CSM双轮铣水泥土搅拌墙施工方案[优秀工程方案]

CSM双轮铣水泥土搅拌墙施工方案[优秀工程方案]
CSM双轮铣水泥土搅拌墙施工方案[优秀工程方案]

CS米工法施工方案

1.施工概况

1.1 施工范围概况

场地东侧高压线经业主协调后,可以进行搬迁,因此该段区域(下图圆框中所示)有条件进行槽壁加固.由于该区域距离围墙较近且邻近周边居民小区的通道,常规的三轴搅拌桩工艺无法施工,经我方与业主及设计单位协商后,决定使用CS米工法进行槽壁加固.

1.2施工现场布置

我方将根工程现场的施工需要,结合施工现场的实际情况,本着对现场合理利用、布局紧凑,有利于工程施工、现场管理及文明施工的原则进行布置.

1.实际施工需占用场地面积如下:

2.主机施工占地面积:沿止水帷幕墙15米宽条带(主机:10*5米);

3.泥浆搅拌站占地面积:12*12米

4.施工设备组装拆卸占地面积:40*15米

5.泥浆池占地面积:10*10米*2个

1.3施工现场管理

1)为了使施工现场按照施工进度计划的要求有条不紊的组织施工,施工现场总平面的使用必须严格执行统一管理的原则.施工现场总平面的使用根据进度计划安排的施工内容实施动态管理.

2)现场重要入口悬挂安全警示牌,教育职工维持良好的工作秩序和纪律.

3)凡进入现场的设备、材料必须遵守施工现场平面布置要求.

4)材料及时清理并摆放整齐.

4.5施工程序

根据各方讨论后决定的初步施工图来看,本工程止水帷幕的主要特点为:(1)本工程地处中心闹市区对文明施工及噪音控制要求高;

(2)施工周期短且施工精度要求高;

(3)现场存在多种施工工艺,施工时交叉配合施工.

结合上述工程特点:本项目计划自施工现场北侧侧为起点,由北向南进行施工.

2.施工方案

2.1施工机械的选择

根据本工程现场情况,选用适宜本工程止水帷幕特点的双轮铣深搅设备进行施工.双轮铣深搅设备主要具备以下特点:

(1)设备成桩深度大,最大深度48.5米,远大于常规设备;

(2)设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有“冷缝”概念,可实现无缝连接,形成无缝墙体;

(3)设备功效高,施工功效能达到同类设备的3倍左右;

(4)设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌;

(5)设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量;

(6)施工过程中几乎无振动;

(7)履带式主机底盘,可360度旋转施工,便于转角施工.可紧邻已有建构筑物施工,可实现零间隙施工;

(8)成墙厚度现有0.8米、1.0米、1.2米三种规格,本工程暂定成墙厚度为0.8米.

双轮铣深搅(CS米)设备的主要组成及控制室见下图,设备总重近180吨,高53.5米,单侧行走履带宽1.0米,对地面承载力要求较高.本场地在施工cs米工法前会对顶板采取加固措施,以保证大型设备正常行走.

针对本工程,双轮铣深搅设备组装成“35米米ode”,此模式下成墙深度可达35米.

CS米工法主机组成图解

主机操控平台

设备施工时主机及其附属设施平面布置见下图:

双轮铣深搅设备施工平面布置概化图

2.2施工方法

2.2.1施工工艺

CS米工法是一种创新性深层搅拌施工方法(见下图).此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术.通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程.与其他深层搅拌工艺比较,CS米工法对地层的适应性更高,可以切削坚硬地层(卵砾石地层、岩层).

CS米工艺来源

工艺来源及原理

其工艺流程见下图,

CS米工法施工工艺流程图

双轮铣深搅连续墙由一系列的一期槽段墙和二期槽段墙相互间隔组成,所谓一期槽段墙是指成墙时间相对较早的一个批次墙体,二期槽段墙是指成墙相对较晚的批次.如下图,图中头字母为“P”的系列为一期槽段墙,头字母为“S”的系列为二期槽段墙.当一期槽段墙达到一定硬度后再施工二期槽段墙,这种施工方式被称为“硬铣工法”.

“硬铣工法”槽段示意图

本次施工采用“硬铣工法”,其优点在于:二期槽段墙施工时不会将泥块掺杂到相邻已经完成的一期槽段墙内,保证墙体质量;一期槽段墙硬化后,施工二期槽段时,设备接触地面范围内地耐力不会大幅度下降,利于保证设备稳定性.

2.2.2施工步骤

第一步,CS米工法墙定位放样;

第二步,预挖导沟(导沟宽1.0~1.5米,深0.8~1.0米);

提升喷浆搅拌成墙

CSM工法设备就位

带水切削搅拌下沉

水量、灰量计量

设备移位,施工下墙段

制配水泥浆液

泵送水泥浆液高压空气

空气压缩机

第三步,CS米工法设备就位,铣头与槽段位置对正; 第四步,铣轮下沉注水切铣原位土体至设计深度;

第五步,铣轮提升注水泥浆同步搅拌成墙;

第六步,钻杆清洗,废泥浆收集,集中外运;

第七步,移动至下一槽段位置,重复上述六个步骤.

2.2.3 施工参数

(1)水泥浆搅拌工艺参数

参数名称水泥型号水灰比数值P.O 42.5 0.8~1.5

(2)双轮铣切削注浆搅拌参数

水泥掺入比:20%(暂定,实际施工根据设计图纸要求);

单槽段水泥土墙尺寸:2.8×0.65米;

槽段间套铣宽度:200米米;

向下切铣速度:小于1.2米/米in(硬地层取小值,软地层取大值);

向上切铣速度:小于1.8米/米in(根据注浆量选择速度);

铣轮型号(成墙厚度):850米米;

双轮铣深搅墙底埋深:35.00米;

3.施工注意事项

(1)铣头定位 将及其的铣头定位于墙体中心线和每幅标线上.偏差控制在±5厘米以内;

(2)垂直的精度 对于凯氏杆系统的垂直度,采用经纬仪作三支点桩架垂直度的初始零点校准,由支撑凯氏杆的三支点辅机的垂直度来控制;而对于钢索吊挂系统则安装在铣头沿高度的左右两侧的2块导向板和前后两侧的4块纠偏板来控制.操作员通过触摸屏,控制调整铣头的姿态,从而有效地控制了 槽形的垂直度.其墙体垂直度可控制在3‰以内;

(3)铣削深度 控制铣削深度为设计深度的±0.2米 .为详细掌握地层性状及墙体底线高程,应沿墙体轴线每间隔50米布设一个先导孔,局部地段地质条件变化严重的部位,

指导施工.

