1.6三角函数模型的简单应用同步试题

1.6三角函数模型的简单应用同步试题
1.6三角函数模型的简单应用同步试题

1.6三角函数模型的简单应用同步试题

1、设()y f t =

是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某

一天从0至24时记录的时间

与水深的关系.

经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( )

A .123sin

,[0,24]6t y t π=+∈ B .123sin(

),[0,24]6t

y t ππ=++∈

C .123sin ,[0,24]12t y t π=+∈

D .123sin(),[0,24]122

t y t ππ

=++∈ 2

、以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出

厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m 件,且当月售完,请估计哪个月盈利最大?并说明理由.

3、 如图表示电流 I 与时间t 的函数关系式: I =Asin(t )ω+?在同一周期内的图象。

(1)根据图象写出I =Asin(t )ω+?的解析式;

(2)为了使I =Asin(t )ω+?中t 在任意-段1

100秒的时

间内电流I 能同时取得最大值和最小值,那么正整数ω的最小值是多少?

4、如图某地一天从6时到14时的温度变化曲线近似地满足函数y Asin(x )b =ω+?+

(1)求这段时间的最大温差

(2)写出这段曲线的函数解析式。

1.6三角函数模型的简单应用同步试题答案

1、A

2、由条件可得:出厂价格函数为ππ

=-+1

2sin()644

y x ,

销售价格函数为ππ

=-+232sin()8,44

y x

则利润函数为:

)4

sin 222(]6)44sin(28)434sin(2[)(12x m x x m y y m y π

ππππ-=---+-=-=

所以,当x=6时,Y=(2+22

)m ,即6月份盈利最大. 3、解:(1)由图知A =300,

3001t 1-

=,1501

t 3=

π

πω100T 250

1

)30011501(2)t t (2T 13==∴=

+=-=

由0t 1

=+?ω

)

3t 100sin(300I π

π+=∴

(2)问题等价于10012T ≤,即1001T ≤

ω

πω100≥∴,∴正整数ω的最小值为314。

4、解:(l )由图4知这段时间的最大温差是30-10=20(℃)

(2)在图4中,从6时到14时的图象是函数y Asin(x )b =ω+?+的半个周期的图象

614221-=?∴ωπ,解得8πω= 由图4知10

)1030(21

A =-?= 20

)1030(21

b =+?= 这时20

)x 8sin(10y ++=?π

将10y 6x ==,代入上式,可取43π?=

综上所述,所求解析式为:

]

146[x 20)43x 8sin(10y ,,∈++=π

π

1.6 三角函数模型的简单应用

1.6 三角函数模型的简单应用 课堂训练 一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1- D .6 2. 2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ) . A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .??? ??ππ,2 B .()π,0 C .?? ? ??2,0π D .?? ? ??2,4ππ 4.若函数 )(x f 是奇函数,且当0x 时,) (x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y=x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ ,则锐角θ的取值范围是_________. 9.由函数??? ??≤≤=656 3sin 2ππx x y 与函数y =2的图象围成一个封闭图形,这个封闭图形 的面积是_________. 10.函数1 sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是_________. 三、解答题 11.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ω?ωA t A I 在一个周期 内的图象. ①试根据图象写出)sin(?ω+=t A I 的解析式

三角函数高考题及练习题(含标准答案)

三角函数高考题及练习题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

三角函数高考题及练习题(含答案) 1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质. 2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等). 3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等. 1. 函数y =2sin 2? ???x -π 4-1是最小正周期为________的________(填“奇”或“偶”) 函数. 答案:π 奇 解析:y =-cos ? ???2x -π 2=-sin2x. 2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3 解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.

3. 函数y =2sin(3x +φ),? ???|φ|<π 2的一条对称轴为x =π12,则φ=________. 答案:π4 解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π 2 ,所 以φ=π4 . 4. 若f(x)=2sin ωx (0<ω<1)在区间? ???0,π 3上的最大值是2,则ω=________. 答案:34 解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在? ???0,π 3上单调递增,且在这个区间 上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=3 4 . 题型二 三角函数定义及应用问题 例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π. (1) 若点P 的坐标是??? ?12,3 2,求f(θ)的值; (2) 若点P(x ,y)为平面区域???? ?x +y ≥1, x ≤1, y ≤1 上的一个动点,试确定角θ的取值范围,并求 函数f(θ)的最小值和最大值. 解:(1) 根据三角函数定义得sin θ= 32,cos θ=1 2 ,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π 3 ,从而求出 f(θ)=2). (2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ? ???θ+π 6, ∴ 当θ=0,f (θ)min =1;当θ=π 3 ,f (θ)max =2. (注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、

