基于同轴电缆的电源和数据传输

基于同轴电缆的电源和数据传输

基于同轴电缆的电源和数据传输

一、概述

在同轴电缆传输中即传输信号又传输电源,最早运用于有线电视系统。

在国内,已经有十多年历史。而如今把有线电视技术转移到监控领域已经数年,但却很少有人把电源的传输技术同时转移过来。虽然我们曾反复倡议此技术在

共缆监控领域的推广,但却还是有不少安防行业的朋友表示质疑甚至反对。而

如今在监控系统中的电源线和数据线已经是一项不可忽略的开销(每公里距离

两种线大约需要花费6000 多元左右)。它应该引起业界的再度关注。

采用共缆技术传输信号的同时,如果再利用它同时传输电源和数据,这

显然可节约一笔不小的开销。这种技术我们已经在实际监控工程中运用近一年

时间,事实证明是完全可行的。

二、传输原理

共缆监控传输技术是一种射频宽带技术。在有线电视中通常称为

HFC(光纤和同轴电缆混合)技术。它是把需要传输的视频、音频或数据基带

信号搭载在高频载波上传输,到达目的地后,再从载波里取出基带信号。这样

的传输方式可使同轴电缆的信息传输容量增加许多倍。高频同轴电缆的频率带

宽可达0 – 1GHz 以上。现在通常使用的信号实际带宽一般在5 - 860MHz。在共缆监控传输中的频谱分配可见上由于直流电源的频率是0HZ,

交流电源的频率是50Hz,显然它们都可以通过同轴电缆传输。在共缆监控中,我们可以把5-30MHZ 的频段分为下行通道(控制信号从中心发出到监控摄像机的方向)。这个25MHz 宽度的通道可以传输很多数据信号,但监控发出的控制信号(约100KHz 带宽)只占它的带宽的0.5%不到。因此下行通道大部分资源是空闲的。

音频线视频线屏蔽线和同轴电缆的关系

音频线、视频线、屏蔽线与同轴电缆的关系 我们经常接触到的信号按频率分为音频(几十K以下)、视频(百兆以下)、和射频(就是无线电发射频率的简称),严格地讲,中波广播用的540K及以上频率都可称为射频,电视发射用的射频频率为50M以上。视频在生活中应用最多,影碟、电视、电脑显示器这些都要用,视频频率是从0到某一个值的范围,我们把它换为“带宽”,带宽与“分辨率”和“清晰度”相关,例如VCD机清晰度低,它的视频带宽只有5M;CRT显示器可以支持1280x1024的高清晰度(注意该清晰度与LCD显示器相比还差得远!),它的带宽可以达到上百兆。 音响设备之间连接的信号线,一般要求是:不能受噪音信号干扰,传输尽量无衰减,传输过程对信号不能产生大的频率失真和相位失真(也就是尽量保持信号不变形,这一点对彩色电视信号影响非常大,尤其是NTSC格式的彩色视频信号,少量的相位失真就会导致颜色异常!)。为此,传输不同的信号就要用到不同的信号线,下面分别从屏蔽线与同轴线说起。 对音频信号而言,频率只有几十KHz,那么几米长的传输线都可以等效为长度为“零”,导线的分布参数、特征阻抗都可以忽略,最主要的性能要求是屏蔽电磁干扰,防止在线路上感应到电磁噪声。在一条芯线的外围,连续用细铜线缠绕或套上金属编织网作为屏蔽层(屏蔽层与信号设备的地线相连),这种信号线就是“屏蔽线”,如下图所示: 屏蔽线并不要求芯线与屏蔽层是同轴关系,甚至圆的扁的都没关系,核心要点是芯线被屏蔽层完全“封闭”。市面上有些伪劣音频线并没有使用“屏蔽线”,其实就是两根线封装在一起,这种线对电磁干扰完全没有屏蔽作用,试验方法是:将信号输出设备(例如CD机)连接音频左或音频右的那一端悬空,接收信号的一端如功放机保持连接,这时音响功放机或电视机的AV输入口(注:AV输入口通常是一组三根线,一个视频和两个音频)的音频口由于插上这样一条悬空状态的线,就可能从该线引入了噪音,噪音明显的话,这条线就是伪劣产品。如果插上的是一条正规的信号线,并不会引入明显的噪音,就像没插时几乎无变化。 上述试验强调要把CD机那一端音频输出口悬空,只保留电视机这一端然后听噪音,还要注意电视机AV接口上的视频线不要拔,虽然我们只用听噪音的办法来试验,但是如果视频信号没了大多电视会自动静音,什么都听不到了! 上述试验中,为什么CD机上音频口插上后,不论是否播放影碟,电视里听到的噪音都很小(与CD端悬空状态对比)?这是因为CD机输出口的“内阻”也能抑制信号线上感应的噪音,如果CD机够好的话,音频线的真假,影响反而并不大! 上面讲过,视频信号比音频信号的频率范围(即带宽)要大很多,传输用的信号线长度在半米以上就可能对信号质量产生明显的影响。症状一般是三种:图像清晰度下降变模糊(高频衰减引起);颜色异常(相位失真引起),噪点(干扰噪声引起),电磁干扰可以用屏蔽线的办法解决,但频率和相位失真就只能靠同轴电缆了。

