一元二次方程的解法情况总结

一元二次方程的解法情况总结
一元二次方程的解法情况总结

一元二次方程的解法

(直接开平方法、配方法、公式法和分解法)

一元二次方程定义:

只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。一般形式:ax2+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。

顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数)

交点式:y=a(x-x?)(x-x?) (a≠0)

[有交点A(x?,0)和B(x?,0)的抛物线,即b2-4ac≥0] .

直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=m±

配方法:

1.将此一元二次方程化为ax2+bx+c=0的形式(此一元二次方程满足有实根)

2.将二次项系数化为1

3.将常数项移到等号右侧

4.等号左右两边同时加上一次项系数一半的平方

5.将等号左边的代数式写成完全平方形式

6.左右同时开平方

7.整理即可得到原方程的根

公式法:

1.化方程为一般式:ax2+bx+c=0 (a≠0)

2.确定判别式,计算Δ(=b2-4ac);

3.若Δ>0,该方程在实数域内有两个不相等的实数根:x=

若Δ=0,该方程在实数域内有两个相等的实数根:x?=x?=

若Δ<0,该方程在实数域内无实数根

因式分解法:

因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。

用因式分解法解一元二次方程的步骤

1. 将方程右边化为0;

2. 将方程左边分解为两个一次式的积;

3. 令这两个一次式分别为0,得到两个一元一次方程;

4. 解这两个一元一次方程,它们的解就是原方程的解.

用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。

(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)2+k(a≠0)。

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:

y=a(x-x?)(x-x?)(a≠0)。

增减性

当a>0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反,同增同减。

当a<0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反,大小小大。

常用公式总结:

例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?

分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。

解:∵方程(1)有两个不相等的实数根,

∴,解得;

∵方程(2)没有实数根∴,解得;

于是,同时满足方程(1),(2)条件的的取值范围是

其中,的整数值有或

当时,方程(1)为,无整数根;

当时,方程(1)为,有整数根。

解得:

所以,使方程(1)有整数根的的整数值是。

说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。

例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。

解:∵,∴△=—4×2×(—7)=65>0

∴方程有两个不相等的实数根。

设方程的两个根为,

∵<0 ∴原方程有两个异号的实数根。

说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。

例2:已知方程的一个根为2,求另一个根及的值。

分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出

的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。

解法一:把代入原方程,得:

即,解得

当时,原方程均可化为:

,解得:

∴方程的另一个根为4,的值为3或—1。

解法二:设方程的另一个根为,

根据题意,利用韦达定理得:

∵,∴把代入,可得:

∴把代入,可得:,即

解得

∴方程的另一个根为4,的值为3或—1。

说明:比较起来,解法二应用了韦达定理,解答起来较为简单。

例3:已知方程有两个实数根,且两个根的平方和比两根

的积大21,求的值。

分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。

解:∵方程有两个实数根,∴△,解得≤0 设方程两根为 ;则,

∴∴

整理得:解得:

又∵,∴

说明:当求出后,还需注意隐含条件,应舍去不合题意的。

四、运用判别式及根与系数的关系解题。

例5:已知、是关于的一元二次方程的两个非零实数

根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,

解:因为关于的一元二次方程有两个非零实数根,

∴则有∴

又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:

假设、同号,则有两种可能:(1)(2)

若,则有:;即有:,解不等式组得

∵时方程才有实树根,∴此种情况不成立。

若,则有:;即有:,解不等式组,得;

又∵,∴当时,两根能同号

说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的内容。

六、运用一元二次方程根的意义及根与系数的关系解题。

例:已知、是方程的两个实数根,求的值。

分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。

解法一:由于是方程的实数根,所以

设,与相加,得:

(变形目的是构造和)

根据根与系数的关系,有:

,,得:

∴=0

解法二:由于、是方程的实数根,∴

说明:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。有关一元二次方程根的计算问题,当根是无理数时,运算将十分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的作用。这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来一直受到命题老师的青睐。

七、运用一元二次方程根的意义及判别式解题。

例8:已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。

分析:当设两方程的相同根为时,根据根的意义,可以构成关于和的二元方程组,得解后再由根与系数的关系求值。

解:设两方程的相同根为,根据根的意义,有

两式相减,得

当时,,方程的判别式

方程无实数解

当时,有实数解

代入原方程,得,所以

于是,两方程至少有一个相同的实数根,4个实数根的相乘积为

说明:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认的错误,甚至还会得出并不存在的解:

当时,,两方程相同,方程的另一根也相同,所以4个根的相乘积为:;

(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:

另外还应注意:求得的的值必须满足这两个不等式才有意义。

1、如果关于的方程的两根之差为2,那么。

2、已知关于的一元二次方程两根互为倒数,则。

3、已知关于的方程的两根为,且,则

4、已知是方程的两个根,那么:;

;。

5、已知关于的一元二次方程的两根为和,且,则

;。

6、如果关于的一元二次方程的一个根是,那么另一个根是,的值为。

7、已知是的一根,则另一根为,的值为。

8、一个一元二次方程的两个根是和,那么这个一元二次方程为:。

1、已知是方程的两个根,利用根与系数的关系,求

的值。

2、已知是方程的两个根,利用根与系数的关系,求的值。

3、已知是方程的两个根,利用根与系数的关系,求

的值。

4、已知两数的和等于6,这两数的积是4,求这两数。

5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。

6、已知方程和有一个相同的根,求的值及这个相同的根。

三、能力提升题:

1、实数在什么范围取值时,方程有正的实数根?

2、已知关于的一元二次方程

(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。

(2)若这个方程的两个实数根、满足,求的值。

3、若,关于的方程有两个相等的正的实数根,求

的值。

4、是否存在实数,使关于的方程的两个实根,满足

,如果存在,试求出所有满足条件的的值,如果不存在,请说明理由。

5、已知关于的一元二次方程()的两实数根为,若,求的值。

6、实数、分别满足方程和,求代数式

的值。

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

一元二次方程的基本解法

第一讲:一元二次方程的基本解法 【知识要点】 ① 一元二次方程及其标准形式: 只含有一个未知数,且未知数的最高次数是二次的方程叫一元二次方程。 形如ax 2+bx+c=0(a 、b 、c 为常数,且a≠0)的方程叫一元二次方程的标准形式。 任何一元二次方程都可以通过去分母、去括号、移项、合并同类项等过程,转化为标准形式。 ② 一元二次方程的解法主要有: 直接开方法、配方法、求根公式法、因式分解法。 一元二次方程的求根公式为x 1,2=)04(2422≥--±-ac b a ac b b . ③一元二次方程解(根)的含义:使方程成立的未知数的值 【经典例题】 例1、直接开平方法 (1)x 2-196=0; (2)12y 2-25=0; (3)(x +1)2-4=0; (4)12(2-x )2-9=0. 例2 、配方法: (1)x 2-2x =0; (2)2 12150x x +-= (3)24x 2x 2=+ (4)17x 3x 2+= 例3 、求根公式法: (1) 1522-=x x (2) 052222 =--x x

(3)(x +1)(x -1)=x 22 (4)3x (x -3) =2(x -1) (x +1). 例4 、因式分解法: (1) x (3x +2)-6(3x +2)=0. (2)4x 2 +19x -5=0; (3) ()()2232 -=-x x x (4)x (x +1)-5x =0. 例5、换元法解下列方程: (1)06)12(5)12(2=+---x x (2) 06)1 (5)1(2=+---x x x x 例6、配方法的应用:求证:代数式122+--x x 的值不大于 4 5.

一元二次方程知识点总结与易错题

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(242 2≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于 a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。 考点三、一元二次方程根的判别式 根的判别式: 一元二次方程)0(02≠=++a c bx ax 中, ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=? I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根。 考点四、一元二次方程根与系数的关系 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a c x x =21。也就是 说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 考点五、一元二次方程的二次函数的关系 二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y 的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。也就是该方程的解了 二次函数知识点 一、二次函数概念:

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

实际问题与一元二次方程题型归纳总结材料

实际问题与一元二次方程题型归纳总结 一、列一元二次方程解应用题的一般步骤: 与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。 (1)审:审清题意,弄清已知量与未知量; (2)找:找出等量关系; (3)设:设未知数,有直接和间接两种设法,因题而异; (4)列:列出一元二次方程; (5)解:求出所列方程的解; (6)验:检验方程的解是否正确,是否符合题意; (7)答:作答。 二、典型题型 1、数字问题 例1、有两个连续整数,它们的平方和为25,求这两个数。 例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。 练习:1、两个连续的整数的积是156,求这两个数。 2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25 B. 36 C. 25或36 D. -25或-36