三角函数模型的简单应用

课题(章节)1.6 三角函数模型的简单应用(二) 教学目标 能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律; 能根据问题的实际意义,利用模型解决有关实际问题; 通过三角函数模型的简单应用,培养学生应用数学知识解决问题的能力。 教学重点用三角函数模型解决具有周期变化规律的实际问题 教学难点将某些实际问题抽象为三角函数模型,对实际意义的数学解释 课的类型新授课时间45分钟 教学时数1课时教具几何画板课件,计算器 板书设计 (提纲)三角函数模型的简单应用(二) 将实际问题抽象为三角函数模型:建模的基本思路: 例题:1.根据数据作散点图 2.根据图像进行函数拟合 3.选择恰当的函数模型 本题小结:4.利用函数模型解决实际问题 教学过程: 新课引入: 问题:对于三角函数模型,我们都学习了哪几个方面的应用? 引入:利用三角函数模型我们还可以解决哪些问题呢? 教学情景: 将实际问题抽象为三角函数模型: 例:海水受日月的引力,在一定时候发生涨落的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表: 时刻水深/米时刻水深/米时刻水深/米 0:00 5.0 9:00 2.5 18:00 5.0 3:00 7.5 12:00 5.0 21:00 2.5 6:00 5.0 15:00 7.5 24:00 5.0 选用一个函数来近似描述这个港口的水深与实间的函数关系,给出整点时的水深的近似数值(精确到0.001); 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时候必须停止卸货,将船驶向较深的水域? 分析:1.观察表格中的数据,你发现了什么规律?(从所给数据中发现周期性变化规律); 2.要求学生根据数据作出散点图,观察徒刑,你认为可以用怎样的函数模型来刻画其中的规律?(引导学生根据散点图的特点选择函数模型); 3.引导学生与“五点法”联系,求出函数模型的解析式; 4.根据所得的函数模型,求出整点时的水深;(利用计算器) 5.引导学生正确理解题意,利用函数模型解决实际问题,求出第(2)问,并对答案进行合理地解释;(利用计算器进行计算) 6.引导学生正确理解第(3)问,用函数模型刻画安全水深,并对答案做出合理地解释 解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图: 根据图像,可以考虑用函数 sin() y A x h ω? =++刻画水深与时间之间的对应关系。从数据和图象可以得出: 2.5,5,12,0 A h T? ====,由 2 12 T π ω == ,得6 π ω= 。所以,这个港口的水深与时间的关系可用 2.5sin5 6 y x π =+ 近似描述。 由上述关系式,易得港口在整点时水深的近似值: 时刻0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 水深5.000 6.250 7.165 7.500 7.165 6.250 5.000 3.754 时刻8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 水深2.835 2.500 2.835 3.754 5.000 6.250 7.165 7.500 时刻16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 水深7.165 6.250 5.000 3.754 2.835 2.500 2.835 3.754 (2)货船需要的安全水深为4+1.5=5.5(米),所以 5.5 y≥时就可以进港。

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

高考第一轮复习三角函数试题(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 第一轮复习三角函数专题 一、 选择题(每题5分共60分) 1 .sin 600=。 ( ) A .1 - 2 B . 12 C .- 2 D . 2 2 .已知0ω>,函数 ()sin()4f x x πω=+在(,)2π π上单调递减.则ω的取值范围是 ( ) A .13[,]24 B . 15[,]24 C .1(0,]2 D .(0,2] 3 .把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度, 再向下平移1个单位长度,得到的图像是 4 .设tan ,tan αβ是方程2 320x x -+=的两个根,则tan()αβ+的值为 ( ) A .1 B .1- C .3- D .3 5 .若42ππθ?? ∈? ??? , ,sin 2θ,则sin θ= ( ) A . 35 B .45 C D . 3 4 6 . 已知sin cos αα-=,α∈(0,π),则tan α= ( ) A .-1 B .2- C .2 D .1 7.若tan θ+1 tan θ =4,则sin2θ= ( ) A .15 B .14 C .13 D . 12 8.设R ?∈,则“=0?”是“()=cos(+)f x x ?()x R ∈为偶函数”的 ( ) A .必要而不充分条件 B .充分而不必要条件 C .充分必要条件 D .既不充分也不必要条件 9.要得到函数 =cos 2y x 的图象,只需将函数=sin(2-)3 y x π 的图象 ( ) A .向左平移 56π个单位长度 B .向左平移512π个单位长度 C .向右平移512π个单位长度 D .向右平移56π 个单位长度 10.sin 43cos13-sin13sin 47。。。。 = ( ) A .1 -2 B .12 C .-2 D .2 11.下列函数中,周期是2 π 的偶函数的是 ( ) A .y=sin 4x B .22 y=sin 2-cos 2x x C .y=tan2x D .y=cos2x 12.已知 1+sin 1=-cos 2x x ,那么cos =sin -1 x x ( )

