开放性与探索性问题

开放性与探索性问题
开放性与探索性问题

探索型问题一(开放性问题)

【考点透视】

习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.

开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.

开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题

解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使

题目结论成立. 这两种情况所需补充的条件往往不惟一.

例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC ∽△BCD ,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).

(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC ≌△FED (只需填写一

个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC ;或∠A=∠DBC ; 或BC ∶CD=AC ∶BC ;或BC 2=AC?CD 中的某一个)

(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.

例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =??

=?和2,

4x y =-??=-?

,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)

分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.

解:2,8.

y x xy =??

=?

说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).

B A C

D 图7.1

A

B C D

E

F 图7.2

本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.

例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.

(1)求证:AB?DA=CD?BE ;

(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)

分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.

(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.

∵EA 切⊙O 于A ,∴∠EAB=∠ACB.

又∵∠ABE=∠D ,∴△EAB ∽△ACD ,∴AB ∶CD=EB ∶AD , ∴AB?AD=CD?BE.

(2)解:如图7.3.2中,若有△EAB ∽△ACD ,则原结论成立,故我们

只需探求使△EAB ∽△ACD 的条件. 由于∠ABE=∠D ,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.

所以本题只要BF AD =,原结论就成立.

说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点. (1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?

(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF ?为什么? (2002年济南市中考题) 分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC ,∠PFC=∠AFH ,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF ,即AD DF DE AD

=

,也就是要使△DAF ∽△DEA , 这样问题就较容易解决了.

解:(1)当PC=PF (或∠PCF=∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC. ∵PC=PF ,∴∠PCF=∠PFC , ∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900

,

图7.3.1

图7.3.2

H B

A

E

P O C

D F 图7.4

∴PC 与⊙O 相切.

(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA ,∴△DAF ∽△DEA , ∴

AD DF

DE AD

=

,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.

二、结论开放题

结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE ⊥AC 于E ,可得结论DE 是⊙O 的切线.

问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.

(2)如果AB=AC=5cm, sinA=3

5

,那么圆心O 在AB 的什么位置时,⊙O

与AC 相切? (2001年黑龙江省中考题)

分析:(1)连OD. ∵OB=OD ,∴∠OBD=∠ODB=∠C ,∴ OD ∥AC , 从而可得OD ⊥DE ,结论仍然成立.

(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt △AOF 中可 求得OF=

158,即OB=15

8

. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB.

又AB=AC ,∴∠B=∠C ,∴∠ODB=∠C ,

∴OD ∥AC.

∵DE ⊥AC ,∴OD ⊥DE ,

∴DE 是⊙O 的切线.

(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,

则OF ⊥AC ,即△AOF 是直角三角形,

∴sinA=3

55

OF OB AO OB ==-, ∴OB=

158

, 即当OB=15

8

时,⊙O 与AC 相切.

说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用方法.

图7.5.1

A

O B E

C D

图7.5.2

A

B

C

O F

图7.5.3

例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M. (1)求∠COA 和∠FDM 的度数;

(2)求证:△FDM ∽△COM ;

(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线

AB 于点F 、M. 试判断:此时是否仍有△FDM ∽△COM ? 证明你的结论. (2003年苏州市中考题)

(1)解:∵AB 是⊙O 的直径,CE ⊥AB ,∴AC CE ,CG=EG .

在Rt △COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12

CAE 的度数=AC

的度数=∠COA=60,∴∠FDM=180-∠COA=120.

(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG , ∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME. 又∠DMF=∠GME ,∴∠OMC=∠DMF , ∴△FDM ∽△COM.

(3)解:结论仍然成立.

∵∠FDM=180-∠CDE , ∴∠CDE 的度数=

1

2

CAE 的度数=AC 的度数=∠COA , ∴∠FDM=180-∠COA=∠COM. ∵AB 为直径,CE ⊥AB ,∴在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG , ∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME , ∴△FDM ∽△COM.

说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.

三、解题策略开放题

解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.

例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含150角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.

