也有着密切的关系,如果超高压液压系统的介质为流动状态,那么最小压力值为1.4kMPa;如果超高压液压系统的介质为静止状态,那么压力值则在2.4kMPa以上。 二、采用柱塞副结构 在超高压液压系统中,通过对介质施加较强的作用力,可以营造出较高的压力环境,这就需要液压系统的构件具有较大的强度和刚度,才能在超高压环境下始终保持形态和性能不发生变化。柱塞副的结构形式能够很好的满足这一要求,具有抗冲击、噪声低、寿命长、密封性好等优点,因而在超高压液压系统中应用的十分广泛。 三、要求专用液压介质 一般液压油在超高压力下流动性锐减,体积压缩量不可忽略,后者在极大程度上影响着系统的容积效率。所以一般液压油在超高压力下难以正常工作,应该选用在超高压力下具有良好流动性和最小体积压缩量的特殊专用介质。超高压力下液体介质稠化与否取决于它的超高压黏度特性;超高压力下液体介质的压缩量和弹性则取决于它的体积弹性模量。体积弹性模量越高则介质体积压缩量和弹性越小。 大多数矿物油在高于400MPa压力下呈稠脂状,但60%的煤油和40%的变压器油混合,在1000MPa压力时仍能很好工作。丙三醇(即甘油)是一种良好的超高压液压用介质,它在1400MPa压力下也能保持良好的流动性,并且还具有很高的体积弹性模量。通常它以水—甘醇混合液的形式实际应用,水虽然具有很高的体积弹性模量,但由于水会锈蚀金属,并且不易密封,故主要用于耐压试验。能用于超高压系统的介质还有蓖麻油、凡士林油等。除此之外,混合介质的应用常能获得较理想的效果,如蓖麻油-酒精、蓖麻油-矿物油混合液在700~1000MPa压力下仍能保持良好的流动性。 四、要求严格的密封 在超高压力下要求所有的密封环节和元件都具有很高的强度,否则极易击穿。由于液压介质在升压过程中会释放热量,致使密封环节和密封部位瞬时升温,所以超高压力下的密封也必须具有良好的耐热性。超高压液压技术对密封的要求极为严格。一方面由于间隙相同时超高压力下的泄漏量比常用压力下大几倍甚至几十倍;另一方面由于超高压液压装置的流量较小,因此即便是微量的泄漏也会产生很大影响,特别是对超高压液压系统的升压和保压性能的影响尤为突出。 超高压密封虽然有它独特的要求,但与一般的液压密封还是大同小异,因此传统的密封方式是可以参考的。需要特别指出的是,由于超高压液压技术常用于尖端科学技术的研究、试验和生产中,其密封型式具有很强的针对性和局限性,所以密封常常是特殊设计的,可供选用的超高压密封元件很少。对大多数超高压系统来说,参考已有的传统密封形式,结合超高压系统功能的独特要求,进行专用密封形式的设计和制造是解决超高压密封的主要途径和方法。 1、密封材料 在超高压力下密封材质受到强烈的压挤,易于产生塑性流变。升压过程中液体介质会放热,由于超高压升压压差大,瞬时温升高,促使塑性流变加剧,造成密封变形量大甚至击穿。而超高压力下密封材质的弹性丧失也将使密封性能急剧下降。所以一般的密封材料是难以承受苛刻的超高压条件的。当压力在100MPa以下时,塑性材质如橡胶、皮革,氟塑料尚可使用。当压力高于100MPa时则需采用具有一定韧性的硬质材料,如铝、紫铜、铅和铍青铜等。 2.密封结构 超高压静密封通常采用借助于螺纹力强制密封件与被密封件之间产生一定的接触压力而达到密封的结构型式。通过螺纹可调节接触压力,对密封进行调整和补偿,常用于100MPa压力以下、要求不高的场合。另外带挡圈的O形圈可耐压200MPa左右。金属O形密封则可承受350MPa,甚至700MPa的压力。 由于超高压技术在应用上的多样性,所以在超高压静密封的选用和设计中还要考虑实际的工作条件,诸如高温、酸蚀、易燃等因素。如果合适地选用密封材料、设计密封结构可以取得1kMPa以上压力的密封效果。例如,根据螺纹力强制密封结构的原理,选用淬硬球面钢垫(材质为45号钢或35CrMoA等)作密封件的结构可密封1kMPa左右的压力。超高压动密封主要是指往复式动密封,主要依靠间隙密封和密封填料实现。间隙密封多采用弹性圆筒衬套结构,由于液体介质的黏性流动,在弹性圆筒衬套两端产生压降,衬套就局部地抱紧在轴上。这种结构可达到700MPa的超高压动密封效果。除此之外,密封填料结构型式的V形密封填料在螺纹力作用下受压强制密封,当填料采用铍青铜等制作时,可达到1kMPa左右的超高压动密封效果。