(4)铣削速度 铣头与基土接触,旋转速度为27转/1.0 米/米in.对墙底深度以上2~3 后,钟之间,形成真空负压,

(5)注浆制浆桶制备的浆液放入到储浆桶,经送浆泵和管道送至铣削头.注浆量的大小由装在操作台的无级电机调速器和自动瞬时流速计及累计流量计监控;一般根据钻进尺速度与掘削量在80~320L/米in内调整.在掘进过程中按规定一次注浆完毕.注浆压力一般为2.0~3.0米Pa.若中途出现堵管、断浆等现象,应立即停泵,查找原因进行修理,待故障排除后再掘进搅拌.当因故停机超过半小时时,应对泵体和输浆管路妥善清洗;

(6)供气由空气压缩机制成的气体经管路压至铣头,其量大小由手动阀和气压表配给;全程气体不得间断;控制气体压力为0.3~0.6米Pa左右;

(7)成墙厚度为保证成墙厚度,应根据铣头刀片磨损情况定期测量刀片外径,当磨损达到1厘米时必须对刀片进行修复;

(8)墙体均匀度为确保墙体质量,应严格控制掘进过程中的注浆均匀性以及由气体升扬置换墙体混合物的沸腾状态;

(9)墙体连接每幅间墙体的连接是地下连续墙施工最关键的一道工序,必须保证充分搭接.相对单头或多头钻成墙时,

存在接头多,浪费严重,并且在接头处易渗水,

防渗效果欠佳.而液压铣削深搅施工工艺形

成矩形槽段,接头少,浪费小.(详见图液压铣

削与传统螺旋深搅对比图)在施工时严格控

制墙(桩)位并做出标识,确保搭接在20厘米

以上,以达到墙体整体连续作业;严格与轴线

平行移动,以确保墙体平面的平整(顺)度.

液压铣削与传统柱列式深搅对比图

(10)水泥掺入比水泥掺入比视工程情

况而定,本工程暂定为20%,正式施工时按设计要求的掺量施工;

(11)水灰比一般控制在1.0-2.0左右;或根据地层情况经试验确定分层水灰比;

(12)浆液配制浆液不能发生离析,水泥浆液严格按预定配合比制作,用比重计或其它检测手法量测控制浆液的质量.为防止浆液离析,放浆前必须搅拌30s再倒入存浆桶;浆液性能试验的内容为:比重、粘度、稳定性、初凝、终凝时间.凝固体的物理性能试验为:抗压、抗折强度.现场质检员对水泥浆液进行比重检验,监督浆液质量存放时间,水泥浆液随配随用,搅拌机和料斗中的水泥浆液应不断搅动.施工水泥浆液严格过滤,在灰浆搅拌机与集料斗之间设置过滤网.浆液存放的有效时间符合下列规定:1)当气温在10oC以下时,不宜超过5h.2)当气温在10oC以上时,不宜超过3h.3)浆液温度应控制在5o~40oC以内,超出规定应予以废弃.浆液存放时间过超过以上规定的有效时间,作废浆处理;

(13)特殊情况处理供浆必须连续.一旦中断,将铣削头提至基面,待恢复供应时再下放铣削.当因故停机超过30米in,对泵体和输浆管路妥善清洗.当遇地下构筑物时,用采取高喷灌浆对构筑物周边及上下地层进行封闭处理;

(14)施工记录与要求及时填写现场施工记录,每掘进1幅位记录一次在该时刻的浆液比重、下沉时间、供浆量、供气压力、垂直度及桩位偏差.

CSM工法水泥土地下连续墙基坑止水帷幕

CSM工法水泥土地下连续墙基坑止水帷幕 一、CSM工法来源 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。与其他深层搅拌工艺比较,CSM工法对地层的适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。 CSM工艺来源

工艺来源及原理 二、双轮铣深搅设备(CSM)特点: a、设备成桩深度大,最大深度49米,远大于常规设备; b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体; c、设备功效高,原材料(水泥等)利用率高; d、设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌; e、设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; f、施工过程中几乎无振动; g、履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。 双轮铣深搅(CSM)设备的主要组成及控制室见下图

CSM工法主机组成图解 主机操控平台 设备施工时主机及其附属设施平面布置见下图:

双轮铣深搅设备施工平面布置概化图 三、TRD工法 TRD工法(Trench-Cutting Re-mxing Deep Wall Method)是一种由主机带动插入地基中的链锯式切割箱横向移动、切割及灌注水泥浆,在槽内进行混合、搅拌、固结原来位置上的岩土,形成等厚水泥土地下连续墙的工艺。 四、TRD工法设备特点: a、适用范围广:整机高度仅10.1m,特别适宜架空高压线下方等高度受限部位施工。 b、超群的设备稳定性:通过低重心设计,与其他方法相比,机械设备的高度大大降低,施工安全性提高。 c、高精度施工:在水平方向和垂直方向可以进行高精度施工。 d、连续墙深度方向的品质均一,离散性小; e、适应地层比较广,对硬质地层(硬土、砂卵砾石、软岩等)具有良好的挖掘能力; f、止水性能优异,墙体等厚,无缝联接;

水泥搅拌桩施工方案(干法)

水泥土(干法)搅拌桩施工方案 1、施工工艺流程 深搅桩施工工艺流程图见下图(图1) 2、施工机械选择 本工程采用干喷法施工。用于干喷法施工的机械:分别有(CPP-5)、(CPP-7)、(FP-15)、(FP-18)、(FP-25)等机型。本工程采用(CPP-5)深层搅拌桩机。(CPP-5)的设备施工深度可达18m,单桩截面积=0.22m2,喷灰钻头呈螺旋形状。送灰器容量1.2t,配置1.6m3/S空压机,最远送灰距离50m。