(2000年荆州市中考题)

D

A

F C E

D

M O

G B

A

F C

E

M

O G B 图7.6.1

图7.6.2

分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.

解:如图所示. 图7.7.1中就包含有两中构造方法,

∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.

请同学们试着拼出其它的图形.

说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.

例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).

(1)不是正方形的菱形(一个);

(2)不是正方形的矩形(一个);

(3)梯形(一个);

(4)不是矩形和菱形的平行四边形(一个);

(5)不是梯形和平行四边形的凸四边形(一个);

(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)

解:(1

2)

3)

(4)

(5)

(6)

说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,

例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:

(1)_____________________;(2)________________________;(3)_________________________. 另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实

A

B C

D E

F

G

图7.7.1 图7.7.1

图7.8

就是有理数的运算.本题具有开放性,答案是不唯一的.

解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.

说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.

四、题目结构开放题

以看作是一个条件开放题.

例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/”(涂黑

部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)

分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?

设摩托车比运货汽车早到x 分钟,则4040603545x ??

-?= ???

,x=4021.

答:摩托车比运货汽车早到

40

21

分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×

60

x

= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.

解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?

运货汽车走完全程需

408357=小时,摩托车走完全程需408459

=小时, 摩托车比运货汽车少用8816

7963-=小时.

∵1610906360126

-=>, ∴摩托车在运货汽车到达乙地前能追上.

解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?

设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.

答:经过4小时摩托车可追上运货汽车.

说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.

习题七

一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)

(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD ≌△ACD ,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题

3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).

(2003年无锡市中考题)

4.先根据要求编写应用题,再解答你所编写的应用题.

编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为

120120

110

x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)

5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)

6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外

公切线,A 、B 为切点,AB 与TP 相交于点P

,根据图中所给出的已知条件

及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD ⊥AB ;②BE ⊥AC ;③AE=CE ;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________; (2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,

组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);

(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组 成一道证明题,画出图形,写出已知、求证,并加以证明.

(2003年徐州市中考题) 8.如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点.

(1)求证:AF ⊥CD ;

(2)在你连接BE 后,还能得出什么新的结论?请写出三个(不要求证明).

(2002年江西省中考题)

图1 图2 图3 图4 第3题

A B

P T

O O 第6题 A B

D C E

第7题 B A C D E

第8题

9

.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,

以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.

(2000年北京市崇文区中考题)

10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.

(1)求∠ACM的度数;

(2)在MN上是否存在点D,使AB?CD=AC?BC?为什么?

(2001年广州市中考题)

参考答案:

1. (1

(2)1,-1(或4,-4;或11,-11)

2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.

3.略.

4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.

5.方案(2):若这角是直角,则这两个三角形全等.

方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.

方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.

6.AB=2PT. 证明略.

7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别

在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE.

证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,

∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30

,∴BE=2EF,

∴CD=BE. 图要正确.

8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,

∴△ABC≌△AED,∴AC=AD. 又∵F为CD的中点,∴AF⊥CD.

(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;

⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出

其它的结果)

9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,

C5(2),C6(2,.

10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.

又MN是切线,C为切点,∴∠ACM=62.

(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN

于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,

∴∠B=∠ACD,∴△ABC∽△ACD,∴

AB BC

AC CD

=,即AB?CD=AC?BC.

A B

C

M

N

第10题

A

C

B

D

E

F

第7题

中考数学专题复习规律探索性

2013年中考数学规律探索性 第一部分 讲解部分 一.专题诠释 规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。其目的是考查学生收集、分析数据,处理信息的能力。所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。 二.解题策略和解法精讲 规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。 三.考点精讲 考点一:数与式变化规律 通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。 例1. 有一组数: 13, 25579 ,,101726 ,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数) 个数为 . 分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解: 21211 211?-= +; 2 3221 521?-=+; 2 5231 1031?-=+; 2 7241 1741?-=+; 21 9251265+?-=;…; ∴第n (n 为正整数)个数为 2 21 1 n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料: 1×2 = 31(1×2×3-0×1×2), 2×3 = 31 (2×3×4-1×2×3), 3×4 = 3 1 (3×4×5-2×3×4),

