湿法烟气脱硫系统中碳酸盐含量测定方法

湿法烟气脱硫系统中碳酸盐含量测定方法
湿法烟气脱硫系统中碳酸盐含量测定方法

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

石灰石石膏湿法脱硫原理 (2)

石灰石-石膏湿法烟气脱硫工艺 石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目 前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。是当 前国际上通行的大机组火电厂烟气脱硫的基本工艺。它采用价廉易得 的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅 拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制 成吸收剂浆液。在吸收塔内,吸收浆液与烟气接触混合,烟气中的二 氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除, 最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴, 经换热器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。 由于吸收浆液循环利用,脱硫吸收剂的利用率很高。最初这一技术是 为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配 套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了 应用. 根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是: 1、技术成熟,脱硫效率高,可达95%以上。 2、原料来源广泛、易取得、价格优惠 3、大型化技术成熟,容量可大可小,应用范围广

4、系统运行稳定,变负荷运行特性优良 5、副产品可充分利用,是良好的建筑材料 6、只有少量的废物排放,并且可实现无废物排放 7、技术进步快。 石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。 基本工艺过程 在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解 (2) SO2进行反应生成亚硫根 (3)亚硫根氧化生成硫酸根 (4)硫酸根与吸收剂反应生成硫酸盐 (5)硫酸盐从吸收剂中分离 用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下: CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2 在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷

碳酸钠纯碱国家标准

中华人民共和国国家标准 工业碳酸钠 GB 210-92代替GB 210-89 GB2368-2373-89 1主题内容与适用范围 本标准规定了工业碳酸钠的技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于以工业盐或天然碱为原料,由氨碱法、联碱法或其他方法制得的工业碳酸纳。该产品主要用于化工、玻璃、冶金、造纸、印染、合成洗涤剂、石油化工等工业。 分子式:Na2CO3 相对分子质量:105.99(按1987年国际相对原子量) 2 引用标准 GB 191 包装储运图示标志 GB 601 化学试剂滴定分析(容量分析)用标准溶液的制备 GB 602 化学试剂杂质测定用标准溶液的制备 GB 603 化学试剂试验方法中所用制剂及制品的制备 GB 1250 极限数值的表示方法和判定方法 GB 3040 化工产品中铁含量测定的通用方法邻菲啰啉分光光度法 GB 3050 无机化工产品中氯化物含量测定的通用方法电位滴定法 GB 3051 无机化工产品中氯化物含量测定的通用方法汞量法 GB 6003 试验筛 GB 6678 化工产品采样总则 GB 6682 实验室用水规格 GB 8946 塑料编织袋 GB 8947 复合塑料编织袋 GB 10454 柔性集装袋

GSB G12 001 工业碳酸钠国家标准样品 3 产品分类 工业碳酸钠分为三种类别: Ⅰ类为特种工业用重质碳酸钠。适用于制造显象管玻壳、浮法玻璃、光学玻璃等。 Ⅱ类为一般工业盐及天然碱为原料生产的工业碳酸钠。包括轻质碳酸钠和重质碳酸钠。 Ⅲ类为硫酸钠型卤水盐为原料联碱法生产的工业碳酸钠。包括轻质碳酸钠和重质碳酸钠。 4 技术要求 4.1 外观:Ⅰ类为白色细小颗粒。Ⅱ、Ⅲ类轻质碳酸钠为白色结晶粉末,重质碳酸钠为白色细小颗粒。 4.2 工业碳酸钠应符合下表要求: 指标项目 指标 Ⅰ类Ⅱ类Ⅲ类 优等品优等品一等品合格品优等品一等品合格品 总碱量(以Na2CO3,计),% ≥99.2 99.2 98.8 98.0 99.1 98.8 98.0 氯化物(以NaCl计)含量,% ≤0.50 0.70 0.90 1.20 0.70 0.90 1.20 铁(Fe)含量,% ≤0.004 0.004 0.006 0.010 0.004 0.006 0.010 硫酸盐(以SO4计)含量,% ≤0.03 0.03(1)- - - - - 水不溶物含量,% ≤0.04 0.04 0.10 0.15 0.04 0.10 0.15 烧失量(2),% ≤0.8 0.8 1.0 1.3 0.8 1.0 1.3 堆积密度(3),g/mL ≥0.85 0.90 0.90 0.90 0.90 0.90 0.90 粒度(3),180μm 筛余物,% ≥ 1.18mm ≤ 75.0 70.0 65.0 60.0 70.0 65.0 60.0 2.0 - - - - - -