2、传播问题:公式:(a+x)n =M 其中a 为传染源(一般a=1),n 为传染轮数,M 为最后得病总人数 例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感? 3、相互问题(循环、握手、互赠礼品等)问题 循环问题:又可分为单循环问题21n(n-1),双循环问题n(n-1)和复杂循环问题2 12n(n-3) 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛? (2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛? 例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人

1元二次方程各种题型总结

一元二次方程各种题型总结 (一)一元二次方程的概念 1.一元二次方程的项与各项系数 把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项: (1)x x 3252 =- (2)015622 =--x x (3)5)2(7)1(3-+=+y y y (4)2 2)3(4)15(-=-a a (5)m m m m m m 57)2())((2-=-+-+ 2.应用一元二次方程的定义求待定系数或其它字母的值 (1)m 为何值时,关于x 的方程m x m x m m 4)3()2(2 =+--是一元二次方程? (2)若分式01 8 72=---x x x ,则=x . 3.由方程的根的定义求字母或代数式值 (1)关于x 的一元二次方程01)1(2 2=-++-a x x a 有一个根为0,则=a . (2)已知关于x 的一元二次方程)0(02 ≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a , =+-c b a . (3)已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程0 32 =-+c x x 的一个根,求方程032 =-+c x x 的根及c 的值. (二)一元二次方程的解法 1.用直接开平方法解下列方程: (1)012552 =-x (2)2 169(3)289t -= (3)03612 =+y (4)0)31(2=-m (5) 2 2(31)85 n +=

2.用配方法解方程: (1)0522 =-+x x (2)0152 =++y y (3)3422 -=-y y 3.用公式法解下列方程: (1)2632 -=x x (2)p p 3232=+ (3)y y 1172 = (4)2592 -=n n (5)2(2)(21)3m m m +=--- 4.用因式分解法解下列方程: (1)094 12 =-x (2)04542=-+y y (3)2 81030m m +-= (42 0= (5)2 6t -=- (6)2 (5)2(5)1y y -=-- (7)2 2 2 (3)2(3)80t t t +-+-= 5.解法的灵活运用(用适当方法解下列方程): (1)128)72(22=-x (2)222)2(212m m m m -=+- (3)6(2)(2)(3)y y y y -=-+ (4)3 ) 13(2)23(332-+-=+y y y y y (5)2 2 81(25)144(3)m m -=-

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

(完整版)一元二次方程归纳总结

一元二次方程归纳总结 1、一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。 2、一元二次方程的解法 (1)直接开平方法 (也可以使用因式分解法) ①2 (0)x a a =≥ 解为:x = ②2 ()(0)x a b b +=≥ 解为:x a += ③2 ()(0)ax b c c +=≥ 解为:ax b += ④2 2() ()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法 (3)公式法:一元二次方程2 0 (0)ax bx c a ++=≠,用配方法将其变形为:222 4()24b b ac x a a -+= ①当2 40b ac ?=-> 时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -=② 当2 40b ac ?=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =- ③ 当2 40b ac ?=-<时,右端是负数.因此,方程没有实根。 注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。 备注:公式法解方程的步骤: ①把方程化成一般形式:一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,并确定出a 、b 、c ②求出2 4b ac ?=-,并判断方程解的情况。 ③代公式:1,2x = 3、一元二次方程的根与系数的关系 法1:一元二次方程2 0 (0)ax bx c a ++=≠的两个根为: 1222b b x x a a -+-== 所以:12b x x a += +=-, 221222()422(2)4b b b ac c x x a a a a a -+----?=?===

(完整版)一元二次方程知识点总结和例题——复习

知识点总结:一元二次方程 知识框架 知识点、概念总结 1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。 (4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0) 3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,?都能化成如下形式ax2+bx+c=0(a≠0)。 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法 (1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x= +2) (的一元二次方程。根据平方根的定义可知,a x+是b的平方根,当0 ≥ b时,b a x± = +,b a x± - =,当b<0时,方程没有实数根。 (2)配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式 2 2 2) ( 2b a b ab a+ = + ±,把公式中的a看做未知数x,并用x代替,则有 2 2 2) ( 2b x b bx x± = + ±。 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0 (0 2≠ = + +a c bx ax的求根公式: )0 4 ( 2 4 2 2 ≥ - - ± - =ac b a ac b b x (4)因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 5.一元二次方程根的判别式 根的判别式:一元二次方程)0 (0 2≠ = + +a c bx ax中,ac b4 2-叫做一元二次方程)0 (0 2≠ = + +a c bx ax的根的判别式,通常用“?”来表示,即ac b4 2- = ? 6.一元二次方程根与系数的关系 如果方程)0 (0 2≠ = + +a c bx ax的两个实数根是 2 1 x x,,那么a b x x- = + 2 1 , a c x x= 2 1 。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 7.分式方程