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下 进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题 的强有力的方法. 【精选名校模拟】 1. 在四棱锥E ABCD中,底面ABCD是正方形,AC与BD交于点O,EC 底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;

2020中考数学突破与提升专题提升练习(规律探索性问题)(无答案)

2020中考数学突破与提升专题提升练习(规律探索性问题) 考点一:数与式变化规律 通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。 例1. 有一组数:13, 25579 ,,101726L ,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 . 分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解: 21211 211?-=+; 23221521?-=+; 252311031?-=+; 272411741?-=+; 21 9251265+?-=;…; ∴第n (n 为正整数)个数为2 21 1 n n -+. 变式练习 1.阅读下列材料: 1×2 = 31 (1×2×3-0×1×2), 2×3 = 31 (2×3×4-1×2×3), 3×4 = 3 1 (3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4= 3 1×3×4×5 = 20.

读完以上材料,请你计算下列各题: 1×2+2×3+3×4+···+10×11(写出过程); 1×2+2×3+3×4+···+n ×(n +1) = ______________; 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________. 2.我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空: 一般地,如果???>>d c b a , 那么a +c b +d .(用“>”或“<”填空) 你能应用不等式的性质证明上述关系式吗? 考点二:点阵变化规律 在这类有关点阵规律中,我们需要根据点的个数,确定下一个图中哪些部分发生了变化,变化的的规律是什么,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点. 例1:如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n ,…,请你探究出前n 行的点数和所满足的规律、若前n 行点数和为930,则n =( )

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如. 1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法. 【精选名校模拟】 1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;

苏教版三年级解决问题的策略

教学实录与评析 教学内容:苏教版义务教科书小学数学三年级上册第71~73页 教学目标 1.知识与技能: 让学生在解决简单的实际问题的过程中,初步体验用列表、画图、列式的方法整合题目提供的信息,学会运用“从条件出发”的策略分析题目的数量关系,从而找到解决问题的有效方法。 2、数学思考: 通过自主探究、合作交流等学习活动,使学生经历信息提取、发现问题、画图整理条件、解决问题的知识获取过程,从而培养学生缜密的思维习惯,发展学生推理的能力。 3、问题解决: 让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。 4、情感态度: 让学生在解决问题的过程中感受到运用策略的价值,能自觉运用策略解决问题,获得克服困难带来的成功体验。 教学重点:用列表的方法解决合适的问题,运用“从条件出发”来分析数量关系。 教学难点:正确整理、分析数量关系,从而运用“策略”来解决实际的相关问题。 教学准备:多媒体课件、实物展示台、作业纸 课型:新授课 教学过程:

课前谈话,积淀素养 课前黑板出示课题:《解决问题》 师:同学们,今天我们要学习什么内容呢? 生齐答:解决问题 师:同学们很会学习,能够从无声的语言中了解到我们需要的信息,而了解信息一个重要的出发点就是“认真观察”。 (评析:教师能够从课堂的一个小细节入手,渗透学习习惯的培养,对处于三年级的学生来说,学习习惯的培养尤为重要。) 师:那接下来我们要看看需要解决的是什么问题? 一、呈现情境,激趣导入 师:同学们,请看大屏幕,小猴吉吉家的果园丰收了,吉吉帮妈妈摘桃但是遇到了问题,想帮助它吗?(课件出示) 出示课本第71页的改编题 (评析:将课本的案例进行了改编,把问题置于一个更具有童话色彩的情境中,活泼生动,增加了学生的学习兴趣) 二、自主探究,感悟新知 1.分析例1 师:同学们默读题目,找找题目中的条件和问题。 生:条件是:第一天摘了30个,以后每天都比前一天多摘5个。问题是:小猴第三天摘了多少个?第五天呢? 师:我们把找到的条件摘录下来(课件按照顺序出示) 师:你觉得要想解决题目的问题,哪个条件非常关键? 生:以后每一天都比前一天多摘5个 师:很好,这表明了2个量之间的关系。那我们该如何将这句话说的解释得更容易明白呢?(评析:让学生寻找题目中的关键条件并加以解释,发挥了教师的引领作用,让学生不知不觉中体验到分析题目的方法,学会整合信息,为解决问题铺路搭桥)