三角函数-模型解题法

模型解题法:三大核心:理清概念,抓住本质,寻找联系。三大思想:数形结合,分类讨论,方程-函数-不等式转化 专题一:角与角函数 模型一:边-角互化解三角形模型 本质:运用正余弦定理,边角互化。转化成角关系,走三角变形之路;转化成边关系,走代数变形之路。 边-角联系: 题型一:边化角 三角函数模型 一;三角函数值模型 本质;用三角函数有界性,主要将表达式变形为,然后借助有界性求取值范围或构造不等式(求解参数范围)。 求以下函数的值

则M应满足什么条件。 二,三角函数对称性模型 对称性包括中心对称和轴对称 本质:将表达式变形为或,正弦函数:对称轴 对称中心:。对称轴是在最大值或最小值取得。对称中心是在平衡位置取得。 三,三角函数单调性模型 本质:将表达式整理成或,然后将带入单调区间。 四,三角函数图象 本质:理解,各参数的含义,,, 以及函数图像的变换 平移变换:口诀,左右平移变换(左加右减) (针对自变量),上下平移变换(上加下减)(针对函数值整体). 伸缩变换 对称变换:包括中心对称和轴对称 ①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称; ③y=f(x)与y=-f(-x)关于原点对称;④y=f(x)与y=f -1(x)关于y=x对称; ⑤y=f(x)与y=-f -1(x)关于y=-x对称;⑥y=f(x)与y=f(2a-x)关于x=a对称; ⑦y=f(x)与y=|f(x)|,保留x轴上方的图象,将x轴下方的图象沿x轴翻折上去,x轴下方图象删去; ⑧y=f(x)与y=f(|x|),保留y轴右方的图象,将y轴右方的图象沿y轴翻折到左边,原来y轴左方图象删去. 角模型:1单角模型

三角函数模型的简单应用教案

三角函数模型的简单应用一、教学目标 1 、基础知识目标: a 通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; b 根据解析式作出图象并研究性质; c 体验实际问题抽象为三角函数模型问题的过程; d 体会三角函数是描述周期变化现象的重要函数模型. 2、能力训练目标:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想从而培养学生的建模、分析问题、数形结合、抽象概括等能力. 3、个性情感目标:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神。 二、教学重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质 三、教学难点: a 、分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题. b 、由图象求解析式时的确定。 四、教学过程及设计意图 教学过程 设计意图 (一)课题引入 情景展示,引入课题(多媒体显示) 同学们看过海宁潮吗?……?今天我就带大家去看一看天下奇观一一海宁潮. 在潮起潮落中

也蕴含着数学知识. 又如大家熟悉的“物理中单摆对平衡位置的位移与时间的关系”、“交流电的电流与时间的关系”、“声音的传播”等等也都蕴含着三角函数知识。 通过上面的例子引发学生的兴趣,贴近生活,可以告诉学生生活离不开数学,身边充满了数学;同时可以让学生知道数学的重要性,不仅仅是课本上的内容,还有生活都可以用到数学,所以学生更应该努力学习,才能更懂得生活。 这样的例子还有很多,比如: 二.由图象探求三角函数模型的解析式 例1 ?如图,某地一天从6?14时的温度变化曲线近似满足函数. (1 )求这一天6?14时的最大温差; (2 )写出这段曲线的函数解析式. 解:( 1 )由图可知:这段时间的最大温差是; (2)从图可以看出:从6?14 是的 半个周期的图象, 又… - ??? 将点代入得: ??,取,??。 问题的反思】