浅析电力系统高压电气设备试验方法

浅析电力系统高压电气设备试验方法 发表时间:2019-03-14T14:37:02.343Z 来源:《电力设备》2018年第27期作者:苟靖[导读] 摘要:在电力系统中高压电气设备占据着极为重要的位置,其工作性能对供电安全和供电效率有着直接的影响,因此电力企业要保证髙压电气设备具备良好的工作性能,就需要通过电气试验来检验。 (中国联合工程有限公司 310052)摘要:在电力系统中高压电气设备占据着极为重要的位置,其工作性能对供电安全和供电效率有着直接的影响,因此电力企业要保证髙压电气设备具备良好的工作性能,就需要通过电气试验来检验。但是髙压电气设备试验具有一定的危险性和复杂性,极易发生安全事故,不仅对工作人员的生命安全造成威胁,同时还会导致电力企业的经济损失,这对电力企业的稳定、健康发展极为不利。对于这种现 象,只有加大髙压电气设备试验过程中安全管理力度,根据存在的安全隐患,采取有针对性的预防和处理措施,才可以将安全事故的发生率降到最低,确保高压电气设备试验的安全性。 关键词:电力系统;高压电气设备;电气试验作为检验电力系统设备绝缘状况以及安全性的技术措施,高压电气试验作业在开展时往往会受到外界因素的影响,故而导致试验结果出现了不准确、不精确的情况,不利于电力系统的安全稳定运行。近年来,电力工程技术人员不断加强对电力系统高压电气设备的试验技术的研究,并完善了电气设备试验技术在重要性分析工作。 1、高压电气设备试验的重要性分析 1.1保证电气设备状态检修工作的科学实施 电力设备能够保持正常和稳定运行的一个重要措施就是检修工作状态。而做好高压电气设备试验是事关状态检修的成败关键,在此过程中需要高标准、高质量、高效率的测试电气设备的绝缘性。如果高压电气设备试验没有规范的进行,则可能会导致后续状态检修工作中设备损坏或者安全事故的发生,状态检测工作结果的准确性和科学性大打折扣,从而影响到状态检测工作的顺利进行,最后对整个电力系统的稳定运行造成障碍。 1.2高压电气试验对电力企业的经济效益有极大提升作用 高压电气设备试验关系到电力系统的稳定,这是电力企业能够持续的为社会提供可靠的电力资源,实现企业自身的健康和可持续发展的重要前提。做好高压电气设备试验能够降低电力系统在运行过程中很多安全事故发生的几率,在保证电力企业和广大人民群众生命和财产安全方面起到至关重要的作用。尤其是对于电力企业而言,其供电的稳定关系到其经济效益和市场竞争力,也关系到人民群众的生活品质和用电企业的正常生产运营,有助于提升电力企业的直接经济效益和间接经济效益。 2、常见的电气高压试验 2.1局部放电测量 局部放电是指发生在电极之间但并未贯穿电极的放电,局部放电的产生原因呈现复杂性,但是主要是因为设备绝缘存在缺陷或故障,在长时间的高压工作状态下,电气绝缘会产生重复击穿和熄灭的状况。局部放电主要以击穿绝缘内部气体为主,小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起的局部击穿放电等。局部放电放电如同静电,能量很小,电气设备的绝缘强度并不会受局部放电的短时存在影响。