漏泄同轴电缆的敷设施工工艺标准

漏泄同轴电缆的敷设施工工艺标准 1.施工准备 1.1 劳动组织 1.2 工机具

1.3 材料

2.操作程序 2.1 工艺流程 2.2 操作要点 2.2.1 施工准备 在施工准备阶段,详细调查隧道内漏缆挂设位置及电力线、回流

线的高度、侧别及安全距离是否能够满足布缆的设计要求,隧道外架挂区段地形情况,核实中继器、天线杆塔、接头的位置及中继段的长度。 2.2.2 单盘测试 包括编写盘号、核对规格型号及数量,外观检查及验气工作,环阻、绝缘电阻和电气绝缘强度的测试,稳气。 (1)电桥测量漏缆环阻 把漏缆一侧的外导体和内导体短接,另一侧用直流电桥测量其环阻,测试连接见下图。 其测试标准:应小于4Ω/Km。 (2)利用500V兆欧表对漏缆内外导体间的绝缘电阻进行测量,测试连接见下图。 其测试标准:应不低于1000MΩ·KM, (3)绝缘耐压 漏缆内外导体间的高压耐压标准是:工频3KV电压2分钟不击穿。

(4)单盘稳气 漏缆充气压不得大于100±10kpa;稳气气压为90—100kpa(24小时),利用热可缩帽进行封堵充气。 2.2.3 配盘 (1)根据设计文件及现场调查的实际情况,采用分级补偿的办法进行配盘。 (2)通过几种不同耦合损耗规格的漏缆(90dB,80dB,70dB,65dB)依次串联,用逐渐减小耦合损耗的办法来补偿由于漏缆传输损耗引起的电平下降,从而使列车在全线运行中能收到较平稳的信号电平。 (3)按照每种耦合损耗规格漏缆的长度,进行合理配置,最大限度的利用出厂单盘漏缆,尽量减少剩余短段漏缆和接头数目。 2.2.4 隧道内漏泄电缆的架挂 (1)隧道内电缆支架的安装 ①电缆支架孔的位置,距离钢轨面高度一般为4.8—4.9m. ②用冲击钻在洞壁预定位置钻一个Ф19mm的孔,孔深为70±3mm。孔应平直不可成喇叭状。 ③将胀管及螺杆装在一起放入Ф19mm孔内,用木锤打入洞内,要注意保护螺杆螺纹。 ④支架安装时,将垫圈螺母拧好固定,夹板固定要统一,以使电缆与洞壁之间的距离保持一致。 ⑤洞内吊夹每隔2.5—5m安装一个,如环境条件的影响,可做适当的调整。

国产同轴电缆的型号和含义

国产同轴电缆的型号和含义 视频信号传输一般采用直接调制技术、以基带频率(约8MHz 带宽)的形式,最常用的传输介质是同轴电缆。同轴电缆是专门设计用来传输视频信号的,其频率损失、图像失真、图像衰减的幅度都比较小,能很好的完成传送视频信号的任务。 视频信号传输线有同轴电缆(不平衡电缆)、平衡对称电缆(电话电缆)、光缆。平衡对称电缆和光缆一般用于长距离传输,对于宾馆酒店等建筑一般采用同轴电缆传输视频基带信号的传输方式。当采用75-5同轴电缆时,一般传输距离在300m 时,应考虑使用电缆补偿器。如采用75-9同轴电缆时,摄像机和监视器间的距离在500m 以内可不加电缆补偿器。 国产通信电缆的型号采用拼音字母和阿拉伯数字组成,他的排列次序和含义如下: 选用同轴电缆时,要选用频率特性好、电缆衰减小、传输稳定、防水性能好的电缆。 国内生产的同轴电缆可分为实芯和藕芯两种。芯线一般用铜线,外导体有铝管和铜网加铝箔。绝缘外套分为单护套和双护套两种。国产同轴电缆型号统一标准的格式如下: 特性阻抗 例如:SYV-75-3-1型电缆表示同轴射频电缆,用聚乙烯绝缘,用聚氯乙烯做护套,特性阻抗为75Ω,芯线绝缘外经为3mm ,结构序号为1。

常用同轴电缆型号的规格和主要参数 电缆型号绝缘形式芯线外经 mm 绝缘外经 mm 电缆外经 mm 特性阻抗 Ω 衰减常数(dB/100m) 30(MHz) 200(MHz) 800(MHz) SYKV-75-5 藕芯式 1.10 4.7 7.3 75±3 4.1 11 22 SYKV-75-12 藕芯式 2.60 11.5 15.0 75±2.5 1.6 4.5 10 SSYKV-75-9 藕芯式 1.90 9.0 13.0 75±3 2.1 5.1 11 SIOV-75-5 藕芯式 1.13 5.0 7.4 75±3 3.5 8.5 17 SIZV-75-5 竹节式 1.20 5.0 7.3 75±3 4.5 11 22 SYDV-75-9 竹节式 2.20 9.0 11.4 75±3 1.7 4.5 9.2 SYDV-75-12 竹节式 3.00 11.5 14.4 75±2 1.2 3.4 7.1 SDVC-75-7 藕芯式 1.60 7.3 10.0 75±2.5 2.6 7.1 15.2 SDVC-75-12 藕芯式 2.60 11.5 14.4 75±2.5 1.7 4.5 10