探索性问题的常见类型及其求解策略

探索性问题的常见类型及其求解策略 在近几年的高考试题中,有关探索性问题频频出现,涉及代数、三角、几何,成为高考的热点之一。正因如此,初等数学中有关探索性问题也就成为大家研究的热点。多年来笔者对此也做了一些探讨。 探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备。要求解答者自己去探索,结合已有条件,进行观察、分析、比较和概括。它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求。它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程。 探索性问题一般可分为:条件追溯型,结论探索型、条件重组型,存在判断型,规律探究型,实验操作型。每一种类型其求解策略又有所不同。因此,我们在求解时就必须首先要明辨它是哪一种类型的探索问题,然后再根据所属类型制定解题策略。下面分别加以说明: 一、条件追溯型 这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断。解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件。在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意。 例1.(2002年上海10)设函数)(,2sin )(t x f x x f +=若是偶函数,则t 的一个可能值是 。 分析与解答:∵是偶又)().22sin()(2sin )(t x f t x t x t x f ++=+=+函数 ∴ )22sin()22sin()()(t x t x t x f t x f +-=++-=+即。由此可得 )(2)22(222222Z k k t x t x k t x t x ∈++--=+++-=+πππ或∴)(4 1 2Z k k t ∈+= π 评注:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力. 二、结论探索型 这类问题的基本特征是:有条件而无结论或结论的正确与否需要确定。解决这类问题的策略是:先探索结论而后去论证结论。在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论。 例2. (2020年上海文12)若干个能惟一确定一个数列的量称为该数列的“基本量”。设

探索性实验课件--探索实验注意事项

2012级探索实验注意事项(请认真阅读!) 一、实验开题 1、探索实验开题后需上交班上各组《课题申请书》电子板。 2、把各组的实验动物计划表汇总、打印并由指导老师签名后上交电子版及 纸质版。 3、用Excel分类汇总班上所需的实验室代购生化试剂盒(注明具体用途, 如用于血液或组织的测定)、自购的药品(中药、西药)、常用试剂、仪器设备及器械并上交电子版。 以上表格要求12月10日前提交。 二、关于实验试剂 1、实验室代购生化试剂盒。如需自购实验药品、用品等,则每组费用不能 超过200元。 2、自购的药物、用品发票抬头写“中山大学”,发票内容具体写清楚药品用 品名称,发票后面必须有班级、学生签名、电话、探索实验题目。特别注意:药品最好在广东省内购买,发票必须提供汇款凭证,否则无效! 3、与实验相关的试剂盒 4、其它实验室可免费提供的常用试剂(不计入每组经费!) 一般常用试剂(如苦味酸、无水乙醇、冰醋酸、甲醛、氯化钠、肝素、乙酰胆碱、阿托品、普鲁卡因、乌来糖等)由实验室统一提供。 三、实验动物领取 按申请日期在何母楼6楼大厅领取。大鼠5只/每笼,小鼠10只/每笼;领回的动物需挂牌登记(标明班级、姓名、手机)后放入教学实验动物暂养房的各层架子上。 1、动物领取时间:另行通知。 2、动物存放地点:何母楼610房。 四、手术器械、仪器的领取 在负责的技术老师带领指导下领取。手术器械、仪器当天用完后当即归还。若借用特殊器械,如灌胃针、微量注射器等,要在“借用登记本”上登记并保证用后立即回还。 五、行为学仪器使用申请流程 如有用到行为学实验室仪器,请各班班长将相关小组组长校园卡收集后,并将相关电子版信息(班级、姓名等)打印后,到动物实验大楼3楼办公室邱灿华老师(87330026)开通所需门禁权限。

难点专题:数列中的4类探索性问题

难点专题:破解数列中的4类探索性问题1.条件探索性问题 此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意. [例1] 已知数列{a n}中,a1=2,a2=3,其前n项和S n满足S n+2+S n=2S n+1+1(n∈N*);数列{b n}中,b1=a1,b n+1=4b n+6(n∈N*). (1)求数列{a n},{b n}的通项公式; (2)设c n=b n+2+(-1)n-1λ·n a2(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有c n+1>c n成立.