但是,如果电气设备长时间,高频率的出现局部放电,积小成大,微小的放电将积累成能够使绝缘性能减弱的危害,最后导致绝缘功能失效,对整个电力系统的运行产生危害。局部放电是一种长时间的损耗活动,发展是需要一定时间,所以需定期测试局部放电。局部放电的测量也会受各种外部环境干扰的影响,如:电源干扰信号、接地系统的干扰、空间干扰信号、测试回路本身的干扰信号。 用传统的绝缘试验很难发现局部放电缺陷,并且一分钟交流耐压试验还会损坏绝缘,还会影响设备以后的运行性能。随着电压等级的提高,这个问题更为严重。我国近年来110千伏以上的变压器事故中百分之五十是属于正常运行下发生匝间短路,造成突发事故,原因也是局部放电所致。局部放电的几个主要参量是:视在电荷、试验电压、规定的局部放电量值、局部放电起始电压、局部放电熄灭电压。局部放电测量方法分电测量和非电测法,超声波法测量简单,不受环境条件限制;光检测发法灵敏低,局限性大;热检测法不能定量也不够灵敏,实际测量中一般不使用;脉冲电流法是国际电工委员会推荐局部放电测量的通用方法。 2.2测量绝缘电阻 绝缘电阻是高压电气设备中一个极为重要的组成部分,使用的时候可以使电流和电压稳定地出现在电气设备中。对此,在进行高压电气设备试验的时候,必须加大这一环节试验的力度,其主要是对电阻有没有受到潮湿气体的影响和电阻有没有被灰尘等污染进行测验。在试验的时候,需要根据不同的设备进行多次试验。在高压工程上的设备内绝缘,变压器、电缆及电机都是夹层绝缘,在直流电压作用下,会产生多种极化,从极化开始到完成,需要较长时间。绝缘体上产生电导电流、电容电流和吸收电流,随着加压时间增长,这三种电流总和下降,绝缘电阻相应的增大,所以大容量设备这种吸收现象比较明显。通常加压1分钟到10分钟才能读取比较准确的绝缘电阻值。 2.3测试介质损耗因数 一般而言,髙压电气设备的运行必定在各种介质和线路中产生损耗,通过介质损耗因数测量,可以充分了解损耗程度。在对介质损耗因数进行测试的时候,要将不同设备和所处的电流情况的差别考虑到,有针对性地把损耗程度计算出来,这样才可以把试验的精确性提高。介质损耗可以反映出绝缘的一系列缺陷,如绝缘受潮,变压器油劣化变质,绝缘中存在气隙放电等。通常对于运行中的电缆及电动机等设备进行预防性试验时,不做这项试验。但对于单独套管或互感器,介质损耗是必不可少的试验。通过这项试验判断设备绝缘状况时,对不同设备或不同时间测量的数值有明显变化时,就必须进行处理,不然在运行中常常发生事故。目前预防性试验使用较多的仪器有西林电桥、不平衡电桥和数字电桥。 2.4绝缘油性能检测 绝缘油在我们维护电气设备过程中,是最常用的一种辅助材料。电气设备的使用主要时将部件浸在绝缘油中,绝缘油有良好的性能,它将发挥流体的特性,填充满设备各个部位,排除设备中的多余空气,从而对设备的绝缘和散热都会有显著作用。在DL/T596中,对投运初期油中气体的气相色谱分析有硬性规定,其他检测项目有微水、介损、耐压和含气量。试验结果的准确性取决于取样的正确性和代表性。 2.5工频交流耐压试验