图1:搅拌桩施工流程 主要工程机械表表表2 3、施工准备 在施工前完成如下准备工作: (1)搞好场地的三通(路通、水通、电通)一平(清除施工现场的障碍物),查清地下管线的位置。 (2)放线:按设计图纸放线,准确定出各搅拌桩的位置;搅拌桩桩位应每隔5根桩采用竹片或板条进行现场定位。根据需要改动原设计位置的,需取得设计、监理等的同意后,方可执行。 (3)作好施工准备,包括供水供电线路、机械设备施工线路、机械设备放置位置、运输通道等。 (4)所需材料提前进场,水泥及外加剂必须有出厂合格证,水泥送试验室检验合格后方能使用。 (5) 施工前测量人员先校核施工图纸,按图纸确定桩基工程的位置和标高。施工放样记录以书面形式上报监理工程师,待监理工程师检查认可后方进行下一道工序施工。

4、主要施工工序 (1) 深层搅拌机定位、调平:将深层搅拌机用钢丝绳吊挂在起重机上, (2)预搅下沉至设计加固深度:用输浆胶管将储料罐砂浆泵与深层搅拌机接通,开通电动机,搅拌机叶片相向而转,借设备自重,以O.38~O.75m/min的速度沉至要求的加固深度。 (3)配制水泥粉: (4)边喷粉边搅拌提升至预定的停灰面: 以0.3~O.5m/min的均匀速度提起搅拌机,与此同时开动砂浆泵,将水泥粉从深层搅拌机中心管不断压入土中,由搅拌叶片将水泥粉与深层处的软土搅拌,边搅拌边喷粉直到提至地面,即完成一次搅拌过程。 (5) 重复搅拌下沉至设计加固深度: 用同法再一次重复搅拌下沉和重复搅拌喷浆上升,即完成一根柱状加固体,外形呈8字形(轮廓尺寸:纵向最大为1.3m,横向最大为0.8m),一根接一根搭接,搭接宽度根据设计要求确定,一般宜大于200mm,以增强其整体性,即成壁状加固,几个壁状加固体连成一片,即成块状。 (6)搅拌桩的桩身垂直偏差不得超过1%,桩位的偏差不得大于50mm,成桩直径和桩长不得小于设计值。当桩身强度及尺寸达不到设计要求时,可采用复喷的方法。搅拌次数以一次喷粉,一次搅拌或二次喷粉,三次搅拌为宜,且最后一次提升搅拌宜采用慢速提升。 (7)施工时设计停灰面一般应高出基础底面标高O.5m,在基坑开挖时,应将高出的部分挖去。 (8)施工时因故停喷粉,宜将搅拌机下沉至停浆点以下O.5m,待恢复供粉时,再喷粉提升。若停机时间超过3h应清洗管路。 (9)壁状加固时,桩与桩的搭接时间不应大于24h,如间歇时间过长,应采取钻孔留出榫头或局部补桩、注粉等措施。 (10)每天加固完毕,应用水清洗贮料罐、砂浆泵、深层搅拌机及相应管道,以备再用。 (11)搅拌桩施工完毕应养护14d以上才可开挖。基坑基底标高以上300mm,应采用人工开挖。 (12)喷粉施工前应仔细检查搅拌机械、供粉泵、送气(粉)管路、接头和阀门的密封

CSM桩基坑支护施工工法

CSM桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1 前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2 工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3 适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4 工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5 施工工艺流程及操作要点 5.1施工工艺流程 CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12 成墙示意图 步骤1:将深搅铣轮对正待施工的地下墙体

的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。 图5.1-13 双铣轮施工示意图 步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。搅拌轮的旋转能够充分保证已搅拌过的流塑态的水泥浆与土壤的混合体与新注入的水泥再次均匀的混合。 图5.1-14 水泥浆注入图 5.2 施工顺序 CSM工法(双轮铣深搅工法)施工的水泥土连续墙是由一系列的一期槽与二期槽所构成。套铣邻近新完成槽段的工艺称为“软铣工法”。双轮铣亦可套铣已具有一定硬度的一期槽段,称“硬铣工法”,施工顺序如右图所示:P槽段为一期槽,S槽段为二期槽。 5.3型钢下插施工 5.3.1施工组织 本工程工法桩采用H型钢,型钢间距参考图纸资料,型号为700×300×13×24。 型钢插入宜在搅拌桩施工结束后3h内进行,故与搅拌桩施工交叉进行。 5.3.2下插前期准备 (1)如投入H型钢未达到设计长度,应在搅拌桩施工前提前进场拼接。 (2)H型钢拼接后型钢表面采用涂刷减摩剂,以便下放过程顺利。 5.3.3施工工艺流程 图5.1-15 施工工艺流程图 5.3.4型钢的加工制作 型钢宜采用整材,因施工需要采用分段焊接时,采用坡口焊接,焊缝质量等级不得低于二级;单根型钢中焊接接头不宜超过2个,焊接接头位置应避开弯矩最大处,相邻的接头竖向位置宜相互错开,竖向错开距离不宜小于1m。 5.3.5涂刷减摩剂 型钢起拔宜采用液压起拔机,型钢在使用前必须涂刷减摩剂,以利下插,要求型钢表面均匀涂刷减摩剂。 (1)清除型钢表面的污垢及铁锈。 (2)减摩剂必须用电热棒加热至完全融化,用搅棒搅时感觉厚薄均匀,才能涂敷于

型钢水泥土搅拌墙三级技术交底

三级技术交底记录
施工单位:中交一公局集团有限公司
单位工程
施工部位
施工内容
工程数量
进度要求
编号:
交底时间
型钢水泥土搅拌 接受交底部门:

接受班组:
施工
准备
及施
工 方 一、施工准备
法和
有关 措施
1、技术准备
(1)技术人员根据设计图纸和测量控制点放出桩位,桩心距做好
标记,保证搅拌桩定位准确,并经监理复核验收签证。
(2)施工前对现场施工员、质检员、施工班组进行技术交底。
2、材料准备
水泥:
型钢:
3、机械准备
施工机械进场后,进行组装并试运转正常。
二、施工方法
1、CSM 搅拌墙施工
(1)工艺流程
1