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

一元二次方程解法讲义

龙文教育学科教师辅导讲义 课 题 一元二次方程的解法 教学目标 1. 理解一元二次方程及其有关概念 2. 会解一元二次方程,并能熟练运用四种方法去解 重点、难点 1. 一元二次方程的判定,求根公式 2. 一元二次方程的解法与应用 考点及考试要求 1. 一元二次方程的定义,一般形式,配方式 2. 熟练一元二次方程的解法能灵活运用:直接开平法,配方法.,因式分解,公式法去 3. 一元二次方程在实际问题中的综合应用 教学内容 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③ 整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax 注:当b=0时可化为02=+c ax 这是一元二次方程的配方式 (3)四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为)0(02≠=++a c bx ax 的形式,则这个方程就为一元二次方程. (4)将方程化为一般形式: 2 =++c bx ax 时,应满足(a≠0) (4)难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112 =-+ x x C 0 2 =++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。

一元二次方程知识点归纳

一元二次方程知识点 知识点一:一元二次方程及其解法关键点拨及对应举例 1.一元二次方程的相关概念 (1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方 程. (2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次 项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常 数项. 例:方程20 a ax+=是关于x 的一元二次方程,则方程的根为- 1. 2 .一元二 次方程的解法 (1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方 求解. ( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解 法求解. ( 3 )公式法:一元二次方程ax2+bx+c=0的求根公式为 x= 24 2 b b ac a -±-(b2-4ac≥0). (4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶 数时,也可以考虑用配方法. 解一元二次方程时,注意 观察,先特殊后一般,即先 考虑能否用直接开平方法和 因式分解法,不能用这两种方 法解时,再用公式法. 例:把方程x2+6x+3=0变 形为(x+h)2=k的形式后, h=-3,k=6. 知识点二:一元二次方程根的判别式及根与系数的关系 3 .根的判别式 (1)当Δ=24 b ac -0时,原方程有两个不相等的实数根. (2)当Δ=24 b ac -0时,原方程有两个相等的实数根. (3)当Δ=24 b ac -0时,原方程没有实数根. 例:方程2210 x x +-=的判 别式等于8,故该方程有两个不相 等的实数根;方程2230 x x ++= 的判别式等于-8,故该方程没有实 数根. * 4.根与系数的关系 (1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两 个根分别为x1、x2,则x1+x2= ;x1x2= 。注意运用根与系数 关系的前提条件是△≥0. (2)解题策略:已知一元二次方程,求关于方程两根的代数式 的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与 系数的关系求解. 与一元二次方程两根相关代数 式的常见变形: x12+x22=(x1+x2)2-2x1x2, (x1+1)(x2+1)=x1x2+(x1+x2)+1, 12 1212 11x x x x x x + += 等. 失分点警示 在运用根与系数关系解题时, 注意前提条件时△=b2-4ac≥0.a≠0 知识点三:一元二次方程的应用 4(1)解题步骤:①审题;②设未知数;③列一元二次方程; ④解一元二次方程;⑤检验根是否有意义;⑥作答. 运用一元二次方程解决实际问题时,方程一般有两个实

一元二次方程及其解法

第2课时 一元二次方程及其解法 一·基本概念理解 1 一元二次方程的定义: 含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 2、一元二次方程的解法 (1)、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 直接开平方法适用于解形如 b a x =+2 )(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有2 22)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (3)、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 )0(02 ≠=++a c bx ax 的求根公式:

) 04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c (4)、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (5)、韦达定理 若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则 a b x x -=+21,a c x x =21。以上的就称为韦达定理(或称为根与系数的关系)利用 韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=a b -,二根之积 =a c 也可以表示为a b x x -=+21,a c x x =21。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 3、一元二次方程根的判别式 根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42 -叫做一元二次方程 )0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?