电气设备论文15篇

电气设备论文15篇 电气设备论文 摘要:电力系统中电力设备大多采用的计划检修体制,存在着严重缺陷,如临时性维修频繁、维修不足或维修过剩、盲目维修等,这使世界各国每年在设备维修方面耗资巨大。怎样合理安排电力设备的检修,节省检修费用、降低检修成本,同时保证系统有较高的可靠性,对系统运行人员来说是一个重要课题。本文主要介绍检修体制的演变、状态检修的发展概况及状态检修面临的问题。 关键词 电气设备电气论文电气 电气设备论文:浅谈现阶段电气设备的检修模式及管理对策 摘要:进入到新世纪以后,我国的社会主义经济建设已经发展到了一个新的阶段,我国的各行各业都取得了快速的发展,而电气设备在我国的绝大多数行业中都有着广泛的应用,并且电气设备对于保证我国整个电网系统的安全运行也有着重要的影响,在电气设备生产制造完成并且投入使用后,由于不同外界因素的干扰以及不同的使用环境,因此,在电气设备的运行过程中,也会出现各类故障。在其出现故障时,我们应对导致故障出现的原因进行详细的分析,同时掌握电气设备的检修模式,并针对这些故障制定出具有较强针对性的管理对策,从而真正的做好电气设备的管理和检修工作。文章便对现阶段电气设备的主要检修模式以及现阶段电气设备的管理对策两个方面的内容进行了详细的分析和探讨,从而详细的论述了如何做好电气设备的检修和管理工作。 关键词:电气设备;检修模式;管理对策 1 现阶段电气设备的主要检修模式 1.1 定期检修

所谓的定期检修模式就是指在充分的掌握了电气设备的使用寿命和故障率之后,制定出科学合理的检修计划,根据既定的时间或是固定的检修周期对电气设备进行的检修工作就是定期检修,同时这种检修的模式也包括对电气设备的定期预防性的试验内容。我国针对各类的电气设备所采取定期检修的模式已经逐步的积累大量实践经验,并且在维护电网系统的稳定运行以及预防电气设备故障发生等工作中也发挥出了积极的作用。这种检修模式的最大优点就是能够提前为电气设备安排检修内容,取得到期必修,修必修好的效果,能够及时的发现电气设备存在的缺陷,从而制定措施消除设备隐患。而缺点则为不论电气设备的工作状态是怎样,只要到了规定的时间就必须对设备进行检修,那么在人力、物力和财力等资源上就造成了一定的浪费,并且当检修的质量没有得到有效的保证时,那么还可能出现更多的缺陷和更大的故障。所以近几年来也有人提出,在对电气设备进行定期检修后要有一个磨合期,这样就可能会减低故障的发生率。所以,对不需检修的电气设备不应进行过度的检修,否则不但会降低设备运行的可靠性,也会造成大量的人力、物力等资源的浪费。 1.2 状态检修 这种检修模式是一种以预测设备状态的发展趋势为依据,以设备实时的运行状态为基础的检修方式。这种维修技术是以预防性和可靠性为核心的,根据对可能已经存在的故障进行在线监测和离线检测的结果,结合历史数据、巡查数据以及人工智能分析技术等内容,对设备的运行状态进行准确的评估,从而编制维修的策略,这种检修模式是最具发展前景的一种电气设备的检修方式。但是在评估电气设备的运行状态时,现阶段还并没有形成一套完善的检测技术,而在线监测的技术和装置也还不够实用,与发达国家的先进技术相比还存在较大的差距。我国电气设备的在线监测技术的发展已有了10余年的时间,已经积累了一定的经验,但同时在测量方法、大气环境监测、制造水平以及系统设计等方面也面对着一定的问题,而这些问题的存在也延缓了在线监测技术的发展脚步,电气设备检修工作中所需要的诊断标准和监测数据也并没有取得突破性的进展,所以,针对电气设备的检修工作来说,如果仅以某个设备的监测参数的变化情况为依据就制定了相应的检修计划,这是不够科学严谨的,同时实施时也具有一定的风险。 在电气设备的检修工作中,定期检修还是应用最广泛的一种方式,在实际的工作中,我们应针对已经出现的各类电气设备的运行故障进行详细的分析,制定预防事故出现的管理措施,以主动检修为基本形式对没有出现故障的电气设备也进行改造和检修,从而保证电气设备具有良好的运行状态。 1.3 故障检修

