模态试验分析流程与详细方法

模态试验分析流程与详细方法
模态试验分析流程与详细方法

模态试验分析方法简介

1 试验模态分析的基本步骤

试验模态分析一般分为如下的四个步骤:

第一步:建立测试系统

所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。

第二步:测量被测系统的响应数据

这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。

第三步:进行模态参数估计

即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。

第四步:模态模型验证

它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。

以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下:

2、建立测试系统

建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。

接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下:

2.1激振方式的确定:

激振方式有很多种,主要分为天然振源激振和人工振源激振。天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机械振动,人体晃动和打桩等。其中爆破和张拉释放这两种方法应用较为广泛。在工程实际中应当根据被测对象的特点,选取适当的激振方式。

2.2传感器的选择:

传感器是测试系统的一次仪表,它的可靠性,精确度等参数指标直接影响到系统的质量。传感器的选用原则如下:

1、灵敏度要求

一般的讲,传感器灵敏度越高越好,因为灵敏度越高,意味着传感器所能感知的变化量越小,被测量稍有微小变化时,传感器就有较大的输出。但是当传感器的灵敏度越高时,与被测信号无关的外界干扰也越容易混入,并且同样被放大装置所放大。因此为了保证既要检测到微小量值,又要干扰小,这就要求传感器的信噪比越大越好。

此外,和灵敏度紧密相关的是测量范围,除非有专门的非线性校正稽旋,最大的输入量不应使传感器进入非线性区域,更不能进入饱和区域。某些测试工作要在较强的噪声干扰下进行。其输入量不仅包括被测量,也包括干扰量;两者之和不能进入非线性区。过高的灵敏度会缩小其适用的测量范围。

2、响应特性

在所测频率范围内,传感器的响应特性必须满足不失真的测量条件。此外,实际传感器的响应总有一定迟疑,但总希望迟疑的时间越短越好。在动态测量中,传感器的响应特性对测试结果有直接影响,在选用时,应充分考虑到被测物理量的变化特点。

3、线性范围

任何传感器都有一定的线性范围,在线性范围内输出与输入成比例关系,线性范围越宽表明传感器的工作量越大。传感器工作在线性区域内,是保证测量精度的基本条件。然而任何传感器都不容易保证其绝对的线性,在许可限度内,可以在其近似线性区域应用。选用时必须考虑被测物理量的变化范围,令其线性误差在允许范围以内。

4、可靠性

可靠性是传感器和一切测量装置的生命。所谓可靠性是指仪器,装置等产品在规定的条件,在规定的时间内可以完成规定功能的能力。只有产品的性能参数(特别是主要的性能参数)均处在规定的误差范围内,方能视为可完成规定的功能。因此在传感器的选用过程中其可靠性是挑选传感器的重要指标之一。

5、精确度

传感器的精确度表示传感器的输出与被测量的真值一致的程度。传感器处于测试系统的输入端,因此,传感器能否真实的反映被测量值,对整个测试系统具有直接影响。然而,传感器精确度余额高,价格越昂贵,因此应从实际情况尤其应从测试目的出发来选择传感器。

6、测量方式

传感器在实际条件下的工作方式也是传感器选择必须考虑的因素。工作环境的不同情况对传感器的要求也不同。

7、其它因素

除了以上选用传感器时应该充分考虑的因素之外,还应该尽可能的兼顾结构简单、体积小、重量轻、价格便宜、易于维修、易于更换等因素。

2.3数据采集分析仪器的选择:

如今市场上的这类仪器很多,能够完成试验任务的仪器在价格、配置、性能、售后服务等方面差异很大。根据您的试验要求您需要从如下几个方面考虑:

1、资金预算;

2、测量的类型、数量、频率和位置;

3、测量的通道数;

4、最大频率范围;

5、仪器的抗干扰能力,精度,可靠性等指标;

6、滤波器类型,窗的类型,软硬件的兼容性;