2016高考三角函数专题测试题 及答案

高一数学必修4第一章三角函数单元测试班级姓名座号评分 一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合 题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=C C.AC D.A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是() A. B.- C. D.- 3、已知的值为() A.-2 B.2 C. D.- 4、已知角的余弦线是单位长度的有向线段;那么角的终边() A.在轴上 B.在直线上 C.在轴上 D.在直线或上 5、若,则等于 ( ) A. B. C. D. 6、要得到的图象只需将y=3sin2x的图象()A.向左平移个单 位 B.向右平移个单位C.向左平移个单位D.向右平移个单位 7、如图,曲线对应的函数是() A.y=|sin x| B.y=sin|x| C.y=-sin|x| D.y=-|sin x| 8、化简的结果是 ( ) A. B. C. D. 9、为三角形ABC的一个内角,若,则这个三角形的形状为() A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数的图象() A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x=对称 11、函数是 () A.上是增函数 B.上是减函数

C.上是减函数 D.上是减函数 12、函数的定义域是 () A. B. C. D. 二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知的取值范围是 . 14、为奇函数, . 15、函数的最小值是. 16、已知则 . 三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值 18、(8分)已知,求的值. 19、(8分)绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体 W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 20、(10分)已知α是第三角限的角,化简 21、(10分)求函数在时的值域(其中为常数)

三角函数模型的简单应用试题含答案

一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4 -a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .?? ? ? ?2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时,)(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( )

A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则 ()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤ ≤=656 3sin 2ππ x x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________. 10.函数1sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是 三、解答题 11.如图,表示电流强度I 与时间t 的关系式

2017年高考三角函数试题

2017年高考三角函数试题

2017年三角函数、解三角形题型分析及其复习计划 本文主要研究近五年高考中出现的三角函数题,其目的是加深自身对高中三角函数这部分内容的认识和理解,并通过对试题的分类、整理、分析、总结出一些关于高考中对三角函数试题的解题方法、技巧和应对策略,希望这些解题方法、技巧和应对策略能够对执教老师和学生起到一定的帮助和启发.同时,选择研究高考三角函数这部分内容也是想为将来的教学工作做一个充分的知识储备. 三角函数在高中数学中有着较高的地位,尤其是在函数这一块,它属于基本初等函数,同时,它还是描述周期现象的重要数学模型.通过整理、统计可以看出,每年高考中三角函数试题分值所占比例基本都在10%~15%之间. 从近三年的课标卷、的高考三角函数题的分类、整理、分析知,高考三角函数这一知识点,主要还是考查学生的基础知识和基本技能,难度一般不大.但是,三角函数这部分内容考查的题型比较灵活,并且考查面较广.在选择题、填空题、解答题中均有考查,在前两类题型中多考查三角函数的基础知识,属于基础题;对于解答题则具有一定的综合性. 从总体上看,高考三角函数对文科学生能力的考查要求差异不大,但在考查题型上,文科方向的解三角形题量有所减少.从课改前后看,对三角函数考查的内容和范围没有明显变动,仍然是对三角函数的基础知识、三角函数与向量、与三角恒等变换等综合考查,但难度均不大. 考题分布 全国一卷全国二卷全国三卷 2012年(大纲卷)3、4、15、17(共25分)9、17题(共 17分) 2013年9、10、16(共 15分) 4、6、16(共 15分) 2014年2、7、16题(共 15分) 14、17题(共 17分)

(必修4)第一章三角函数

三角函数 一、基本内容串讲 本章主干知识:三角函数的定义、图象、性质及应用,函数()?ω+=x A y sin 的图象,三角函数模型在解决具有周期变化规律问题中的应用。 1.任意角和弧度制 从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。在直角坐标系中,当角的终边确定时,其大小不一定(通常使角的顶点与原点重合,角的始边与x 轴非负半轴重合)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成α+k ·3600 (k ∈Z )的形式,特例,终边在x 轴上的角的集合为{α|α=k ·1800 ,k ∈Z},终边在y 轴上的角的集合为{α|α=900 +k ·18000 ,k ∈Z},终边在坐标轴上的角的集合为{α|α=k ·900,k ∈Z}。另外,角的终边落在第几象限,就说这个角是第几象限的角。 弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。在弧度制下,扇形弧长公式=|α|R ,扇形面积公式||R 2 1R 2 1S 2α== ,其中α为 弧所对圆心角的弧度数。 2.任意角的三角函数 利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角函数。设P(x ,y)是角α终边上任一点(与原点不重合),记22y x |OP |r +==,则r y sin =α,r x cos = α,x y tan = α。 3.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos α αα = 4.三角函数的诱导公式 利用三角函数定义,可以得到诱导公式:即πα2 k +与α之间函数值的关系(k ∈Z ), 其规律是“奇变偶不变,符号看象限”。 5.三角函数的图象与性质 函数 y=sinx y=cosx y=tanx 图象 定义域 R R },2 |{Z k k x x ∈+ ≠π π