CSM工法机组装
测量放样
工法机就位,校正复核桩机水平和 垂直度
开启空压机,注水至桩机铣头
下一个施工循环
二次搅拌下沉至设计墙底 二次搅拌喷水泥浆提升至设计墙顶
施工完毕
型钢插入
CSM工法机撤出
(2)施工顺序 双轮铣水泥土搅拌墙施工按下图顺序进行,其中阴影部分为重复套 钻,保证墙体的连续性和接头的施工质量,双轮铣水泥土搅拌墙的搭 接以及施工设备的垂直度补正是依靠重复套钻来保证,以达到止水的 作用。本工程采用顺槽式单孔全套打复搅式套叠形,示意如下图所示:
2

(3)测量放线 ①、首先通过对总平面图和设计图纸的学习,了解工程总体布局、 工程特点和设计意图。并了解工程周围环境、现场地形等情况。 ②、将合同主体单位提供的水准点、坐标进行复核无误后,及时办 好签证手续。 ③、测设出本次水泥土搅拌墙施工内边线或中心线控制点,并进行 有效的保护,做到施工时准确定位。 (4)开挖沟槽 根据基坑围护边线用 0.4m3 挖机开挖槽沟,沟槽尺寸为 1000× 1200mm,并清除地下障碍物,开挖沟槽土体应及时处理,以保证双轮铣 水泥土搅拌墙正常施工。 (5)CSM 工法机就位 由当班班长统一指挥桩机就位,桩机下铺设路基板,移动前看清上、 下、左、右各方面的情况,发现有障碍物应及时清除,移动结束后检 查定位情况并及时纠正;工法机应平稳、平正,并用全站仪或线锤进 行观测以确保钻机的垂直度;水泥土搅拌墙定位偏差应小于 50mm。 (6)浆液配置及注浆 试验段所用水泥为 P.O42.5 普通硅酸盐水泥,水泥掺量不小于 20%, 水泥浆液配比须根据现场试验进行修正,水灰比:1.5。每立方水泥浆 中各组分含量为水:水泥:土:外加剂=870:388:1650:6.3(质量比)。
3

水泥搅拌桩施工专项施工方案

亚洲开发银行贷款广西梧州城市发展项目 红岭3#东段、18#道路建设工程 红岭18#道路建设工程 软基处理(水泥搅拌桩) 施工专项方案 柳州市市政工程集团有限公司 2011年12月 批准: 审核: 编制: 目录 一、概况 0 二、施工前准备工作 (1) 三、施工方法 (1) 四、质量检验要点 (2) 五、施工机械 (2) 五、施工工艺及技术措施 (3) 六、保证质量技术措施 (5) 七、雨天施工措施 (7) 八、文明施工保证措施 (7) 一、概况 水泥搅拌桩施工位于本标段红岭18#路0+650~0+775段、1+065~1+160段。由于该两段道路施工范围内经过冲沟鱼塘等低洼地带表层淤泥土质较厚,素土回填时间较短,素土深

度大。设计桩长0+650~0+775段为15.5m,1+065~1+160段为15m,采用梅花型布置,桩距为1.2m,桩径为50cm,共计109650m。设计图要求:90d龄期的无侧限抗压强度≥1.8Mpa,初定掺灰量15%,复合地基承载力要求≥120Mpa,单桩承载力要求≥141.1KN。水泥搅拌桩停浆面应高于桩顶设计高层的500mm。 深层搅拌桩是利用水泥作为固化剂,适当掺入缓凝早强剂,通过特制的深层搅拌机械,在地基深处就地将软土和固化剂强制搅拌均匀,利用固化剂作用和软土产生一系列化学、物理反应,使软土硬结成整体,形成柱状体是一种介于刚性和柔性桩之间的有一定压缩性的柱桩,具有一定的强度。深层搅拌法施工具有无震动、无噪音、无环境污染和工程进度快,而且造价低廉等优点,是一种较理想的地基加固处理方法。 二、施工前准备工作 1、详细查阅地质资料,包括加固地基范围内的成份、厚度;软土分布范围、厚度、含水量(饱和度)、有机质含量和地下水侵蚀性;确定工艺参数。 2、做好水泥、外渗剂、土的配合比的试配工作,为施工时提供合理的施工配合比,确定施工工艺。 3、做好三通一平、电、水、道路畅通,场地平整包括清除地上、地下障碍物,对低洼不平的场地应回填粘性压实,如遇边坡地区施工应有护坡措施。 4、在水泥搅拌桩施工前,将本标18#路设计桩位段开挖至设计桩高程高50cm,再进行水泥搅拌桩施工。 4、对轴线、桩位应复查无误或在规范规定的允许范围内。 5、落实施工组织措施,组织劳动力,准备机具,施工机械进场组装,试运转正常。 三、施工方法 一、施工工艺 1、就位对中调平:深层搅拌机械到达指定位置并对准桩位中心,机座调正水平。 2、予搅下沉:启动深层搅拌机电机,使钻头钻杆钻入土层到达桩底设计标高。 3、制备水泥浆固化剂:深层搅拌机予搅钻入土层时,后台应同时制作水泥浆,待注浆时,将固化剂倒入集料斗中。 4、喷浆、搅拌、提升;深层搅拌机钻头钻到设计标高,开启灰浆泵,待浆液到达喷浆口喷浆时,按设计确定的提升速度,边喷浆、边提升搅拌至桩顶设计标高。 5、重复搅拌:深层搅拌机喷浆口提升到设计标顶高时,停止喷浆。为使软土和灰浆搅拌均匀。再次将深层搅拌机下沉至设计要求的深度,再将深层搅拌机继续边搅拌边提升出地面,关闭灰浆泵。 6、移位:深层搅拌机械移位到下一根桩位,重复下述工艺流程,继续第二根桩施工。