7、便携性能等。

综合以上各方面的因素江苏东华测试技术有限公司的DH38系列和DH59系列产品在国内数据采集分析仪器中都具有相当的优越性,是您试验的最佳选择。

3 测量被测系统的响应数据

测试系统安装、调试并校准之后,就可以开始试验了。在试验工程中,测试人员的经验,对仪器操作的熟练以及严谨的试验态度都直接影响到试验的结果。如果采用地脉动激励测试系统,一般要求数据采集时间为30分钟左右。

4 进行模态参数估计

试验模态参数通常是通过曲线拟合一组频响函数数据后估计得到的。在频响函数的频带内进行曲线拟合,拟合的结果就是每一阶模态的一组模态参数(固有频率、模态振型、模态阻尼、模态刚度和模态质量)。曲线拟合是频响函数的参数与试验数据匹配的过程。频响函数的部分分式中参数就是极点(含频率和阻尼信息)和留数(含振型信息)。N自由度系统有频响函数(频响矩阵的一行或一列)的留数可以求出各阶振型,由极点可以求得固有频率和阻尼比。

DHMA软件采用如下步骤进行模态参数的识别:

1、确定频带内的模态阶次

2、估计频带内模态的频率和阻尼

3、利用估计得到频率和阻尼估计频带内的留数

4、将模态参数保存到振型表中

进行模态参数估计的方法有很多种,从自由度来分可以分为单自由度和多自由度两种。

4.1 单自由度法

单自由度法有很多种,DHMA软件采用的如下两种:

峰值法(图解法):

利用峰值光标在光标带内寻找共振峰。将每个FRF上峰位置处的幅值保存为模态振型的一个成分,将所有FRF峰值频率进行平均后获得模态频率的估计值。(但是这种方法无法计算出模态阻尼)。

不同FRF数据曲线上的共振峰稍稍漂移时,采用这种方法估计模态参数是很有用处的。共振峰漂移现象主要是由于FRF测量采集过程中环境激励的变化或移动传感器时附加质量的变化引起。

导纳圆拟合法:

所谓导纳圆拟合法是用频域中的模态模型对系统极点和模态向量进行局部估计。此方法的依据是:单自由度系统的速度频响函数(速度对力)在奈奎斯特图上(即实部对虚部)呈现为一个圆。系统固有频率可以看成复平面上数据点之间角度变化率最大的那个点的频率。导纳圆拟合法计算速度快,通过量纲校核可以避免结果出错。

4.2 多自由度法

多自由度法也有很多种如正交多项式拟合法、复指数法等。多自由度法可以从一组FRF数据中,同时估计两阶或两阶以上的模态参数。本软件有两种不同的多自由度方法估计模态频率和阻尼。其中正交多项式拟合法是直接对一组FRF进行曲线拟合的一种频域方法。它是基于多个FRF的最小二乘曲线拟合原理,来估计FRF分母多项式(又称:特征多项式)的系数;然后从特征多项式的解中提取模态频率和模态阻尼。复指数法是一种整体时域方法,它也是基于最小二乘曲线拟合原理来估计FRF的分母多项式的系数,模态频率和模态阻尼可以从特征多项式的解中提取出来。这种方法是对脉冲响应函数进行估计的,通过傅利叶逆变换(IFFT),可以得到频率响应函数的脉冲响应函数。

一旦得到一组固有频率和模态阻尼的估计值后,利用整体多项式对FRF数据进行单独曲线拟合,然后从每一个多自由度拟合的FRF曲线上获得留数的估计值。在留数曲线拟合过程中,通过最小二乘曲线拟合估计得到每个FRF的分子多项式系数。

对于拟合频带之外的模态留数对频带内模态留数的影响,同过使用附加分子多项式的方法自动加以补偿。(这对获得准确的模态振型估计是非常重要的)。然后通过对FRF曲线拟合后的模型进行部分分式展开,通过部分分式展开项可以求得模态的留数。