浅析高压电气设备试验重要性

一、高压试验的重要性 众所周知,电力生产的特点是发电、供电、用电同时完成。任何一个环节发生故障都会使用户停电,给工农业生产人民的生活带来损失。尤其在当前构建和谐的社会大气氛中停电将会带来更巨大的损失,为此电力生产必须安全第一。 安全生产,防止事故发生。控制手段就两条。一是人的因素,二是设备质量可靠程度本章主要从第二条设备质量可靠性程度。 电力系统内的发、供、用电设备除了长期在额定电压下运行之外,必须具备在过电压下的绝缘强度。过电压是指超过正常运行电压,它是电气设备或保护设备损坏的电压升高。在电力系统各种事故中,很大一部分是由于过电压造成设备的绝缘损坏引起的。当绝缘有缺陷时若不及时发现排除,最终导致设备损坏造成停电事故。影响了生产和人民的安居生活。而高压试验的目的就是通过一定的手段依靠相关的检测设备采用模拟的方法检验电气设备绝缘性能的可靠程度为安全发、供、用电提供可靠有力数据。 电气设备的绝缘的缺陷大致分为两类:一类是整体性缺陷如绝缘老化、变质、受潮和脏污等使绝缘性能完全下降;另一类是局部缺陷,如:绝缘局部受损、受潮和脏污等使绝缘性能下降。不论何类绝缘缺陷都能通过高压预防试验检查出来。所以电气设备在运行了一定时间都要进行定期检测试验。这是目前我国对电气设备安全运行采取的有力保证措施重要措施。通过高压试验掌握电气设备绝缘变化规律及时发现缺陷。采取相应的维护和检修措施,避免电气设备绝缘在额定电压与过电压的作用下击穿而造成停电事故。 电气设备的绝缘预防试验一般分为绝缘性能的特性试验和强度试验两种。前者又称为非破坏性试验,是指在较低电压作用下或用其他不损伤绝缘的办法。从不同角度对设备绝缘各种特性进行的试验。如绝缘电阻试验,泄漏电流试验和介质损耗因数试验等。后者又称破坏性试验,是对电气设备的绝缘在较高电压作用下的一种耐压试验。如直流耐压试验和交流耐压试验等。高压试验是判断运行中的电气设备安全的重要措施。 二、绝缘劣化学或损坏的主要原因: 目前高压电气设备安装在户外的还很多,受环境影响较大。因此电气设备的绝缘就容易损坏,电力系统中的事故很大部分就是由于设备绝缘损坏造成。造成绝缘劣化或损坏的原因很多。但归纳起来主要有化学、温度、机械和电气四种: 1) 化学原因: 电气设备的绝缘均为有机绝缘材料(如橡胶、塑料、纤维、沥青、油漆、蜡等)和无机绝缘材料(如云母、石棉、石英、陶瓷、玻璃等)组成。这些材料长期在户外工作耐受着日照、风沙、雨雾、冰雪等自然因素的侵蚀。在高压工作的电气设备还经常受温度、气压、气温的变化对绝缘产生的影响。在含有化学腐蚀性气体环境下工作的电气设备虽然有一定的抵御能力,但长期在这些因素环境中绝缘材料会引起一系列的化学反应。使绝缘材料的性能与结构发生变化,降低绝缘的电气和机械性能。 2)温度原因: 温度升高是造成绝缘老化的重要因素,电气设备的过负荷、短路或局部介质损耗过大引起的过热都会使绝缘材料温度大大升高,导致热稳定的破坏严重时造成热击穿。

高压电气设备试验与安全管理通用版

管理制度编号:YTO-FS-PD496 高压电气设备试验与安全管理通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