双轮铣水泥土搅拌墙(CSM)施工方案

CSM工法施工方案 1.施工概况 1.1 施工范围概况 场地东侧高压线经业主协调后,可以进行搬迁,因此该段区域(下图圆框中所示)有条件进行槽壁加固。由于该区域距离围墙较近且邻近周边居民小区的通道,常规的三轴搅拌桩工艺无法施工,经我方与业主及设计单位协商后,决定使用CSM工法进行槽壁加固。 1.2施工现场布置 我方将根工程现场的施工需要,结合施工现场的实际情况,本着对现场合理利用、布局紧凑,有利于工程施工、现场管理及文明施工的原则进行布置。 1.实际施工需占用场地面积如下: 2.主机施工占地面积:沿止水帷幕墙15m宽条带(主机:10*5m); 3.泥浆搅拌站占地面积:12*12m 4.施工设备组装拆卸占地面积:40*15m 5.泥浆池占地面积:10*10m*2个 1.3施工现场管理 1)为了使施工现场按照施工进度计划的要求有条不紊的组织施工,施工现场总平面的使用必须严格执行统一管理的原则。施工现场总平面的使用根据进度计划安排的施工内容实施动态管理。 2)现场重要入口悬挂安全警示牌,教育职工维持良好的工作秩序和纪律。 3)凡进入现场的设备、材料必须遵守施工现场平面布置要求。 4)材料及时清理并摆放整齐。

4.5施工程序 根据各方讨论后决定的初步施工图来看,本工程止水帷幕的主要特点为:(1)本工程地处中心闹市区对文明施工及噪音控制要求高; (2)施工周期短且施工精度要求高; (3)现场存在多种施工工艺,施工时交叉配合施工。 结合上述工程特点:本项目计划自施工现场北侧侧为起点,由北向南进行施工。 2.施工方案 2.1施工机械的选择 根据本工程现场情况,选用适宜本工程止水帷幕特点的双轮铣深搅设备进行施工。双轮铣深搅设备主要具备以下特点: (1)设备成桩深度大,最大深度48.5米,远大于常规设备; (2)设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有“冷缝”概念,可实现无缝连接,形成无缝墙体; (3)设备功效高,施工功效能达到同类设备的3倍左右; (4)设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌; (5)设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; (6)施工过程中几乎无振动; (7)履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; (8)成墙厚度现有0.8m、1.0m、1.2m三种规格,本工程暂定成墙厚度为 0.8m。 双轮铣深搅(CSM)设备的主要组成及控制室见下图,设备总重近180吨,高53.5m,单侧行走履带宽 1.0m,对地面承载力要求较高。本场地在施工csm 工法前会对顶板采取加固措施,以保证大型设备正常行走。

深层水泥搅拌桩施工方案

深层水泥搅拌桩施工方案 一、施工准备工作 1、水泥送检 施工前将进场使用的水泥等材料送至当地有资质的建材质监部门进行复验,同时材料应具备出厂合格证、自检报告、生产日期、批号等。材料必须经检验合格后方可投入使用。作好水泥供应计划。 2、桩位放样 根据测量点准确放好桩位,并复检,做好桩位定点标记。 3、试桩施工 在正式施打搅拌桩前,为更加熟悉本地块的地层物理力学性质,掌握更准确的施工参数,同时因工期较紧,而设计要求承载力检验应采用复合地基载荷试验和单桩载荷试验。载荷试验的检验数量总桩数的0.5%~1%。我单位计划在地基旁进行试桩施工,拟安排搅拌桩机试桩2根,确定钻进速度、地层变换电流变化值、喷浆量大小、桩的深度、成桩时间、搅拌次数,为正式施工提供较准确的依据,试验桩3~4根,以此作为桩基承载力试验。 4、技术交底 由项目总工程师针对设计意图及技术要求,结合试桩资料对质检员、施工员、技术员进行施工技术交底,其内容应结合设计图纸要求和施工要求进行。对每一个施工质量关键点,有疑问的地方要达到一致的认识。然后由施工员、质检员对操作人员进行技术交底和安全技术交底。根据施工图纸,大约300根水泥搅拌桩,主要施工参数和设计要求如下: 布置方式:正方形布桩,间距1.0米 桩径:Φ600mm, 桩位偏差:不得大于50mm 搅拌桩的垂直偏差:不得超过1% 桩长:有效桩长为5~6.5米左右(从站房独立基础底板地算起) 固化剂:强度等级42.5级普通硅酸盐水泥 单桩喷浆量:不少于60kg/m 水灰比:0.55~0.65范围内

水泥掺量:21%(占被加固湿土质量的比例) 停灰面:高于桩顶标高500mm 送浆管长度:不大于60m 成桩工艺:四喷四搅提升速度不得超过1.2m/min 承载力设计值:处理后单桩竖向承载力特征值不低于120KN。复合地基的承载力特征值fspk≥140KPa 二、施工方法及工艺 水泥土喷浆搅拌法加固软土地基是利用水泥和水按一定比例均匀搅拌成为固化剂的浆液,通过特制的深层搅拌机械,在地基深处就地将软土和浆液进行强制搅拌,经拌和后的混合物发生一系列物理化学反应,使软土硬结成具有整体性、水稳定性和一定强度的加固体。 1、施工方法 由于本工程工期紧,为便于进行施工质量、进度和安全管理,拟考虑2台桩机进行施工。 2、施工步骤及工艺要求 (1)清除障碍:清除施工范围内的场地及地下障碍物。 (2)拆除路面、平整场地:先将施工场地加以平整,确保桩机正常行走,工作面宽度必须保证桩机正常施工,再按设计图纸准确测放桩位轴线后,桩机方可进入施工现场,施工要求水源充足,合理布置施工现场。 (3)桩机就位:按照测放的桩位,将桩机移至桩位上,桩尖对准桩位,桩位偏差不大于50mm,调平机台,以线垂调整机身垂直度,垂直度偏差小于1.0%。 (4)配制水泥浆:接照设计要求的掺入比、桩长,将计算出来的42.5级普硅水泥用量放入搅拌池中,加计算出来的水进行搅拌配制浆液,水灰比为:0.55~0.65,浆液的搅拌时间大于3分钟,不长于2小时,采用两次搅拌法,按设计掺入量不少于21%加固湿土质量的比例。 (5)搅拌成桩:将桩机钻头尖部对准桩位下钻,一边打开送浆泵送浆至钻头出浆口,一边搅拌下钻,一边喷浆至设计持力层后边搅拌边提升送浆,直至桩顶标高后,再重复工作一次。整个过程需均匀喷浆,共四喷四搅,喷浆量要严格根据电机调速器进行均匀调整。 (6)成桩后,关闭送浆泵,移机至下一桩位进行施工。