双向有线电视光纤同轴电缆网调试与排除故障

双向有线电视光纤同轴电缆网 调试与排除故障 1连接故障 (5) 1.1光缆及其连接故障 (5) 1.1.1无光功率 (5) 1.1.1.1连接错误 (5) 1.1.1.2光纤断裂 (5) 1.1.2光功率低 (5) 1.1.2.1接触不良 (5) 1.1.2.2微弯损耗 (6) 1.1.2.3光纤损耗大 (6) 1.2电缆及其连接故障 (6) 1.2.1施工故障 (6) 1.2.1.1开路 (7) 1.2.1.2短路 (7) 1.2.1.3接触不良 (8) 1.2.1.4电缆变形 (8) 1.2.2高频损耗过大 (9) 1.2.2.1高温 (9) 1.2.2.2进水 (9) 1.2.2.3老化 (9) 1.2.3电缆陷波 (10) 1.2.3.1电缆发泡度有问题 (10) 1.2.3.2短电缆效应 (10) 2电源干扰 (11) 2.1有线电视系统容易被电源干扰 (11) 2.1.1高频调制信号电流很小 (11)

2.1.2电源中的工频、高频频率与信号频率相似 (11) 2.1.2.1市电工频频率在视频和音频的频率范围之内 (11) 2.1.2.2电网污染 (11) 2.1.2.3机内电源干扰 (12) 2.2设备的信号接地线 (12) 2.2.1带电设备的电位 (12) 2.2.2电源地的电位 (13) 2.2.3电源地不能作信号地 (13) 2.2.4信号地 (13) 2.2.4.1电源地和信号地彻底分离 (13) 2.2.4.2前端两次一点接地 (14) 2.3测量信号交流声比 (14) 3前端调试 (15) 3.1模拟信号通路 (15) 3.2下行通路混合 (15) 3.2.1下行混合放大 (15) 3.2.2下行混合电平 (16) 3.3前端下行干扰噪声 (16) 3.3.1频道安排原则 (16) 3.3.2交扰调制与视频干扰的区别 (16) 3.3.3非线性失真与杂散电磁波干扰的区别 (17) 3.3.4调制器带外干扰 (17) 3.3.5调制器带外噪声 (17) 4 HFC下行通道调试 (17) 4.1电缆供电核算方法 (17) 4.1.1基础数据 (17) 4.1.1.1用电设备交流消耗功率 (17) 4.1.1.2送电电缆的往返电阻 (18)

认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术 本文以科学实验研究为依据,给出了监控工程常用同轴电缆的视频传输特性,指出了应用中的一些误解和误区.对干扰产生原理提出了更加切合实际的解释.归纳分析了实用的抗干扰措施,介绍了同轴抗干扰技术新进展——抗干扰同轴电缆原理和应用前景。 同轴电缆仍然是目前监控系统中应用最广泛的视频传输线。同轴视频传输技术,也是监控系统中的一种最基本传输方式。“同轴电缆到底能传多远”?同轴视频传输技术、抗干扰技术到底现在发展到了什么水平?深入了解同轴电缆的传输特性,掌握同轴视频传输技术的现状与发展,对提高监控系统图像质量,改进系统设计,有效降低系统造价,仍然是有现实意义和积极意义的。 一、工程常用同轴电缆类型及性能: 1) SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2) SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占 70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV 物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。

厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传

漏泄同轴电缆选用探讨

漏泄同轴电缆选用探讨 1.引言 漏泄同轴电缆可以实现任何地方的无线通信,甚至在有电磁波干扰或没有电磁波的地方都可以,例如:隧道、矿山、地铁、建筑大楼和大型、复杂的象展览馆或机场那样的场所。因为漏泄同轴电缆能保证信号覆盖的不间断性。 2.选用漏泄同轴电缆的依据 选择适当的漏泄同轴电缆要看其应用的需要,选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。 选择漏泄同轴电缆有两个重要指标:传输衰减和耦合损耗。漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和。传输衰减,也叫介入损耗,主要指传输线路的线性损耗,随频率而变化,以分贝/100米表示。耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。因此在实际应用中,只要传输衰减能满足操作容限或链路容量的要求,就没必要选择那些传输衰减最低的漏泄同轴电缆,但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起,它还必须包括任何其他因素引起的损耗。如果计算结果为正值,那就表示有足够的容限允许环境发生变化,而系统仍可正常运行。 对漏泄同轴电缆而言,耦合损耗设计一般在55~85分贝之间。在狭长系统如隧道或地铁内,因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能,因此耦合损耗设计一般为75~85分贝,在这种条件下,把传输衰减减到最小非常重要。在建筑楼宇内,漏泄同轴电缆耦合损耗设计一般在55~65分贝之间,因为楼内漏泄同轴电缆单向长度在50~100米之间,因此传输衰减就不那么重要了,更重要的指标是漏泄同轴电缆能尽量多地发射信号,并穿透周围地区。 一个准备扩展的系统,可以选择传输衰减较小的漏泄同轴电缆。比如在办公楼内有一根顺电梯上行的漏泄同轴电缆,几个楼面共用一个接头,在这种情况下,若选择传输衰减低的漏泄同轴电缆,今后就可以提供更高频率上的服务或扩大服务覆盖区。