高压电气设备试验与安全管理通用 版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、高压电气设备试验内容 (一)绝缘预防性试验 电气设备绝缘预防性试验是保证设备安全运行的重要措施。通过试验,掌握设备绝缘状况,及时发现绝缘内部隐藏的缺陷,并通过检修加以消除,严重者必须予以更换,以免设备在运行中发生绝缘击穿,造成停电或设备损坏等不可挽回的损失。绝缘预防性试验可分为两大类:一类是非破坏性试验或称绝缘特性试验,是在较低的电压下或用其他不会损坏绝缘的办法来测量各种特性参数,主要包括测量绝缘电阻、泄漏电流、介质损耗角正切值等,从而判断绝缘内部有无缺陷。实验证明,这类方法是行之有效的,但目前还不能只靠它来可靠地判断绝缘的耐电强度。另一类是破坏性试验或称耐压试验,试验所加电压高于设备的工作电压,对绝缘考验非常严格,特别是揭露那些危险性较大的集中性缺陷,并能保证绝缘有一定的耐电强度,主要包括直流耐压、交流耐压等。耐压试验的缺点

高压电气设备的预防性试验介绍

高压电气设备的预防性试验介绍 高压电气设备主要包括高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜和电力变压器等。多年来,国内外先进的设备管理经验告诉我们:通过高压电气设备的预防性实验,及时维修并更换已损坏的零件,可以提高设备运行的可靠性,保证设备的完好状态,减小企业设备故障率,可为企业创造有利的供电条件。 1. 高压电气设备预防性试验的必要性 高压电气设备在运行过程中,由于受到机械磨损、负荷冲击、电磁振动、有害气体腐蚀、电弧的烧蚀等因素的影响,使得一些零件产生磨损、紧固件松动、绝缘介质老化等变化。这些变化如果不及时通过试验、检修及时发现并解决,就会引起高压电气设备的技术性能下降,甚至会引起事故,停止供电,使生产无法进行。 2. 预防性试验的测试周期和分类 定期的预防性试验,是为了及时发现设备潜在的缺陷或隐患。运行中变配电所高压电气设备一般每隔l~3年进行一次测试,以便掌握高压电气设备的绝缘情况,保证系统安全经济运行。 按试验范围分类为:定期试验、大修试验、查明故障试验、预知性试验。按试验性质分类为非破坏性试验或称绝缘特性试验、破坏性试验或称绝缘耐压试验。 3. 高压电气设备预防性试验的方法

(1)测绝缘电阻和吸收比:被测设备加一定时间的电压后所测得的绝缘电阻值(规定取60s时的值)。吸收比是对被测设备加不同时间电压所得绝缘电阻的比值,规定取60s和15s绝缘电阻的比值。此项试验属于非破坏性试验,所加电压接近设备的工作电压,常用来检查被测设备有无受潮及局部缺陷。 (2)直流耐压试验和泄漏电流试验:是被测物在高于几倍的工作电压下,历经一定时间的抗电强度试验;泄漏电流试验是测量被测物在不同直流电压下的直流泄漏电流值。它们的原理与绝缘电阻试验的原理基本相同。试验中所用的直流电源由高压整流设备供给,用微安表指示泄漏电流值。 (3)交流耐压试验:对被测设备施加1分钟的高于运行中可能通到的工频交流电压,用以检查设备的绝缘水平。虽然直流的耐压试验的试验电压也较高,但对保证设备安全运行还是不够的。交流耐压试验对被测设备来说是属于破坏性试验。进行此项试验前,应先进行绝缘电阻及吸收比测量、直流耐压试验,初步检查绝缘情况。若发现绝缘有缺陷,再进行此项试验。 (4)测量介质损失角:测试高压电气设备的介质损失角能检查出绝缘材料内部的缺陷和受潮情况及绝缘老化等问题。主要使用的工具是交流电桥,常用的交流电桥有QSl型和QS3型高压电桥。 这些项目要根据被测高压电器设备的工作电压、容量、绝缘性质、新旧程度、工作条件而定,并应根据国家制定的有关标准、用多种不

相关文档
最新文档