CSM水泥土地下连续墙基坑止水帷幕

CSM水泥土地下连续墙基坑止水帷幕 CSM工法就是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 一、CSM工法来源 CSM工法就是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。与其她深层搅拌工艺比较,CSM工法对地层得适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。 CSM工艺来源

工艺来源及原理 二、双轮铣深搅设备(CSM)特点: a、设备成桩深度大,最大深度49米,远大于常规设备; b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体; c、设备功效高,原材料(水泥等)利用率高; d、设备对地层得适应性强,从软土到岩石地层均可实施切削搅拌; e、设备得自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; f、施工过程中几乎无振动; g、履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。 双轮铣深搅(CSM)设备得主要组成及控制室见下图

CSM工法主机组成图解 主机操控平台 设备施工时主机及其附属设施平面布置见下图:

双轮铣水泥土搅拌墙CSM施工方案

双轮铣水泥土搅拌墙C S M 施工方案 The latest revision on November 22, 2020

CSM工法施工方案 1.施工概况 施工范围概况 场地东侧高压线经业主协调后,可以进行搬迁,因此该段区域(下图圆框中所示)有条件进行槽壁加固。由于该区域距离围墙较近且邻近周边居民小区的通道,常规的三轴搅拌桩工艺无法施工,经我方与业主及设计单位协商后,决定使用CSM工法进行槽壁加固。

施工现场布置 我方将根工程现场的施工需要,结合施工现场的实际情况,本着对现场合理利用、布局紧凑,有利于工程施工、现场管理及文明施工的原则进行布置。 1.实际施工需占用场地面积如下: 2.主机施工占地面积:沿止水帷幕墙15m宽条带(主机:10*5m); 3.泥浆搅拌站占地面积:12*12m 4.施工设备组装拆卸占地面积:40*15m 5.泥浆池占地面积:10*10m*2个 施工现场管理 1)为了使施工现场按照施工进度计划的要求有条不紊的组织施工,施工现场总平面的使用必须严格执行统一管理的原则。施工现场总平面的使用根据进度计划安排的施工内容实施动态管理。 2)现场重要入口悬挂安全警示牌,教育职工维持良好的工作秩序和纪律。 3)凡进入现场的设备、材料必须遵守施工现场平面布置要求。 4)材料及时清理并摆放整齐。 施工程序 根据各方讨论后决定的初步施工图来看,本工程止水帷幕的主要特点为:(1)本工程地处中心闹市区对文明施工及噪音控制要求高; (2)施工周期短且施工精度要求高; (3)现场存在多种施工工艺,施工时交叉配合施工。 结合上述工程特点:本项目计划自施工现场北侧侧为起点,由北向南进行施工。 2.施工方案 施工机械的选择

道路水泥搅拌桩施工方案

道路水泥搅拌桩施工方 案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

目录 一、工程概况 (1) 二、工程地质条件 (1) 三、施工计划 (1) (一) 施工机械 (1) (二) 工艺流程 (2) (三) 施工经济技术措施 (2) (四) 施工质量控制 (3) 四、工程质量控制 (5) 五、施工安全保证措施 (6) 六、文明施工管理措施 (7) 附表一:危害辨识风险评价表 (9) 附图一:打桩路线图 (12)

一、工程概况 110kv沙腰变电站站区道路、化粪池、事故油池位于软土地基之上,所以地基须加固方能满足承载要求,设计采用水泥搅拌桩复合地基加固的软基处理方式。水泥搅拌桩采用D500mm桩径,固化材料采用 R普通硅酸盐水泥。搅拌桩入土深度为 12 m。 二、工程地质条件 站区道路、化粪池、事故油池工程地质条件(详见地质勘察报告书)三、施工计划 据设计工程量及业主工期要求,拟进搅拌桩机及其配套设备1台套。本搅拌桩工程施工计划如下: (一)施工机械 采用铁道部武汉工程研究所制造的PH-5A型桩机二台套,其工艺参数如下: 压桩泵采用UBJ2-150型,送浆工艺参数如下:

二)工艺流程 1、桩机定位:挪动桩机液压步履,使钻头中心对准桩位,对中误差< 50mm,然后靠升降四个液压支腿调平桩机,使钻杆铅垂于地下,垂直度偏差≤%。 2、本搅拌桩设计要求采用“四喷四搅”法施工,首先钻杆下沉到设计深度,边下沉边喷浆,然后上升,在提起的过程中完成一次注浆过程;重复上一个过程,完成桩过程。由于有淤泥,局部采用“六喷六搅”。 3、本次搅拌桩施工要先进行试桩,选择两条有代表性的桩进行试桩,三天后对该桩抽芯进行观感评价,合格后才能进行大面积的施工。 4、预搅下沉:开启灰浆泵,将预制好的水泥浆液通过输浆管泵送至钻杆顶水笼头,再经过空钻杆送至下端钻头,由钻头浆眼喷出,与土体拌合。边钻进、边喷浆,泵压一般。 5、钻至设计桩深,换挡反转提升,仍继续喷浆搅拌。 6、成桩:喷浆完毕,桩机挪位进入下一桩体。 7、清洗:施工停顿间隔时间较长,则需泵入清水,清除管中残存水 泥浆。8、搅拌桩的检测:须达到水泥搅拌桩补强要求。 (三)施工经济技术措施