浅析视频同轴电缆

浅析视频同轴电缆 视频同轴电缆也称视频线或视频监控线,因为其主要是用来传输影像信号的一种电缆,多用于连接安防监控摄视频同轴电缆 像头和现实终端(电脑或显示器等)的电线电缆。 视频同轴电缆标准及结构 视频同轴电缆采用GB/T14864-1993国家标准。视频同轴电缆先由两根同轴心、相互绝缘的圆柱形金属导体构成基本单元(同轴对),再由单个或多个同轴对组成的电缆。同轴电缆由里到外分为四层:中心铜线,塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。 视频同轴电缆产品特性: 视频同轴电缆传输性能及机械性能的稳定;阻抗均匀;抗干扰能力强。视频同轴电缆部分产品结构一览表:SYWV(物理发泡)SYV(聚乙烯绝缘)SYF SYFF(氟塑料绝缘及护套) 视频同轴电缆的主要规格型号 视频同轴电缆规格型号内导体mm 绝缘外径mm 成品外径mm 视频同轴电缆 SYwV50-21x0.68 2.2 4 SYwV50-31x0.9 2.95 5.8 SYwV50-51x1.4 4.8 7.9 SYwV50-77x0.75 7.25 11 SYwV50-97x0.95 9 12.2 SYV50-127x1.15 11.5 15 SYV50-157X1.54 15 19 SYV50-1719X1.04 17.3 22 SYV75-37X0.17 3 5 SYV75-41X0.59 4.8 6 SYV75-51X0.75 5.7 7.9 SYV75-71X1.15 7.25 10.3 SYV75-91X1.37 9 12.2 SYV75-12 7X0.6311.5 15

综合布线系统测试报告

综合布线系统电缆电气性能测试记录编号:01 中国人民解放军FLUKE 2009 年 4 月 工程名称七一三五二部队测试时间仪表型号NetTool II 23 日 网络建设工程NTS2-Pro 施工单位郑州龙达计算机技术有限公司测试部位师部抽检 长电缆屏蔽 序号地址号缆线号设备号 度层连通性 接线图衰减(DB)近端串扰 1 1 号楼 3 服务器3 2 无屏蔽见下图8.6DB 无 2 1 号楼 5 服务器24 无屏蔽见下图9.8DB 无 3 1 号楼9 交换机49 无屏蔽见下图7.6DB 无 4 1 号楼20 交换机5 5 无屏蔽见下图 4.8DB 无 5 2 号楼8 交换机67 无屏蔽见下图 2.6DB 无 6 2 号楼12 交换机31 无屏蔽见下图 6.8DB 无 7 2 号楼20 交换机69 无屏蔽见下图 5.6DB 无 8 2 号楼34 交换机72 无屏蔽见下图 5.7DB 无 9 3 号楼20 交换机32 无屏蔽见下图 6.6DB 无 10 3 号楼24 交换机28 无屏蔽见下图 4.8DB 无 11 3 号楼29 交换机35 无屏蔽见下图 5.2DB 无 12 3 号楼41 交换机57 无屏蔽见下图8.9DB 无 13 4 号楼21 交换机68 无屏蔽见下图 4.9DB 无

14 4 号楼22 交换机23 无屏蔽见下图7.8DB 无 15 4 号楼15 交换机75 无屏蔽见下图 4.6DB 无 16 4 号楼18 交换机61 无屏蔽见下图 6.1DB 无 17 5 号楼32 交换机31 无屏蔽见下图 6.4DB 无 18 5 号楼50 交换机27 无屏蔽见下图 3.7DB 无 18 5 号楼33 交换机41 无屏蔽见下图 6.2DB 无 20 5 号楼55 交换机48 无屏蔽见下图 3.8DB 无接线图 测试线图 测试结果经过用福禄克测试仪抽检全部合格