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

湿法烟气脱硫的原理(内容清晰)

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的活性组分进行化学反应,当化学反应达到平衡时,被吸收气体的消耗量,是化学吸收过程的极限。这里用Ca(OH)2溶液吸收SO2加以说明。 SO2(气体)

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

碳酸钠纯碱国家标准

碳酸钠纯碱国家标准 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

中华人民共和国国家标准 工业碳酸钠 GB210-92代替GB210-89GB2368-2373-89 1主题内容与适用范围 本标准规定了工业碳酸钠的技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于以工业盐或天然碱为原料,由氨碱法、联碱法或其他方法制得的工业碳酸纳。该产品主要用于化工、玻璃、冶金、造纸、印染、合成洗涤剂、石油化工等工业。 分子式:Na2CO3 相对分子质量:(按1987年国际相对原子量) 2引用标准 GB191包装储运图示标志 GB601化学试剂滴定分析(容量分析)用标准溶液的制备 GB602化学试剂杂质测定用标准溶液的制备 GB603化学试剂试验方法中所用制剂及制品的制备 GB1250极限数值的表示方法和判定方法 GB3040化工产品中铁含量测定的通用方法邻菲啰啉分光光度法 GB3050无机化工产品中氯化物含量测定的通用方法电位滴定法 GB3051无机化工产品中氯化物含量测定的通用方法汞量法 GB6003试验筛 GB6678化工产品采样总则 GB6682实验室用水规格 GB8946塑料编织袋 GB8947复合塑料编织袋 GB10454柔性集装袋

GSBG12001工业碳酸钠国家标准样品 3产品分类 工业碳酸钠分为三种类别: Ⅰ类为特种工业用重质碳酸钠。适用于制造显象管玻壳、浮法玻璃、光学玻璃等。 Ⅱ类为一般工业盐及天然碱为原料生产的工业碳酸钠。包括轻质碳酸钠和重质碳酸钠。 Ⅲ类为硫酸钠型卤水盐为原料联碱法生产的工业碳酸钠。包括轻质碳酸钠和重质碳酸钠。 4技术要求 外观:Ⅰ类为白色细小颗粒。Ⅱ、Ⅲ类轻质碳酸钠为白色结晶粉末,重质碳酸钠为白色细小颗粒。工业碳酸钠应符合下表要求: 指标项目 指标 Ⅰ类Ⅱ类Ⅲ类 优等品优等品一等品合格品优等品一等品合格品 总碱量(以Na2CO3, 计),%≥ 氯化物(以NaCl计)含量,%≤ 铁(Fe)含量,%≤ 硫酸盐(以SO4计)含量,%≤(1)- - - - - 水不溶物含量,%≤ 烧失量(2),%≤ 堆积密度(3),g/mL≥ 粒度(3),180μm筛余物,%≥ 1.18mm≤ - - - - - -

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1、石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别就是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论就是含硫量大于3%的高硫燃料,还就是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,就是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2、反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中与) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其她污染物