人教版21章一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

三种类型:(1)()02≥=a a x 的解是a x ±=; (2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

一元二次方程的解法归纳总结

一元二次方程综合一元二次方程的解法归纳总结 一元二次方程的解法是每一个中学生都必须掌握的,共有5种解法,其中直接开平方法、因式分解法、配方法和公式法是教材上重点讲解的四种方法,并没有提到换元法,我们在这次归纳总结中给于详细的讲解.另外,还将介绍某些特殊的一元二次方程的解法. 在上面提到的四种解一元二次方程的方法中,直接开平方法是最直接的方法,因式分解法是最简单的方法,配方法是最基本的方法,而公式法是最万能的方法. 我们要根据一元二次方程的特点选择合适的解法,如一元二次方程缺少一次项,选择用直接开平方法求解;一元二次方程缺少常数项,选择用因式分解法(缺常选因)求解. 一、直接开平方法 解形如(≥0)和(≥0)的一元二次方程,用直接开平方法. 用直接开平方法解一元二次方程的一般步骤: (1)把一元二次方程化为(≥0)或(≥0)的形式; (2)直接开平方,把方程转化为两个一元一次方程; (3)分别解这两个一元一次方程,得到一元二次方程的两个解. 注意: (1)直接开平方法是最直接的解一元二次方程的方法,并不适合所有的一元二次方程的求解; (2)对于一元二次方程,当时,方程无解; (3)对于一元二次方程: 当时,一元二次方程有两个不相等的实数根; 当时,一元二次方程有两个相等的实数根; 当时,一元二次方程没有实数根. 例1. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解.当一元二次方程缺少一次项时,考虑使用直接开平方法求解.

解:(1) ∴; (2) ∴. 例2. 解下列方程: (1); (2). 分析:观察到两个方程的特点,都可以化为(≥0)的形式,所有选择用直接开平方法求解. 解:(1) ∴或 ∴; (2) ∴ ∴或 ∴. 习题1. 下列方程中,不能用直接开平方法求解的是【】(A)(B) (C)(D) 习题2. 若,则_________.

一元二次方程知识点总结

一元二次方程 1.一元二次方程的定义及一般形式: (1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。其中a为二次项系数,b为一次项系数,c为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次 数是2;③是整式方程。 2.一元二次方程的解法 (1 )直接开平方法: 形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接 开平方得x a b或者x a 、、b,x a , b。 注意:若b<0,方程无解 (2)因式分解法: 一般步骤如下: ①将方程右边得各项移到方程左边,使方程右边为0 ; ②将方程左边分解为两个一次因式相乘的形式; ③令每个因式分别为零,得到两个一元一次方程; ④解这两个一元一次方程,他们的解就是原方程的解。 (3)配方法:

用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤 ①二次项系数化为1:方程两边都除以二次项系数; ②移项:使方程左边为二次项与一次项,右边为常数项; ③配方:方程两边都加上一次项系数一般的平方,把方程 化为(x m)2 n(n 0)的形式; ④用直接开平方法解变形后的方程。 注意:当n 0时,方程无解 (4)公式法: 一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac 0方程有两个不相等的实根:x b甘4/( b2 4ac 0) 2a f(x)的图像与x轴有两个交点 0方程有两个相等的实根f(x)的图像与x轴有一个交点 0方程无实根f(x)的图像与x轴没有交点 3.韦达定理(根与系数关系) 我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b; X i?X2 = 2 a a 4.一元二次方程的应用 列一元二次方程解应用题,其步骤和二元一次方程组解应用题类 似

一元二次方程的解法—公式法

课题:1.2一元二次方程的解法 (4) 班级 姓名 【学习目标】 1、会用公式法解一元二次方程. 2、用配方法推导一元二次方程的求根公式,明确运用公式求根的前提条件是b 2 -4ac ≥0. 【重点难点】 重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程。 难点:掌握一元二次方程的求根公式及代入时的符号问题. 【新知导学】 读一读:阅读课本P 14-P 16 想一想: 1. 用配方法解一元二次方程的一般步骤是什么? 2. 用配方法解一元二次方程20(0)ax bx c a ++=≠ 因为0a ≠,方程两边都除以a ,得 把常数项移到方程右边,得 配方,得 即2224()24b b ac x a a -+= 当 0≥时 ,2422b b ac x a a -+=± 即42b b ac x a -±-= 。 3.在上述配方过程中,若240b ac -≥< 0时,方程有实数根吗? 练一练: 1.方程4-x 2=3x 中a= ,b= ,c= , b 2-4ac= 2. 用公式法解方程0232 =+-x x 【新知归纳】 一般的,对于一元二次方程)0(02≠=++a c bx ax