5 模态模型验证

模态模型验证是实验模态分析的第四步,它对第三步即模态参数估计所得结果的正确性进行检验。模态模型验证一般可以按照三种级别进行。第一级别相当直观,不涉及任何数学工具,对模态振型进行视觉检查,或把实测到的频响函数与从模态参数识别过程中计算得到的频响函数进行比较。第二级别的验证是利用某些数据工具检验估计出来的模型质量。如模态规定准则,模态参预、互异性、模态超复杂性,模态相位共线性,平均相位偏移,模态置信因子等这些工具。第三级别验证时一种隐含式验证:当模型用于灵敏度分析,结构变化效果预测,有限元模型修正等进一步分析时,这些分析的成功很大程度上决定于模态模型估计的正确性。

实验模态分析过程中还包括其他一些方面的验证:首先是测量(试件固定,校准、传感器信号等)的正确性必须验证,其次测量得到的频响函数必须通过相干函数加以验证。

5.1 模态比例因子(MSF)和模态判定准则(MAC)

模态比例因子给出的是两个向量之间比值的最小二乘估计。模态判定准则就是对应的相关因子。如果模态判定准则为1,则说明这两个向量在一个比例系数内,即在模态比例因子内,是完全等同的。如果模态判定准则是0,那么说明这两个向量之间不存在线性关系,估计出来的模态比例因子便失去意义。这个原理即可用做模态模型验证的一个工具,也可当作检验所选的模态向量估计法是否合适的一个标志。

5.2 模态复杂性(MOV)

在一个测量点给结构附加一个质量,将会降低各阶模态的阻尼固有频率,这个原理构成了模态复杂性检验的基础。物理模态的超复杂性值应当为1。如果模态超复杂性的值低,表明此模态是个噪声模态或计算模态。在试验数据处理过程中应予以剔除。

5.3 模态相位共线性(MPC)和平均相位偏移(MPD)

比例阻尼系统的模态振型是“纯”模态:对于某一具体模态的各振型系统来说,相位都是固定的。适当比例换算后,模态振型相位或者是,或者是。模态相位共线性(MPC)是一个检查某阶模态的复杂性程度的一个指标。对于实模态,MPC这个指标接近于1;小于1则表示模态比较复杂,说明在我们本指望基本上是纯模态的情况中存在着计算模态或噪声模态。模态相位偏移表示每个模态振兴的相位散布情况;对于纯模态它的值应该为0。

基于模态分析法的结构动载荷识别研究

文章编号:1000-1506(2000)04-0011-04 基于模态分析法的结构动载荷识别研究 文祥荣,智 浩,缪龙秀 (北方交通大学机械与电气工程学院,北京100044) 摘 要:分析了基于模态分析法的动载荷识别时域方法,应用薄板实例进行了验证,结果表明该方法具有较高精度,并对该方法在转向架结构应用中的一些问题进行了探讨. 关键词:动载荷识别;时域分析;模态分析 中图分类号:U453 文献标识码:A R esearch on Structural Dynamic Load Identif ication B ased on Modal Analysis Method WEN Xiang 2rong ,ZHI Hao ,M IAO Long 2xiu (College of Mechanical and Electrical Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :A dynamic load identification method in time domain based on modal analysis is analyzed.The method is verified with a flat thin plate and the results show its high accuracy.Some problem in the application of this method to identify dynamic load of bogie of rolling stock are also presented in this paper. K ey w ords :dynamic load identification ;time domain analysis ;modal analysis 动态载荷识别是根据已知系统的动态特性和实测的动力响应反算结构所受的动态激励.动载荷的确定是一个较难的问题,但又是结构动态设计的关键之一.动载荷的识别在结构动力响应计算、结构动态设计及故障分析中是十分重要的,为结构的动态计算、设计及分析提供可靠的依据.载荷识别方法主要分为时域和频域两大类.频域法发展较早,理论与计算方法较为成熟,应用也较广泛,在直升飞机动态力、汽车装配梁激振力、掘进机受载、海洋平台冰载、机床切削力、发动机活塞力等方面得到了应用[1].采用频域法虽然可确定动态力谱的均值与方差,但对于识别动态力确切的时间历程还有一定困难,特别是可能会出现奇异值和不稳定现象.时域法的最大特点是可以不经动态力谱而直接在时域内求解载荷时间历程,便于工程应用[2,3]. 将动载荷识别技术应用于铁路机车车辆结构受载状况的确定在国内外均未见报道.通过对机车车辆结构,尤其是转向架结构在运用条件下的动载荷识别,有助于制定转向架疲劳设计载荷谱,为转向架的动态设计与疲劳设计提供可靠的依据.我国的高速客车转向架正处于研制开发阶段,缺乏实践运用经验,各铁路工厂亦迫切需要这些载荷数据,以便完善转向架结构的 收稿日期:2000203201作者简介:文祥荣(1971— ),男,江西南康人,博士生.em ail :wen -xiangrong @https://www.360docs.net/doc/f516898834.html, 2000年8月第24卷第4期 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Aug.2000 Vol.24No.4