三角函数部分高考题(带答案)

3 22.设/XABC的内角A B, C所对的边长分别为q, b, c , ^acosB-bcosA =-c . 5 (I )求tan A cot B 的值; (U)求tan(A-B)的最大值. 3解析:(1)在左ABC中,由正弦定理及acosB-bcosA = -c 5 3 3 3 3 可得sin 人cos B-sinB cos A = -siiiC = - sin(A + B) = $ sin 人cos B + - cos A sin B 即siii A cos B = 4 cos A siii B ,则tail A cot 8 = 4: (II)由taiiAcotB = 4得tanA = 4tanB>0 一_ x tan A - tan B 3 tan B 3 “ 3 tan( A 一B) = -------------- = ---------- -- = ----------------- W - 1+tail A tail B l + 4taii_B cot B + 4 tan B 4 当且仅当4tanB = cotB,tmiB = i,taiiA = 2时,等号成立, 2 1 3 故当tail A = 2, tan ^ =—时,tan( A - B)的最大值为—. 5 4 23. ----------------------------------在△ABC 中,cosB = , cos C =—. 13 5 (I )求sin A的值; 33 (U)设ZVIBC的面积S AABC = —,求BC的长. 解: 512 (I )由cosB = 一一,得sinB = —, 13 13 4 3 由cos C =-,得sin C =-. 55 一33 所以sin A = sin(B + C) = sin B cos C + cos B sill C = —. (5) ................................................................................................................................... 分 33 1 33 (U)由S.ARC = 一得一xABxACxsinA = —, 2 2 2 33 由(I)知sinA =—, 65 故ABxAC = 65, (8) ................................................................................................................................... 分 又AC =竺主=史仙, sinC 13 20 13 故—AB2 =65, AB = — . 13 2 所以此=性叫11 siiiC (I)求刃的值;10分 24.己知函数/(x) = sin2a)x+j3 sin cox sin 尔+习2)(刃>0)的最小正周期为兀.

三角函数10道大题(带答案)

三角函数大题转练 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++=π π · (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[ππ-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ? ? ? πα,若()2cos 2,2 f =αα求α的大小 : 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; ; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相 邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式; (2)设(0,)2 πα∈,则()22 f α =,求α的值. ' 7、设426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求 ω的最大 值.

1.6 三角函数模型简单应用练习题(解析版)

1.6 三角函数模型简单应用 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .??? ??2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时, )(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C . y=2cosx D .y=lg(sinx+x 2sin 1+) 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知()3s i n 4 f x a x b x = ++(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤≤=6563sin 2ππ x x y 与函数y =2的图象围成一个封闭图形, 这个封闭图形的面积是_________.

三角函数部分高考题(带答案)

三角函数部分高考题 1.为得到函数πcos 23y x ? ? =+ ??? 的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移 5π12个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( B ) A .1 B C D .2 3.()2 tan cot cos x x x +=( D ) (A)tan x (B)sin x (C)cos x (D)cot x 4.若02,sin απαα≤≤> ,则α的取值范围是:( C ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32ππ?? ??? 5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象 上所有点的横坐标缩短到原来的 12 倍(纵坐标不变),得到的图象所表示的函数是C (A )sin(2)3 y x π =-,x R ∈ (B )sin( )26 x y π =+ ,x R ∈ (C )sin(2)3 y x π =+,x R ∈ (D )sin(2)3 2y x π=+,x R ∈ 6.设5sin 7a π =,2cos 7b π =,2tan 7 c π =,则D (A )c b a << (B )a c b << (C )a c b << (D )b a c << 7.将函数sin(2)3 y x π =+ 的图象按向量α平移后所得的图象关于点(,0)12 π - 中心对称,则 向量α的坐标可能为( C ) A .(,0)12π- B .(,0)6 π- C .( ,0)12 π D .( ,0)6 π 8.已知cos (α-6 π)+sin α= 的值是则)6 7sin(,35 4πα- (A )-5 32 (B ) 5 32 (C)-5 4 (D) 5 4

《三角函数模型的简单应用》练习

《三角函数模型的简单应用》练习 一、选择题 1.函数f(x)的部分图象如图所示,则f(x)的解析式可以是( ) (x)=x+sinx (x)= (x)=xcosx (x)=x·· 2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知, 这段时间水深(单位:m)的最大值为( ) B.6 3.如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为5m, AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是( ) 4.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)的图 象如图所示,则当t=秒时,电流强度是( ) 安安 安安 5.已知函数y=f(x)的图象如图所示,则函数y=f(-x)sinx的大致图象是( )