此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论. [例2] 已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*. (1)求数列{a n}的通项公式; (2)设数列{b n}满足:b n= na n 2n+12n ,是否存在正整数m,n(1

用列举的策略解决问题

用列举的策略解决问题 教学内容: 五年级上册数学第94-95页例1及随后的练一练,练习十七第1-3题 教学目标: 1、使学生经历用列举的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。 2、使学生在对自己解决实际过程的不断反思中,感受到列举策略的特点和价值,进一步发展思维的条理性和严密性。 3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。 教学重难点: 教学重点:感知列举的基本思考过程和方法,初步积累运用策略解决问题的经验。 教学难点:根据实际问题,通过合乎逻辑的思考,不重复、不遗漏地列举出符合要求的各种情况。 教学准备:课件 教学过程: 一、谈话引入 揭示课题:用列举的策略解决问题 二、弄清题意,引发需求 出示例1题目及情境图 1、学生自主观察、思考。 从图中你获得哪些信息? (引导学生明确:可以围成大小不同的长方形,围成的长方形的长和宽都是整厘米数) 2、讨论: (1)用22根1米长的木条围成的长方形,周长一定是多少米? (2)长和宽也会像周长这样保持不变吗?面积呢?怎样围面积最大? 3、小组合作用小棒围一围

4、汇报结果 三、尝试列举,感知策略 1出示94页表格 2、提问:从表中看,长方形的长是从几米开始想的?为什么? 3、明确:长方形的长与宽的和是11米,所以长方形的长最长只能是10米。 4、你能按一定的规律把表格填写完整吗? 5、学生汇报后讨论 (1)、通过一一列举,你发现符合要求的围法有多少种? (2)、这么多种围法你认为用小棒摆和列举的策略解决这个问题,那种方法更简便?为什么? 6、得出:有条理地一一列举是解决这个问题的基本策略。 提问:运用列举的策略解决问题有什么 7、观察表格,比较长、宽和面积,你有什么发现? (周长一定时,长和宽越接近,面积就越大;长和宽相差越大,面积就越小。) 四、反思回顾,加深理解 1、运用列举的策略时要注意什么? 2、在以前的学习中,我们曾经运用列举的策略解决那些问题? 五、拓展应用,丰富体验 1、做“练一练”第1题 (1)学生读题后尝试解决。 (2)集体交流。 2、做“练一练”第2题 (1)学生读题后,说说表格中首先选定的是哪种荤菜?接着考虑哪种素菜? (2)学生独立填表后集体交流。 (3)问:如果先选定一种素菜,你还能按顺序列举出各种不同搭配吗? 3、练习十七第2题

探究问题解决策略

探究问题解决策略 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

《探究问题解决策略,提高学生解决问题的能力》 结题报告 【课题研究的背景、意义】 近年来我国小学数学课程的发展趋势是:让学生学会自主学习,充分发挥每一个学生的主体作用,倡导每一位学生都能主动参与、乐于探究、勤于动手操作,都能在愉快的氛围中轻松地学习数学知识。 总结现在的小学数学中关于“问题解决”策略的研究:对显性的、单一的问题大部分学生都能容易地找到解决的方法,但是在解决问题的过程中,学生们往往只注重找到问题的答案,很少有学生去尝试分析,特别是后进生,有些连题目都读不懂,更别说分析了,至于解决问题的策略的多样性,就更无从谈起了。每次练习,碰到解决问题往往要扣很多分数,慢慢地对学习数学就失去了信心,成绩也越来越差。 在上述背景之下,我们提出了“探究问题解决策略,提高学生解决问题的能力”课题,让学生能面对实际情景自己学会阅读、学会收集数学信息、学会用数学的眼光看生活中的数学问题、学会用数学的语言和思考方法来解释一些复杂的数学情景,最终学会自己寻找合适的解决问题的有效策略,以此来提高学生解决问题的能力、学习兴趣和信心,让他们乐于学习。 【课题的界定】 一、“数学问题”:是指对后进生来说,没有现成的方法可以解决,需要经过思考和探索,在综合运用已有的数学信息的基础上才能找到解决方法的一种情景状态。 二、“问题解决”:在老师的适当指导下,学生在面对数学问题时,能把已有的知识、经验、技能,经过自己的思考、加工、综合运用,达到未知目标的过程,以及在这