湿法烟气脱硫除尘一体化技术

湿法烟气脱硫除尘一体化技术 根据世界卫生组织对60个国家10~15年的监测发现,全球污染最严重的 10个城市中我国就占了8个,我国城市大气中二氧化硫和总悬浮微粒的浓度 是世界上最高的。大气环境符合国家一级标准的不到1%,62%的城市大气中 二氧化硫年日平均浓度超过了3级标准(100mg/m3)。全国酸雨面积已占国土资源的30%,每年因酸雨和二氧化硫污染造成的损失高达1100亿元。1997 年下半年,世界银行环境经济专家的一份报告指出:中国环境污染的规模居世 界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严 重的20个城市中有10个在中国。大气中的二氧化硫和氮氧化物与降水溶合成酸雨,现在中国是仅次于欧洲和北美的第三大酸雨区。大气污染严重破坏生态 环境和严重危害人体呼吸系统,危害心血管健康,加大癌症发病率,甚至影响 人类基因造成遗传疾病。 我国政府对二氧化硫和酸雨污染十分重视。1990年12月,国务院环委会 第19次会议通过了《关于控制酸雨发展的意见》;1992年国务院批准在贵州、长沙等九大城市开展征收工业烧煤二氧化硫排污费和酸雨结合防治试点工 作。1995年8月,全国人大常委会通过了新修订的《中华人民共和国大气污 染防治法》,规定在全国划定酸雨控制区和二氧化硫控制区,并在“两控区 ”内强化对二氧化硫和酸雨的污染控制。1998年1月,国务院正式批准《酸 雨控制区和二氧化硫控制区划分方案》。为了实现两控区的控制目标,国务 院文件还具体规定:新建、改造烧煤含硫量大于1%的电厂,必须建设脱硫的 设施。现有烧煤含硫量大于1%的电厂,要在2010年前分期分批建成脱硫设 施或采取其他相应结果的减排SO2的措施。 削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量, 是目前及未来相当长时间内我国环境保护的重要课题之一。 二氧化硫污染控制技术颇多,诸如改善能源结构、采用清洁燃料等,但 是,烟气脱硫也是有效削减SO2排放量不可替代的技术。烟气脱硫的方法甚 多,但根据物理及化学的基本原理,大体上可分为吸收法、吸附法、催化法 三种。吸收法是净化烟气中SO2的最重要的应用最广泛的方法。吸收法通常 是指应用液体吸收净化烟气中的SO2,因此吸收法烟气脱硫也称为湿法或湿 式烟气脱硫。 湿法烟气脱硫的优点是脱硫效率高,设备小,投资省,易操作,易控制, 操作稳定,以及占地面积小。目前常见的湿法烟气脱硫有:石灰石/石灰— —石膏法抛弃法、钠洗法、双碱法、威尔曼——洛德法及氧化镁法等。 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

煤中碳酸盐二氧化碳含量的测定方法

中华人民共和国国家标准 UDC662.64/.66 :543.06:546 .26-31煤中碳酸盐二氧化碳含量的测定方法GB218—83 代替GB218—63 Determination of carbon dioxide content in the mineral carbonates associated with coal 国家标准局1983-04-05发布1984-01-01实施 本标准适用于褐煤、烟煤及无烟煤中碳酸盐二氧化碳含量的测定。 1原理 用盐酸处理定量煤样,使煤中碳酸盐分解放出二氧化碳,由U形管中所装的碱石棉吸收,再根据U形管重量的增加,算出煤中碳酸盐二氧化碳含量的百分数。 2试剂 所用试剂除另有规定外,均为分析纯,所用的水均为无二氧化碳的蒸馏水。 注:将蒸馏水微沸15min,即可除去二氧化碳。 2.1盐酸(GB622—77):1∶3水溶液。 2.2硫酸(GB625—77)。 2.3无水氯化钙:粒度3~6mm。把粒状无水氯化钙,装入干燥塔或大型U形管内(每次可串联几个),再通入二氧化碳气流3h,放置一昼夜后,再通入干燥空气3h,以排除过剩的二氧化碳。然后装瓶密封备用。 2.4碱石棉:10~20目。或碱石灰。 2.5粒状无水硫酸铜浮石:把粒度为1.5~3mm的浮石浸入饱和硫酸铜(GB665—78)溶液中,煮沸2~3h,取出浮石置于搪瓷盘内,然后把瓷盘放入干燥箱中,在160~170℃下(经常搅拌)干燥到白色,保存在密闭瓶中备用。 3仪器及材料 3.1分析天平:精确到0.0002g。 3.2气体流量计:空气流量范围20~50mL/min。 3.3洗气瓶:容量250mL。 3.4梨形进气管。 3.5双壁冷凝器。 3.6带活塞漏斗。 3.7平底烧瓶:250~300mL。 3.8U形管或干燥塔。 3.9二通玻璃活塞。 3.10气泡计:容量10mL。