漏泄同轴电缆的介绍

漏泄同轴电缆简介 漏泄同轴电缆是具有信号传输作用又具有天线功能通过对处导体开口的控制可将受控的电磁波能量沿线路均匀的辐射出去及接收进来实现对电磁场盲区的覆盖已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失免除了充气维护的烦恼大大提高了产品的使用寿命和稳定可靠性是当今世界上最先进的射频和漏泄同轴电缆结构。 选用漏泄同轴电缆的依据选择适当的漏泄同轴电缆要看其应用的需要选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。选择漏泄同轴电缆有两个重要指标传输衰减和耦合损耗,漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和,传输衰减也叫介入损耗主要指传输线路的线性损耗随频率而变化以分贝/100米表示。 耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。 因此在实际应用中只要传输衰减能满足操作容限或链路容量的要求就没必要选择那些传输衰减最低的漏泄同轴电缆但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起它还必须包括任何其他因素引起的损耗。如果计算结果为正值那就表示有足够的容限允许环境发生变化而系统仍可正常运行。 对漏泄同轴电缆而言耦合损耗设计一般在5585分贝之间。 在狭长系统如隧道或地铁内因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能因此耦合损耗设计一般为7585分贝在这种条件下把传输衰减减到最小非常重要。 在建筑楼宇内漏泄同轴电缆耦合损耗设计一般在5565分贝之间因为楼内漏泄同轴电缆单向长度在50100米之间因此传输衰减就不那么重要了更重要的指

漏泄同轴电缆施工工法-secret要点演示教学

漏泄同轴电缆施工工法 一前言 为了解决铁路在山区、弯道、隧道内等弱场强或无场强区段的无线列调通信工程问题,目前采用在这些区段沿铁路线一定距离架设漏缆,安装隧道中继器和中继器天线的方式使无线电信号电波沿漏缆传输并均匀向外漏泄,使这些区段内场强达到一定要求而保证无线列调通信畅通、可靠。我们公司于1993年承担了某无线列调通信工程连江口至广州段的施工,在无施工规范和技术标准的情况下,我们在施工过程中边学习,边实践,边总结,用较短的时间,质量良好地完成了该段的施工任务。在完成任务的同时,锻炼了一支技术熟练、工艺精良的施工队伍。为了更好地指导今后同类工程的施工,我们在总结实践的基础上,编写了400MHz漏泄电缆的施工工法。期望本工法在今后指导同类工程施工实践的同时,不断地进行补充和完善,以取得更大的经济和社会效益。 二工法特点及适用范围 2.1本工法有如下特点: 2.1.1漏缆架设前要进行严格的单盘测试及合理的配盘。 2.1.2漏缆须架设在铁路旁距轨道线路中心3~15米范围内,其高度须距轨面4.5~4.8米。 2.1.3漏缆的漏泄槽应朝铁路一侧。 2.1.4漏缆接续按漏缆的型号不同须配用不同的连接器件,为控制电缆的耦合损耗,还须根据不同类型的电缆,确定其连接器的安装位置。 2.2本工法适用于山区、隧道传输信号,整个铁路系统及地下铁路,厂矿等漏泄电缆组成的无线通信系统工程的施工,同时也适用于从事漏缆维修人员进行维修工作。 三工艺原理

本工法是无线列调通信系统中的部分设备——漏泄电缆的施工工艺,其原理可从以下三个方面来说明: 3.1漏缆既是无线信号电波的传输线,又可视为无线信号的天线。 调度、车站值班员、机车司机互相通话,一般情况下,是靠车站电台通过天线向空间发射信号电波,在铁路沿线的空间产生一定的场强,并通过机车电台的天线耦合接收来实现的。而在弯道、山区、隧道内无线电波被阻挡、反射、吸收,使得该区段通信困难或无法通信。漏缆沿铁路架设,通过中继器和中继器天线,将车站电台发射的信号电波接收,经中继器放大加强,沿漏缆传输并均匀向外漏泄信号电波,使这些弱场强和无场强区段的铁路沿线具有一定大小的场强分布,以便在这些区段运行的机车电台能正常接收信号。同样,机车电台发射的信号电波也通过漏缆耦合,传输到中继器放大加强后送到中继器天线发射,被车站电台接收,从而实现调度、车站、机车的通信。因此,漏缆起到了传输、漏泄(天线)两方面的作用,成为山区、弯道、隧道内等弱场强或无场强区实现无线通信的关键设备之一。 3.2采用分级补偿的原则,从而使列车收到平稳的电平信号,同时与采用单一的漏缆相比,能延长通信距离。下面举一例说明: 3.2.1漏缆特性 型号 耦合损耗 传输损耗 149 80 dB/Km 25 dB/Km 148 70 dB/Km 27 dB/Km 147 65 dB/Km 36 dB/Km 3.2.2中继段的漏缆配置方法:在电波信号正向传输方向上,漏缆的配置顺序原则是 中继段漏缆配置图1 耦合损耗由大到小,传输损耗由小到大,以确保机车接收电平的曲线斜率最大限度最小,呈 Ⅰ 型 中继器 Ⅱ 型 中继器 DCX LCX 400m 400m 400m 147型 148型 149型 正向传播方向 A B C D