双轮铣深搅施工组织设计

CSM工法搅拌墙专项施工方案 1施工测量方案 1.1平面测量控制 由已知平面控制点向场地布设一条闭合平面导线。在桩基施工过程中,轴线或桩位投点采用极坐标法,根据场内外闭合导线及基准点,投放各主轴线控制点,然后引测出各桩位点。 施工过程中,场内基准点可能因桩基施工影响而偏移,必须根据业主提供的原点坐标对场内外闭合导线、轴线基准控制点进行复核。 1.2 高程测量 在场区内侧布设一条闭合水准网,并与已知高程点联测,沿施工方向每隔50m设高程控制点,并用红油漆作出醒目标志。再由水准点向钻孔点传递高程,并在钻孔护筒内侧做上油漆醒目标志;定期对高程控制点进行复核。 2 CSM搅拌墙方案 本工程主要支护体系采用的是CSM水泥土搅拌墙内插H型钢支护形式,CSM 搅拌墙厚850mm。 3主要机具的选择 综合考虑本工程的地质条件、设计桩型特点,其主要施工机械设备,我公司拟定选用一台CSM水泥土搅拌桩机进行施工。施工工艺流程图(见下图)

4施工工艺流程 CSM施工插入H型钢施工内支撑施工地下结构

导槽开挖 测量定位 孔 H型钢受力芯材制作和安设 施工深基坑的其它部分 换撑及回填土 H型钢拔出 5主要施工要点

5.1导槽开挖 1、导槽用于汇集多余的泥浆,开挖宽度为1.0m,深度1.5m,内外两侧用HN700×300H型钢作为导墙及后期插入H型钢的定位,导墙内边线应在一条线上,每间隔2~3m用钢筋横向加固,导墙外侧应用粘土填实。 2、根据控制点和控制轴线,测放导墙的中心线,导墙的中心线应和止水墙中心线重合,中心线允许偏差为±10mm。导墙宽度应比止水墙设计厚度加宽50mm,其净距允许偏差为±10mm。 3、导墙转角处要焊接牢固,施工过程中,应及时校正导墙的定位尺寸,倾斜度偏差不大于0.5%。导墙上按型钢安放位置设置定位标志。 4、导墙上的泥土应及时清除,保证定位标志清晰。 5.5.2钻机就位 1、CSM钻机就位前,应用仪器复核墙宽的定位线,防止堆积土体的挤压或附近成墙的扰动,造成定位点移位。 2、CSM钻机就位时,分别在机前和机侧用吊锤观察,指挥调整机架的垂直度,

水泥土搅拌桩施工方案

目录 §1工程概况 §2 编制依据§3 工程地质情况 §4 项目施工管理组织机构 §5 三轴水泥搅拌施工流程和施工方法 §6 质量保证措施 §7 安全生产措施 §8技术管理措施 §9 应急措施 §10 施工进度计划

§1 工程概况 §1.1项目概况 1、建筑名称:嘉悦中心·梓园商住项目 2、项目位置:诸暨市人民北路东侧、荷花路西侧 3、建设单位:浙江嘉城置业有限公司 4、围护设计单位:浙江省建筑设计研究院 5、监理单位:绍兴市城建监理有限公司 6、施工单位:浙江万达建设集团有限公司 §1.2基坑概况 场地地面高程±0.000相当黄海高程9.500。场地原为诸暨市毛纺厂厂区,拆除后进行场地平整,场地局部堆积大量建筑垃圾,场地内有一条污水管道通过,场地环境条件较差。 §2 编制依据 2.1 本工程基坑围护设计图纸;本工程岩土勘察报告。 2.2 国家标准《建筑地基基础工程施工质量验收规范》(GB50202-2002); 2.3 国家标准《建筑工程施工质量验收统一标准》(GB50300-2001); 2.4 国家标准《建筑地基基础设计规范》(GB50007-2011); 2.5 国家标准《工程测量规范》(GB50026-2007); 2.6 浙江省标准《建筑基坑工程技术规程》(DB33/T1008-2000) 2.7 《建筑基坑工程技术规范》(YB9258-97) 2.8《建筑机械使用安全技术规程》(JGJ33-2012) 2.9《施工现场临时用电安全技术规范》(JGJ46-2005) 2.10浙江省工程建设标准《型钢水泥土搅拌墙技术规程》(DB33/T 1082-2011)

第一部分SMW工法水泥土搅拌连续墙施工方案

第一部分 基坑围护SMW工法 施 工 组 织 设 计 编制单位:杭州 编制日期:二○○九年二月一十八日

目录 一、编制依据 (3) 二、工程概况 (3) 1、工程概述 (3) 2、SMW工法设计 (6) 3、工程特点和难点 (9) 三、总体部署 (11) 1、施工方案设计 (11) 2、SMW工法的主要工序 (13) 3、SMW工法的施工进度网络计划 (13) 4、SMW工法平面布置 (14) 5、SMW工法施工主要设备表 (17) 6、SMW工法用工计划 (18) 四、工程测量 (18) 1、定位方法 (18) 2、检测维护 (19) 五、SMW工法 (19) 1、工艺参数 (19) 2、施工流程 (19) 3、SMW工法 (20) 六、质量保证措施 (26) 1、允差范围 (26) 2、控制措施 (27) 七、安全生产措施 (30) 1、安全教育 (30) 2、安全管理 (30) 八、季节施工 (33) 1、雨季施工的措施 (33) 2、夜间施工的措施 (33) 九、施工组织 (34) 1、项目部组成 (34) 2、项目管理 (34) 3、项目管理目标 (35) 十、对后续工序施工的建议 (35) 1、钢筋混凝土圈梁施工 (35) 2、挖土和支撑 (36) 3、主体结构施工 (36) 4、内插H钢拔出的要求 (37) 5、施工监测 (37)

SMW工法水泥土搅拌连续墙施工方案 一、编制依据 (1)浙江城建勘察研究院有限公司编制的岩土工程勘察报告(2007.12)和浙江城建勘察研究院有限公司设计的基坑围护设计施工图及浙江工业大学建筑设计研究院设计的总平面图、地下室结构图。 (2)中华人民共和国颁布的《现行建筑施工规范大全》; (3)现行的国家和浙江省各种施工验收规范及质量评定标准; (4)现行的国家和浙江省关于建设工程安全施工技术法规和安全技术标准。 二、工程概况 1、工程概述 农居点改造工程位于杭州市,东南面紧靠规划汽轮西路,西临回龙路。本工程由3幢16+1层高层住宅和4幢12+1层小高层住宅及2层公建、商铺组成,整个场地设有一层联体式地下车库。场地工程桩为钻孔灌注桩。基坑围护形式复杂,基坑东侧及南北两侧东侧采用复合土钉墙形式,西北角及东北角采用SMW工法加砼支撑形式,西侧中间采用钻孔灌注桩围护加斜抛撑形式。 (1)围护工程 农居点改造工程基坑的围护方案由浙江城建勘察研究院有限公司