中考数学复习考点解密 第三讲 规律探索性问题.docx

中考数学复习考点解密第三讲规律探索性问题【专题诠释】 规律探索型题是根据已知条件或题T?所提供的若T?特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。其目的是考查学生收集、分析数据,处理信息的能力。所以规律探索型问题备受命题专家的青睞,逐渐成为中考数学的热门考题。 |【解题策略】I 规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律. 【解法精讲】 它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答. 【考点精讲】 考点一: 通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。 例1. (2017内江)观察下列等式: 第个筹式:=U3X2+2X 22 2+1 ~22H 第二个等式: "l+SX 2^2X(22)2 *22*1 23H 第三个等式: 1 1 a323^2X(23)2 *23*1 24H 第四个等式:24 1 1 ^H-SX "z4+l 2?H 按上述规律,回答下列问题:

(2)用含n 的代数式表示第n 个等式:喩E f 宁云 (3) 时葩+斫(得出最简结果); (4)计算:ai+a 2+???+a n . 【考点】37:规律型:数字的变化类. 【分析】(1)根据已知4个等式可得; 利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得; 【解答】解:⑴rh 题意知,斫看走而产丙_尹亍 (2) 根据已知等式得出答案; (3) (4) 根据己知等式规律,列项相消求解可得. 故答案为: -------- 3 --------- g~ R3X 2%2X(2B ) 27+1 2n 1 [ l?x 2n t2X (211)2 2n H 2^+1 乂合杀为 H3X 2tt t2X(2n )2 2n +l 2^1+1 (3)原式二莎 林応 _ 1 _1_ 14 故答案为:孕*; 22H * 22+1 23+l * 2j +l 24+l * 24+l 2B 41 ' 2B +1 ⑷原式二页 _ 1 1 2H 2n +l

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

规律探究性问题

第33讲 规律探究性问题 类型一:探究数字或式子的变化规律 方法点拨:关注奇偶数、平方数、等差数列、等比数列的表示方法.还要关注正、负号交替时,正、负号的表示:用(-1)n 或(-1)n +1来表示. 1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,38=6 561, 39=19 683,…,它们的个位数字有什么规律,用你发现的规律直接写出92 019的个位数字是( ) A .3 B .9 C .7 D .1 2.观察下列一组数:14,39,516,725,936 ,…,它们是按一定规律排列的,那么这一组数的第n 个数是__________. 3.观察一列数:-12,34,-58,716 ,…,按你发现的规律,写出这列数的第9个数为________,第n 个数为____________. 4.按一定规律排列的一列数依次为-a 22,a 55,-a 810,a 1117 ,…(a ≠0),按此规律排列下去,这列数中的第n 个数是______________(n 为正整数). 5.已知一列数a ,b ,a +b ,a +2b ,2a +3b ,3a +5b ,…,按照这个规律写下去,第9个数是__________. 6.观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533 ,…,它们是按一定规律排列的,请利用其中的规律,写出第n 个数a n =____________(用含n 的式子表示). 类型二:探究等式的变化规律 方法点拨:(1)标序数;(2)对比式子与序号,即分别比较等式中各部分与序数(1,2,3,4,…,n )之间的关系,把其中隐含的规律用含序数的式子表示出来,通常是将式子进行拆分,观察式子中数字与序号是否存在倍数或者次方的关系;(3)根据找出的规律得出第n 个等式,并进行检验. 7.观察下列各式:

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

用列举的策略解决问题

用列举的策略解决问题 尧都区东关小学吕红艳【教学内容】 苏教版五年级上册第94~95页例1及随后的“练一练”,练习十七第1-3题 【教学目标】 1、使学生经历用一一列举的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。 2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。 3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。 【教学重点】 让学生体会策略的价值,并使学生能主动运用策略解决问题。【教学难点】 在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。 【教学准备】课件、记录单,小棒 【教学过程】 一、引入课题,旧知回顾 1、游戏导入。 谈话:同学们,喜欢玩游戏吗?今天我们来玩一种猜拳游戏—

—石头剪刀布。现在,请大家伸出你的右手。 师:准备,石头剪刀布 师:好,同学们看一看,哪些同学是胜利者,除此之外,还有那些不同的手势。老师用一个表格来整理一下,刚才的过程出现了三种不同的情况,如图。 师:好,我们再来一局。石头剪刀布,看一看,又出现了三种不同的情况。如图: 接下来老师要出的是……那又会出现几种情况? 师:又会出现3种不同的结果。在这个过程中我们把事件发生的可能性按照一定的顺序一一列举出来,这种策略在数学中叫做一一 剪 刀 剪刀 剪 刀 石 头 剪刀 布 布 布 布 石头 剪刀 布

列举。 2、回顾感知 师:听说过“一一列举”这个词吗?其实,在以前的学习中,我们就用到过一一列举的策略,只是没有强调这个策略的名称,接下来我们一起回忆一下大家曾经解决的问题。(课件出示) (注重学生回答问题时要强调有序思考,做到不遗漏,不重复。此处渗透,强调) 师:上面的3个例子,我们都用了一一列举的策略,这样的例子还有很多就不一一列举了。这节课,我们就运用已经积累的这些经验来解决一些简单实际问题。(板书课题:用列举的策略解决问题) 二、问题引领自主探究 1、理解题意,深入剖析 师:接下来,我们一起来看一下老师带来的问题。请看大屏幕。(课件出示)请同学们默读题目。 师:这道题的条件和问题是什么?根据条件和问题你能想到些什么? 生:围成的长方形的周长是22米。 生:长方形的长和宽都是整米数。 生:长方形花圃的长和宽的和是11米。 生:可以围成各种不同的长方形。 2、师:同学们真厉害!能从条件和问题中得到这么多的信息。那如何利用这些信息来解决“怎样围面积最大”这个问题呢?

2012年中考数学二轮复习考点解密_规律探索性问题(含解析)

2012年中考数学二轮复习考点解密规律探索性问题 第一部分讲解部分 一.专题诠释 规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。其目的是考查学生收集、分析数据,处理信息的能力。所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。 二.解题策略和解法精讲 规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。 三.考点精讲 考点一:数与式变化规律 通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要

求的规律的形式。 例1. 有一组数:13,25579,,101726 ,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 . 分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据 规律求解即可. 解答:解: 21211211 ?-=+; 23221521 ?-=+; 252311031 ?-=+; 272411741 ?-=+; 21 9251265+?-=;…; ∴第n (n 为正整数)个数为2211 n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照 什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方 加1. 例2(2010广东汕头)阅读下列材料: 1×2 = 31(1×2×3-0×1×2), 2×3 = 3 1(2×3×4-1×2×3), 3×4 = 3 1(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20.

立体几何中的探索性问题-存在型问题配套练习

立体几何中的探索性问题-存在型问题配套练习 福州第三中学陈增 1. 如图,在三棱锥P?ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点. (1)证明:平面PBE⊥平面PAC. (2)在BC上是否存在一点F,使AD//平面PEF?说明理由. 2. 如图,在三棱锥V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<π 2 ). (1)求证:平面VAB⊥平面VCD; (2)当角θ在(0,π 2)上变化时,求直线BC与平面VAB所成的角的取值范围. P C B A