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

光纤同轴电缆混合网(HFC)技术详解

HFC(Hybrid fiber coax)光纤同轴电缆混合网,是采用光纤和有线电视网络传输数据的宽带接入 技术。下面我们具体来讨论此项技术。 当有线电视网重建他们的分布网以升级他们现有的服务时,大部分转向了一种新的网络体系结构,通常称之为“光纤到用户区”,在这种体系结构中,单根光纤用于把有线电视网的前端连到200-1500 户家庭的居民小区,这些光纤由前端的模拟激光发射机驱动,并连到光纤接收器上(一般为“结点”),通常由电话杆或用户区基座。这些光纤接收器的输出驱动一个标准的用户同轴网。 “光纤到用户群”(光纤到用户区)的体系结构与传统的由电缆组成的网相比较,主要好处在于它消除了一系列的宽带RF放大器,需要用来补偿同轴干线的前端到用户群的信号衰减,这些放大器逐步衰减系统的性能,并且要求很多维护。一个典型“光纤到用户群”的衰减边界效应是要额外的波段来支持新的视频服务,而现在已经可以提供这些服务。在典型“光纤到用户群”的体系结构中,支持标准的有线电视网广播节目选择,每个从前端出去的光纤载有相同的信号或频道。通过使用无源光纤分离器,以驱动多路接收结点,它位于前端激光发射器的输出处。 “光纤到用户群”的有线电视网系统可利用单个输出光纤以重用交互服务的带宽。例如,在结点1 的10频道和结点2的是10频道不同节目或数据,这种重用结合中等规模结点(一般要少于1000个通过的用户)。从光纤的安装上增加系统的可用带宽,将在最大程度上升级有线电视网系统,以便把单个的波段分配给每个交互式服务的用户。宽带分布网体系结构,把光纤用于从交换中心或前端到用户群的远据离传送,结合同轴电缆下载到单个用户,就如通常所说的“混合光纤同轴电缆”。这种光纤电缆系统,正在由有线电视网和电话交换局作为通用的基础设备铺开。 对于电话交换局而言,现有的标准电话线采用ADSL技术,能支持1.5MBIT/S到8MBIT/S的带宽。从交换中心到家庭的距离可达到8000到15000尺(依带宽而定)。另外,还提供一个16KBIT/S 到64KBIT/S的信号通道,从家庭回到交换局。但从长远看,ADSL用于交互式视频服务存在着问题,因为现在安装的电话网质量参差不齐,每个家庭的电视机数目一直增加,而且有距离的限制,还有昂贵的成本。然而ADSL对电话局来说,还是有吸引力的。因为作为一种方式,可以逐步引进视频服务而不必进行大量的电话网生级工程。随然ADSL有利于电话公司早日提供服务,但技术限制导制业界认为用户的交互式视频服务主要由光纤同轴接入网支持。 很多电视网目前以光纤同轴网重建以前的电视网,这些网可以支持传统的服务和新兴视频服务。除了电话业务外,大多交互式视频服务有高度的非对称带宽要求,要求进入家庭的带宽比需要走出家庭的带宽高多了,这是有益的。因为大部分当前的用户接入网(有线电视网或ADSL)有这种下游比上游宽带容量大的不对称特性。在光纤同轴的用户接入网中,可以用640QAM或256QAM RF调制,把在50-1GHZ的下游带宽中6MHZ(中国为8MHZ)模拟带宽转换成数字频道,数字频道的数目仅

同轴线传输网络信号的方法

以太网以太网信号的转换延长信号的转换延长信号的转换延长 1.1.概述概述概述 局域网的网络信号的局域网的网络信号的传输一直是受网线的100米距离限制,光纤传输又超过这种距离,目前一种利用EOC 传输技术的转换器可很好的解决这种问题。该设备可通过单根同轴电缆传输实时数字高清IP 视频和低压电源,最远距离可达250米(RG11),支持全双工100Mbps。一台作为发送端(从主机-摄像机远端),一台作为接收端(主机-NVR 本地端)。产品产品产品可以广泛应用在铁路可以广泛应用在铁路可以广泛应用在铁路、、城市交通等安防监控众多领域城市交通等安防监控众多领域和系统升级改造的项目中和系统升级改造的项目中和系统升级改造的项目中。。有助于实现视频监控系统从模拟CCTV 到网络IP 监控的无缝过渡监控的无缝过渡。。该产品该产品支持支持P o E 和P o C 技术,前端的IP 摄像机和设备也无需单独布电源电缆。 2.2.特性特性特性 利用一根同轴线传输及延长网络数字信号。支持网络高清摄像机的信号延长。 支持PoE 供电的设备使用。如PoE 摄像机。 一对一配合使用,最大信号传输距离250米(RG11线缆) 支持完全透明的100BaseT 全双工网络速率,设备自适应; 产品各端口内置静电保护,过电压保护功能。 电源从末端往前端输送,只需在末端加装外置电源变压器或PoE 供电设备即可实现发射器和PoE 设备的同时取电。 内置ESD 保护电路,能有效防止静电损坏; CE 及FCC 认证产品。 独有特性独有特性 电源是从接收接收接收主机端主机端 主机端输入,通过同轴电缆使用PoC(power on cable)技术对发送端从机及摄像机进行供电;电源输入和输出支持PoE 供电。 3.3.使用环境使用环境使用环境 接收端(主机-NVR 端) 通过PoE 交换机提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机可选择转换器的PoE 端口供电,无PoE 功能的摄像机必须使用单独的电源。 接收端(主机-NVR 端) 通过PoE 供电模块提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机