模态试验分析系统

模态试验分析系统 系统简介 模态试验与分析系统是指通过数据采集系统获得激励(和响应)数据,经动态信号分析与模态参数识别,确定机械结构的固有频率、阻尼比、振型和模态参与因子等揭示结构动态特性的参数。模态实验广泛应用于振动排故、状态检测、故障诊断和结构健康监测,以及动态响应预报、结构动态修改、有限元模型修正、动态分析与设计、振动控制等。 系统特点 ★快速几何建模 1、集成交互式几何建模模块,实现节点、连线、多边形、3D对象的交互式选择、移动、旋转、放大、删除、修改等功能 2、可定义总体坐标和局部坐标,具有笛卡尔、柱、以及球等三种坐标系统,各种坐标系统间转换方便 3、可实现线段、直线、矩形、梯形、扇面、椭圆、圆台、球体等规则3D对象的快速建模,还可自

定义三维单元库 4、除了交互式几何建模,模型几何信息也可通过配置信息界面直接进行修改、添加、删除等操作 ★快速、易用的信号分析功能 1、向导式的信号处理参数设置,实现趋势去除、时域抽取、快速傅立叶变换(FFT)、加窗函数等功能 2、 FFT长度:基2整数,根据实测数据自由可选;重叠:0%~83%,可从下拉列表中选择;平均次数:用户自定义;窗函数:矩形窗、汉窗、海明窗、平顶窗、指数窗、力窗、指数窗等;分析频率范围:采样频率的1/2或1/2.56 3、功率谱估计:自谱、互谱、功率谱密度矩阵、半功率谱密度矩阵 4、单输入多输出(SIMO)的频率响应函数(FRF)估计:H1、H2估计 5、多输入多输出(MIMO)的频率响应函数估计及相干函数估计 6、多线程支持的信号处理过程,并可采用不同设置参数重复进行 ★灵活的二维\三维图形显示、控制和输出 1、提供专用的二维曲线与三维图形控制面板,以及鼠标、快捷键、菜单等多种控制方式 2、多种曲线表达方式,诸如频率响应函数的幅值(线性、对数、dB坐标)、相位、展开相位、实部、虚部、奈奎斯特图等 3、方便灵活的二维曲线显示与控制,网格、图例等元素可显示或隐藏,并能提供相应曲线的完善测量信息(测量节点、方向,是否原点测量等) 4、缩放(具有不同缩放状态的记忆能力)、选段、寻峰寻谷等实用功能 5、方便灵活的三维图形显示与控制,节点号、输入/输出标记、坐标轴等元素可显示或隐藏,并能轻易实现平移、缩放、旋转等功能 6、提供三维图形的俯仰、左右、前后等各向视图,能实现结构的框架线显示或着色面渲染 7、二维曲线和三维图形的各元素颜色均可自定义 8、基于OpenGL的三维图形动画控制,实现播放、暂停、帧播放、幅度控制、速度控制等功能 9、各种二维曲线和三维图形均可复制到操作系统剪贴板中,亦可一键存储为BMP或JPG文件 10、振型动画和ODS可直接输出成AVI文件 ★先进、准确、可靠的模态分析技术 1、EMA : 基于输入(激振力)、输出(响应)测量的试验模态分析技术 (1)单输入/多输出(SIMO)的全局模态识别技术,可识别得到全局模态参数 (2)多点激振的多输入/多输出(MIMO)模态识别技术,具有识别高密度或重频模态的能力,是大型、复杂结构试验模态分析的理想方法 (3)单参考点和多参考点锤击法(MRIT)模态识别技术。 2、OMA: 环境激励下仅有输出(响应)可测量的运行模态分析技术,可以对桥梁、建筑、汽车、飞机、旋转机械等机械结构在运行状态进行试验与分析,无须人工激振,只需测量响应 (1)不仅简单可行,同时还可获得结构在真实运行状态下的动态特性,且天然具备多参考点特性,具有解耦密集模态的能力 (2)基于全功率谱密度矩阵的窄带模态参数识别方法(频域空间域分解法,FSDD),方便易用,结