立体几何中的探索性问题-存在型问题配套练习参考答案 福州第三中学陈增 1.解:(1)证明:∵PA⊥底面ABC,BE?平面ABC, ∴PA⊥BE. 又△ABC是正三角形,E是AC的中点, ∴BE⊥AC,又PA∩AC=A. ∴BE⊥平面PAC. 又BE?平面PBE,∴平面PBE⊥平面PAC. (2)存在满足条件的点F,且F是CD的中点. 理由:∵E、F分别是AC、CD的中点, ∴EF//AD. 而EF?平面PEF,AD?平面PEF, ∴AD//平面PEF. 2.解:(1)证明:因为AC=BC=a,所以△ACB是等腰三角形.又D是AB的中点,所以CD⊥AB. 又VC⊥底面ABC,所以VC⊥AB. 于是AB⊥平面VCD.又AB?平面VAB, 所以平面VAB⊥平面VCD. (2)在平面VCD内过点C作CH⊥VD于H,则由(1)知CH⊥平面VAB.连接BH, 于是∠CBH就是直线BC与平面VAB所成的角. 在Rt△CHD中,易知CH=√2 2 asinθ. 设∠CBH=φ,在Rt△BHC中,CH=asinφ, 所以√2 2 sinθ=sinφ. 因为0<θ<π 2,所以0

【精品】高三复习专题:探索性问题的常见类型及其求解策略.doc

高三复习专题:探索性问题的常见类型及其求解策略在近儿年的高考试题中,有关探索性问题频频出现,涉及代数、三角、儿何, 成为高考的热点之一。正因如此,初等数学中有关探索性问题也就成为大家研究的热点。多年来笔者对此也做了一些探讨。 探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备。要求解答者自己去探索,结合己有条件,进行观察、分析、比较和概括。它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求。它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程。 探索性问题一般可分为:条件追溯型,结论探索型、条件重组型,存在判断型,规律探究型,实验操作型。每一种类型其求解策略乂有所不同。因此,我们在求解时就必须首先要明辨它是哪一种类型的探索问题,然后再根据所属类型制定解题策略。下面分别加以说明: 一、条件追溯型 这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断。解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件。在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意。 例1. (2002年上海10)设函数/?⑴= sin2x,若是偶函数,贝Ut的一个可能值是o 分析与解答::/(x + r) = sin2(x + r) = sin(2x + 2r).X/(x + 偶函数 /. f(x + t) = f(-x + r)B|Jsin(2x + It) = sin(-2x + 2r)。由此可得 、2k +1 2x + 2r = -2x + 2/ + + t = TT-(-2X +2t) + 2ki(k E Z) /. t = --- 7r(k e Z) 4 评注:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力. 二、结论探索型

立体几何中的探索性问题精编WORD版

立体几何中的探索性问题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

立体几何中的探索性问题立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.这类试题的一般设问方式是“是否存在?存在给出证明,不存在说明理由”.解决这类试题,一般根据探索性问题的设问,首先假设其存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾就否定假设. 8如图,在四棱锥P–ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=√3,点F是PB的中点,点E在边BC上移动. (1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由. (2)求证:无论点E在BC边的何处,都有PE⊥AF. (3)当BE为何值时,PA与平面PDE所成角的大小为45。? 拓展提升 (1)开放性问题是近几年高考的一种常见题型.一般来说,这种题型依据题目特点,充分利用条件不难求解. (2)对于探索性问题,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在. 9如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的√2倍,P 为侧棱SD上的点.

(1)求证:AC⊥SD. (2)若SD⊥平面PAC,求二面角P-AC-D的大小. (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由. 如图所示,在正方体ABCD—A l B l C 1 D l 中,M,N分别是AB,BC中点. (1)求证:平面B 1MN⊥平面BB 1 D 1 D; (2)在棱DD 1上是否存在点P,使BD 1 ∥平面PMN,若有,确定点P 的位置;若没有,说明理由. 如图所示,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,0为AD中 点. (1)求证:PO⊥平面ABCD; (2)求异面直线PB与CD所成角的大小: (3)线段AD上是否存在点Q,使得它到平面PCD3若存在,求出AQ:DQ的值;若不存在,请说明理由. 立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势.

相关文档
最新文档