光纤同轴混合网的特点与技术优势浅析

光纤同轴混合网的特点与技术优势浅析 【摘要】:阐述了光纤同轴混合网和电缆调制解调器的发展历程,重点讨论了HFC接入网及Cable Modem的特点和优势, 分析了上下行传输调制解调技术的特点以及QAM和QPSK的技术规范,指出了现阶段光纤同轴混合网和电缆调制解调器在实际应用中不足。 【关键词】:HFC;网速 中国分类号:TN6 文献标识码:A 文章编号:1002-6908(2007)0120073-01 有线电视网目前在全世界已有超过9.4亿的用户,我国有线电视网自90年代初发展至今,全国覆盖面已达50%,电视家庭用户数有8000多万,并以每年近1000万用户的速度增加,以成为世界上第一大有线电视网。随着计算机技术、通信技术、网络技术、有线电视技术及多媒体技术的飞速发展,尤其在Internet 的推动下,传统的三大信息网络(电信网、计算机网、有线电视网)所开展的业务正在相互渗透、相互融合。用户对信息交换和网络传输都提出了新的要求,希望融合CATV网络、计算机网络和电信网为一体的呼声越来越高。电缆调制解调器(Cable Modem)技术的出现,大大加快了HFC网络的建设速度。因此,利用HFC网络结构建立一种经济实用的宽带综合信息服务网的方案也由此而生。 HFC是Hybrid Fiber-Coax的缩写,是指采用光纤传输系统与同轴电缆分配网相结合的宽带传输平台。随着技术的发展,HFC网又常常被赋予新的含义,特指利用混合光纤同轴来进行宽带数字通信的CATV网络。目前依据CATV网络的信号流向将HFC网络分为单向HFC和双向HFC两种,但由于单向HFC只能运营广播业务,而双向HFC则可以运营各种数字业务,通常把双向HFC网络称为HFC,而将单向HFC称为CATV。 Cable Modem名为电缆调制解调器,又名线缆调制解调器。它是近几年随着网络应用的扩大而发展起来的,主要用于有线电视网进行数据传输。Cable Modem本身不单纯是调制解调器,它集Modem、调谐器、加/解密设备、桥接器、网络接口卡、虚拟专网代理和以太网集线器的功能于一身。它无须拨号上网,不占用电话线,可提供随时在线的永久连接。服务商的设备同用户的Modem之间建立了一个虚拟专网连接,Cable Modem提供一个标准的10BaseT或10/100BaseT 以太网接口同用户的PC设备或以太网集线器相联。 目前Cable Modem产品有欧、美两大标准体系,DOCSIS是北美标准,DVB/DA VIC是欧洲标准。北美标准是基于IP的数据传输系统,侧重于对系统接口的规范,具有灵活的高速数据传输优势;欧洲标准是基于ATM的数据传输系统,侧重于DVB交互信道的规范,具有实时视频传输优势。 1.DOCSIS标准

视频线(视频同轴电缆)

视频同轴电缆 江苏鑫联光电有限公司将在这里为您解惑。 什么是视频同轴电缆? 视频同轴电缆也称视频线或视频监控线,因为其主要是用来传输影像信号的一种电缆,多用于连接安防监控摄像头和现实终端(电脑或显示器等)的电线电缆。 视频同轴电缆标准及结构 视频同轴电缆采用GB/T14864-1993国家标准。视频同轴电缆先由两根同轴心、相互绝缘的圆柱形金属导体构成基本单元(同轴对),再由单个或多个同轴对组成的电缆。同轴电缆由里到外分为四层:中心铜线,塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。 视频同轴电缆产品特性: 视频同轴电缆传输性能及机械性能的稳定;阻抗均匀;抗干扰能力强。视频同轴电缆部分产品结构一览表:SYWV(物理发泡)SYV(聚乙烯绝缘)SYF SYFF(氟塑料绝缘及护套) 视频同轴电缆的主要规格型号 视频同轴电缆规格型号内导体mm 绝缘外径mm 成品外径mm 视频同轴电缆 SYwV50-21x0.68 2.2 4 SYwV50-31x0.9 2.95 5.8 SYwV50-51x1.4 4.8 7.9 SYwV50-77x0.75 7.25 11 SYwV50-97x0.95 9 12.2 SYV50-127x1.15 11.5 15 SYV50-157X1.54 15 19 SYV50-1719X1.04 17.3 22 SYV75-37X0.17 3 5 SYV75-41X0.59 4.8 6 SYV75-51X0.75 5.7 7.9