石灰石石膏湿法脱硫系统的设计计算

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。(4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分

SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其它污染物 烟气中的其它污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石,按以下反应式发生反应: SO2+H2O→2H++SO32- Ca CO3 +2HCl<==>CaCl2 + H2O+ CO2 Ca CO3 +2HF <==>CaF2 +H2O+ CO2 3.工艺流程

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

化工分析常用国标

GB/T 6144-1985 合成切削液 GB/T 13287-1991 液化石油气挥发性测定方法 GB/T 497-1977 标准正庚烷 GB/T 8120-1987 高纯正庚烷和异辛烷纯度测定法 (毛细管色谱法) GB/T 3143-1982 液体化学产品颜色测定法 (Hazen单位--铂-钴色号) GB/T 3723-1983 工业用化学产品采样安全通则 GB/T 4470-1998 火焰发射、原子吸收和原子荧光光谱分析法术语 GB/T 4472-1984 化工产品密度、相对密度测定通则 GB/T 4650-1998 工业用化学产品采样词汇 GB/T 4946-1985 气相色谱法术语 GB/T 5332-1985 可燃液体和气体引燃温度试验方法 GB/T 6040-1985 化工产品用红外光谱定量分析方法通则 GB/T 6041-1985 化工产品用质谱分析方法通则 GB/T 6283-1986 化工产品中水分含量的测定卡尔·费休法 (通用方法) GB/T 6284-1986 化工产品中水分含量测定的通用方法重量法 GB/T 6488-1986 化工产品折光率测定法 GB/T 6678-1986 化工产品采样总则 GB/T 6679-1986 固体化工产品采样通则 GB/T 6680-1986 液体化工产品采样通则 GB/T 6682-1992 分析实验室用水规格和试验方法 GB/T 7686-1987 化工产品中砷含量测定的通用方法 GB/T 8322-1987 分子吸收光谱法术语 GB/T 9008-1988 液相色谱法术语柱液相色谱法和平面色谱法 GB/T 14666-1993 分析化学术语 GB/T 15337-1994 原子吸收光谱分析法通则 GB/T 16631-1996 柱液相色谱分析法通则 GB/T 17519.1-1998 化学品安全资料表第一部分内容和项目顺序 GB 4655-1984 橡胶工业静电安全规程 GB 4962-1985 氢气使用安全技术规程 GB 13548-1992 光气及光气化产品生产装置安全评价通则 GB/T 3049-1986 化工产品中铁含量测定的通用方法邻菲罗啉分光光度法 GB/T 3050-1982 无机化工产品中氯化物含量测定的通用方法--电位滴定法 GB/T 3051-1982 无机化工产品中氯化物含量测定的通用方法--汞量法 GB/T 6709-1986 黄血盐钠含量的测定方法 GB/T 6710-1986 黄血盐钠水不溶物的测定方法 GB/T 6711-1986 黄血盐钠水分的测定方法 GB/T 12737-1991 化工产品中痕量硫酸盐测定的通用方法还原滴定法 GB/T 17518-1998 化工产品中硅含量测定的通用方法还原硅钼酸盐分光光度法 GB 209-1993 工业用氢氧化钠 GB 210-1992 工业碳酸钠 GB 320-1993 工业用合成盐酸

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

湿法烟气脱硫技术及工艺流程

湿法烟气脱硫技术及工艺流程 烟气脱硫技术品种达几十种,按脱硫进程能否加水和脱硫产物的干湿状态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术比较成熟,效率高,操作简单。 湿法烟气脱硫技术 优点: 湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点: 生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 原理: 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏

形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 湿法烟气脱硫技术及工艺流程 优缺点: 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理: 钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理: 柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

相关文档
最新文档