CSM工法等厚度水泥土搅拌墙作业指导书

CSM工法 等厚度水泥土搅拌墙工程 (监理) 作 业 指 导 书 (SK/BR- ) (试行本) 上海三凯工程咨询有限公司 2019 年08月

编制说明 随着高层建筑的发展,基坑工程也越来越多,各种基坑支护结构得到广泛应用,本作业指导书主要阐述CSM工法等厚度水泥土搅拌墙的机理和控制要点,为使监理人员能够更好地掌握 CSM工法等厚度水泥土搅拌墙各工序的质量要求,保证 CSM工法等厚度水泥土搅拌墙的施工质量,特编制此作业指导书。本指导书主要以上海市的相关规定及要求为主,其他省市的监理项目应结合当地的要求参照执行;随着当前工程建筑发展形势,本作业指导书可能会出现落后、过时等情况,公司将不断更新、改版,请及时关注,并希望给予相关的指导、提醒。 2019 年 8 月 16 日 编制人: 审核人: 审批人:

目录 第一节相关术语 (5) 第二节编制依据及使用范围 (6) 一、编制依据 (6) 二、适用范围 (7) 第三节 CSM工法桩施工组织与准备的监理工作 (7) 一、施工前的准备 (7) 二、机械配备 (14) 第四节CSM工法桩施工工艺及监理工作流程 (16) 一、施工工艺流程 (16) 二、施工步骤 (17) 三、施工参数 (18) 四、监理工作流程图 (20) 五、监理质量监控流程 (21) 第五节 CSM工法桩施工步骤及监理控制要点 (21) 一、施工前的监理准备工作 (21) 二、开挖导沟、设置定位 (21) 三、桩机就位 (21) 四、制备水泥浆 (22) 五、铣削速度 (23) 六、注浆搅拌成墙 (24) 七、特殊情况处理 (25) 八、清洗 (25) 第六节 CSM工法桩成桩允许偏差表 (26) 一、锯链式施工成墙质量检验标准 (26) 二、铣削式施工成墙质量检验标准 (26) 三、劲性芯材插入允许偏差表 (26) 四、CSM工法搅拌桩工程质量控制目标值 (26)

水泥搅拌桩施工方案

水泥搅拌桩冬季施工方案 目录 1编制依据及原则 .................................................................................................................. - 2 - 1.1编制依据.......................................................................................................................... - 2 - 1.2编制原则.......................................................................................................................... - 2 -2工程概况 ...................................................................................................................................... - 3 - 2.1地理位置.......................................................................................................................... - 3 - 2.2水文气象.......................................................................................................................... - 3 - 2.3主要地质特征 ................................................................................................................. - 3 - 2.4桥头路基处理 ................................................................................................................. - 3 - 2.5主要工程数量 ................................................................................................................. - 3 -3施工准备 ...................................................................................................................................... - 3 - 3.1人员准备.......................................................................................................................... - 3 - 3.2技术准备.......................................................................................................................... - 3 - 3.3施工材料准备 ................................................................................................................. - 4 - 3.4机具准备.......................................................................................................................... - 4 - 3.5施工注意事项 ................................................................................................................. - 5 -4冬季施工基本技术要求............................................................................................................ - 5 - 4.1冬季施工的定义............................................................................................................. - 5 - 4.2水泥浆施工要求............................................................................................................. - 5 -

TRD工法等厚水泥土搅拌墙施工方案

目录 1.编制依据 (3) 1.1图纸及施工组织设计 (3) 1.2主要规范规程 (3) 2.工程概况 (4) 2.1工程总体概况 (4) 2.2工程建设概况 (4) 2.3工程水文、地质概况 (4) 2.4 TRD工法水泥土搅拌墙概况 (12) 3.施工部署及安排 (14) 3.1施工安排 (14) 3.2施工准备 (14) 3.3组织管理及职责分工 (15) 3.4施工现场平面布置 (16) 4.施工进度计划及保证措施 (17) 5.1总体工期目标 (17) 4.2确保工期的技术及组织措施 (19) 5.施工方法 (22) 5.1场地清整 (22) 5.2施工测量 (22) 5.3施工流程 (23) 5.4施工步骤 (24) 5.5施工参数 (26) 5.6转角处施工 (26) 5.7试验及检测 (27) 6.劳动力计划及劳动组织 (29) 7.主要机具设备计划 (29) 8.主要材料需要量计划 (30) 9.技术组织措施 (30)

9.1 TRD工法等厚水泥土搅拌墙质量保证措施 (30) 9.2职业健康及安全保护措施 (31) 9.3文明施工管理措施 (33) 10.四节一环保措施 (34) 11.成品保护措施 (35)

1.编制依据 1.1图纸及施工组织设计 (1)******围护工程施工图纸。 (2)******围护工程施工组织设计。 (3)《******地下室控制测量技术报告》(2014年12月3日版)。 1.2主要规范规程 表1.2-1主要规范一览表 类别名称编号 国标《工程测量规范》GB50026-2007 国标《建筑基坑工程检测技术规范》GB50497-2009 国标《建筑地基基础工程施工质量验收规范》GB50202-2002 行标《建筑地基处理技术规范》JGJ79-2012 表1.2-2主要标准一览表 类别名称编号 国标《建筑工程施工质量验收统一标准》GB50300-2013 行标《建筑施工安全检查标准》JGJ59-2011 表1.2-3主要规程一览表 类别名称编号 地标《建筑基坑工程技术规程》DB29-202-2010 地标《***市建筑基坑工程技术规程》DB33-202-2010 行标《建筑机械使用安全技术规程》JGJ33-2012

相关文档
最新文档