(1) 当_____________时,它的实数根是_________________.这个公式叫一元二次方程的求根 公式,利用这个公式解一元二次方程的方法叫公式法。 (2) 当_____________时,方程没有实数根。 【例题教学】 例1.用公式法解方程: (1)22330 x x -+= (2)x x 2322=- (3)a a a =-+)2)(2(51 (4)23(1)y y += 例2.已知y 1=2x 2+7x -1,y 2=6x +2,当x 取何值时y 1=y 2? 【当堂训练】 1.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( ) A.x=21214412-± B. x=2 1214412-±- C. x= 21214412+± D. x=64814412-± 2.用公式法解下列方程: (1)2220x x +-=; (2)2 30x x -=

一元二次方程知识点归纳

一元二次方程知识点 一、知识清单梳理 知识点一:一元二次方程及其解法关键点拨及对应举例 1. 一元二次方程的相关概念 2.一元二 次方程 的解法(1)定义:只含有一个未知数,且未知数的最高次数是 2 的整式方程. (2)一般形式: ax2+ bx+ c= 0(a≠0),其中 ax2、 bx、 c 分别叫做二次项、 、、 一次项系数、常数项. 一次项、常数项, a b c 分别称为二次项系数、 ( 1)直接开平方法:形如(x+m)2=n(n≥ 0)的方程,可直接开平方求解 . ( 2 )因式分解法:可化为(ax+m) (bx+n)=0 的方程,用因式分解法求解 . 2 ( 3 )公式法 :一元二次方程 2bb 4ac ax + bx+ c=0 的求根公式为 x=2a ( b2-4ac≥ 0) . (4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时, 也可以考虑用配方法. 例:方程 ax a20 是关于x的 一元二次方程,则方程的根为- 1. 解一元二次方程时,注意观 察,先特殊后一般,即先考 虑能否用直接开平方法和因 式分解法,不能用这两种方法 解时,再用公式法. 例:把方程x2+6x+3=0 变形为 (x+h) 2=k 的形式后, h=-3 ,k=6. 知识点二:一元二次方程根的判别式及根与系数的关系 (1)当= b24ac0时,原方程有两个不相等的实数根. 3.根的判(2)当= b24ac0时,原方程有两个相等的实数根. 别式 = b2 (3)当4ac0 时,原方程没有实数根. ( 1)基本关系:若关于x 的一元二次方程ax2+bx+c=0( a≠ 0)有两个根分别为 x1、x2,则 x1+x2=;x1x2=。注意运用根与系数关系的* 4. 根与系前提条件是△≥ 0. ( 2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,数的关 系先把所求代数式变形为含有 x1+x 2、 x1x2的式子,再运用根与系数的关系求解 . 知识点三:一元二次方程的应用 ( 1)解题步骤:①审题;②设未知数;③ 列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答. 4.列一元( 2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用 . ①平均增长率(降低率)问题:公式:b= a(1± x)n, a 表示基数, x 表示 二次方平均增长率(降低率), n 表示变化的次数, b 表示变化 n 次后的量;程解应②销售问题 ;利润问题 ,利润 =售价 -成本;利润率 =利润 /成本× 100%; 用题③比赛问题: ④面积问题: a.直接利用相应图形的面积公式列方程; b.将不规则图形通 过割补或平移形成规则图形,运用面积之间的关系列方程.例:方程 x22x10 的判别式等于 8,故该方程有两个不相等的实数根;方程x2 2 x 3 0的判别式等于-8,故该方程没有实数 根. 与一元二次方程两根相关代数式的常见变 形: x 12+x22=(x1+x2)2-2x1x2, (x1+1)(x 2+1)=x 1x2 +(x 1+x2 )+1, 11x1x2等. x1x2x1 x2 失分点警示 在运用根与系数关系解题时,注意前 提条件时△ =b2-4ac≥0.a≠0 运用一元二次方程解决实际问 题时,方程一般有两个实数根,则必须要根据题意检验根是否 有意义 .

相关文档
最新文档