SYV75-71X1.15 7.25 10.3 SYV75-91X1.37 9 12.2 SYV75-12 7X0.6311.5 15

技术贴:电缆测试方法及电气特性指标资料

信号电缆测试方法及电气特性指标 一、综合测试 各种信号电缆在敷设前应进行单盘测试,接续前、后应进行电气测试,电缆工程结束后应进行综合测试。各项测试应认真做好记录,并妥善保存,以作为竣工验收时重要的原始记录。各主要电气特性测试结果应符合表3-1的要求。 表3-1信号电缆主要电气特性 1、用兆欧表测试绝缘可按:R x=0.001×L×R m计算。

式中:L-电缆实际长度(m) R m-仪表测量值(MΩ) R x-换算到每千米电缆的实际绝缘电阻值(MΩ) 2、电缆如经暴晒后测量所得数据不得作为电缆电气特性的结论。 对于工程中所采用的特殊规格电缆,其电气特性应符合设计要求及其相关产品技术标准的规定。 二、普通信号电缆绝缘测试 信号电缆绝缘测试包括下列内容: 1、芯线间绝缘电阻测试 将电缆两端的芯线互相分开,测试端剥去约20㎜外皮。用500V兆欧表一线与芯线1连接,以每分钟120转的速度摇动手摇把,另一线依次与其他各芯线接触。与芯线2刚一接触时,兆欧表指针会向零偏转,但很快又回升,稳定在实际绝缘值处。指针稳定后,可读出芯线1与芯线2之间的绝缘电阻值。另一线离开芯线2与芯线3接触,测出芯线1与芯线3之间的绝缘电阻值。用同样方法测出芯线1与其他各芯线之间的绝缘电阻值。将兆欧表一线换成与芯线2连接,另一线依次与芯线3之后的各线相碰,可分别测出芯线2与其他各芯线之间的绝缘电阻值。并用依次测出其他芯线之间绝缘电阻值。 测试电缆芯线间绝缘电阻还有另一种方法:兆欧表一线于芯线1连接,其他各芯线并联后与另一线连接,只需摇动一次即可测出芯线1与其他各芯线之间的绝缘电阻值。测出芯线1的绝缘电阻值之后,从并联芯线中抽芯线2,同样方法测出其与其他各芯线间的绝缘电阻值。如测到某芯线与其他各芯线间绝缘电阻为零或低于标准时,再分开并联芯线逐一接触,以查明与其中的某一芯线绝缘不良。 2、芯线与地之间绝缘电阻测试 测试尚未敷入地下的电缆芯线与地之间绝缘时,兆欧表接地端子的表棒与电缆的铠装钢带连接(聚氯乙烯外护套型电缆需待敷设后方测试芯线对地绝缘),摇动摇把,线路端子另一表棒分别与每一芯线接触一次,即可测出芯线与地之间的绝缘。也可将全部

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

综合布线系统质量验收标准

综合布线系统质量 验收标准

综合布线系统 1 一般规定 1.1 本章适用于智能建筑工程中综合布线子系统的工程安装、检测验收和竣工验收。 1.2 综合布线系统检测验收应采用专用测试仪器对系统的各条链路进行检测,评定系统的信号传输技术指标及工程质量。 1.3 综合布线工程施工前应对交接间、设备间、工作区的建筑和环境条件进行检查,检查内容和要求应符合现行国家标准《建筑与建筑群综合布线系统工程验收规范》GB/T50312中的有关规定。 1.4 采用专用计算机进行管理和维护工作的综合布线工程应按专项进行验收。 1.5 建筑群主干光纤在网络中支持的应用距离大于国家标准《建筑与建筑群综合布线系统工程设计规范》GB/T50311中第3.0.5条所规定的传输距离时,应按光纤传输系统的要求进行检测和验收。 1.6设备材料的进场检测验收执行GB/T50312中的规定。 2 缆线敷设和终接的检测 Ⅰ主控项目

2.1 缆线的弯曲半径应符合下列规定: 1. 非屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的4倍; 2. 屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的6-10倍; 3. 主干对绞电缆的弯曲半径应至少为电缆外径的10倍; 4. 光缆的弯曲半径应至少为光缆外径的15倍。 2.2 电源线与综合布线系统缆线应分隔布放,缆线间的最小净距应符合设计要求,按 GB/T50312中的规定检测。 2.3 建筑物内电、光缆暗管敷设及与其它管线最小净距符合GB/T50312中的规定。 2.4 对绞电缆芯线终接应符合下列要求: 1. 终接时,每对对绞线应保持扭绞状态,扭绞松开长度对于5类线不应大于13mm; 2. 对绞线在与8位模块式通用插座相连时,必须按色标和线对顺序进行卡接;在同一布线工程中两种连接方式不应混合使用; 3. 卡入跳线架连接块内的单根线缆色标应和线缆的色标相一致,大对数电缆按标准色谱的组合规定进行排序; 4. 端接于RJ45口的配线架的线序及排列方式按有关国际标准规定的两种端接标准之一(T568A或T568B)进行端接,但必须与信息插座模块的线序排列使用同一种标准;

相关文档
最新文档