二、填空题 6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos(x=1,2, 3,…,12)来表示,已知6月份的平均气温最高,为28℃,12月份的平均气温最低,为18℃,则10月份的平均气温值为________℃. 7.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上 标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60]. 8.国际油价在某一时间内呈现出正弦波动规律:P=Asin+60(美元)(t(天),A>0,ω>0),现 采集到下列信息:最高油价80美元,当t=150(天) 时达到最低油价,则ω的最小值为__________. 三、解答题 9.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-cos t-sin t,t∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 10.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化. (1)求出种群数量y关于时间t的函数表达式(其中t以年初以来的月为计量单位,如t=1表示2月1日). (2)估计当年3月1日动物种群数量. 《三角函数模型的简单应用》巩固练习 一、选择题 1.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针

高考三角函数分类练习题

高考三角函数分类练习题 一.求值 1.(09北京文)若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.(08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.(07重庆)下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.(09福建)函数()sin cos f x x x =最小值是 。 2.(09江西)若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.(08海南)函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.(06年福建)已知函数()2sin (0)f x x ωω=>在区间,34ππ?? -???? 上的最小值是2-,则ω的最小值等于 5.(08辽宁)设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.(04天津)函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

三角函数模型及简单应用1说课稿

§1.6.1三角函数模型的简单应用(一)说课稿 熊罴 一、教材分析 本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力 二、教学目标 1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; 2、根据解析式作出图象并研究性质; 重点:由图象求解析式,由解析式研究图象及性质 难点:由图象求解析式时 的确定,体验解析式含绝对值的三角函数的图象作法与周期的 变化。 三、学法分析 本节课是在学习了三角函数的性质和图象的基础上来学习三角函数模型的简单应用,而本节内容重在两个方面的学习:一、由三角函数的图象求函数的解析式,二、由三角函数的解析式作三角函数的图象。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。四、教法分析 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。 五、教学程序及设计意图 (一)创设情境、激活课堂(多媒体引入) 在我们现实生活中有很多现象在进行周而复始地变化,用数学语言可以说这些现象具有周期性,而我们所学的三角函数是刻画周期变化数量的典型函数模型,比如下列现象就可以用正弦型函数模型来研究: 1、物理情景 ①简谐运动 ②星体的环绕运动 2、地理情景 ①气温变化规律 ②月圆与月缺 3、心理、生理现象 ①情绪的波动 ②智力变化状况 ③体力变化状况 4、日常生活现象 ①涨潮与退潮 ②股票变化

三角函数的图像及模型的简单应用

参数A ,ω,φ对函数图象变化的影响. 2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 学习过程: 一. 知识梳理: 3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤 注意:细细体会上述两种变换的区别。 二. 问题探究: 1.画出下列函数在长度为一个周期的闭区间上的简图: )3 sin( )2( sin )1(π - ==x y x y 3. 经过怎样的变化得到(注意定义域): ),0[),7 3sin(3 1)2( );,0[),8 4sin( 8)1(+∞∈+ =+∞∈-=x x y x x y π π

4.若函数f(x)=sin(2x +φ)的图象关于y 轴对称,则φ值是________. 5.画出函数x y sin =的图像并观察期周期和奇偶性: 三. 拓展升华: 1. 由函数的图像的图像要得到 )sin(sin ?ω+==x A y x y 经过怎样的变化可以得到? 2. 在直角坐标系中?? ?+=+=θ θsin cos r b y r a x 表示什么曲线?(其中a,b,r 是常数,且r 为正数,θ在)2,0[π内变化) 3.函数f(x)=3sin(2x -π 3)的图象为C ,下列结论中正确的是( ) A .图象C 关于直线x =π6对称 B 由y =3sin2x 向右平移π 3个单位长度可得到图象C C .图象C 关于点(-π6,0)对称 D .函数f(x)在区间(-π12,5π 12 )内是增函数 4.已知函数f (x )=A sin(ωx +φ)+b (ω>0,|φ|<π 2 )的图象 的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 5.已知函数f(x)=sin 2 ωx +3sin ωxsin(ωx + π2 )+2cos 2 ωx ,x∈R (ω>0),在y 轴右侧的第一个最高点的横坐标为π 6 . (1)求f(x)的对称轴方程; (2)求f(x)的单调递增区间. 四. 规律总结:

相关文档
最新文档