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

模态分析与谐响应分析区别联系(优.选)

模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为一下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应

模态分析理论基础

点,有图可知节点并不唯一,而且修改前后节点的位置未变。对应尽可能避开结构振动的节点,以免给测量带来误差。4.4试验模态分析 试验模态分析的目的是为了验证理论模态分析的正确性的基础上进行深入研究奠定基础。 4.4.1试验模态分析的理论基础阻1所以在进行模态实验为在理论模态分析 在物理坐标下,描述N自由度离散振动系统的运动微分方程为 阻】耕+【c】扛}+医】M=沙}(4.2)式中:【M]——质量矩阵(对称且正定),M∈R~, 【C】——阻尼矩阵,C∈R“”, 晖】——刚度矩阵(对称且正定或半正定),K∈R“”, {x),{卦,{封——N维位移、速度和加速度响应向量, {厂(r))——_N维激振力向量。 设系统的初始状态为零,对式(4.2)两边进行拉普拉斯变换可得 ([Mls2“C]s+【K]){X0))=【Z(s)]{工0))={F0))式中的矩阵 【Z(s)]-([M]s2+[c]s+[K】) 反映了系统的动态特性,称为系统动态矩阵或广义阻抗矩阵,其逆阵 [日(5)】=[Z(s)】~=(【M]s2+【C]s+[K])。1称为广义导纳矩阵,也就是传递函数矩阵。由式(2.2)可知 {x(J))_【日0)】(F(J)} 在上式中.令S=joJ,即可得到系统在频域内输出和输入的关系式 {并(国)}=【日(脚)】(F(国))(4.3)(4.4)(4.5)(4.6)(4.7) 式中[H(co)】为频率响应函数矩阵。[H(∞)】矩阵中第f行_,列的元素 %(叻2篇(48)表示仅在』坐标激振(其余坐标激振力为零)时,i坐标的响应与激振力之比。 在式(4.4)中令S=_,∞,可得阻抗矩阵

模态分析

风刀的模态分析 摘要:https://www.360docs.net/doc/f516898834.html,/a/jixiegongcheng4603.html 在机械行业中,对于大量的旋转结构都会时常接触到,这些结构在整个机械行业中占住重要的地位,然而,对于这些结构的损坏,也是由于在旋转的过程中产生了共振,从而引起很大的振动应力,导致了结构件的损坏。因此,在实际工程的设计中,如何做好动力学设计和分析是一项举足轻重的工作。对于像这样的旋转结构件,如何避免产生共振,是动力学设计和分析中一项重要的环节。为此,利用当前先进的计算机技术来对产品进行模态分析,可以指导实际工作中如何去避免共振。 模态分析是用来确定结构振动特性的一种技术,通过它可以确定自然频率、振型和振型参与系数.模态分析可以使结构设计避免共振或以特定频率进行振动,明确结构对于不同类型的动力载荷是如何响应的,有助于在其他动力学分析中估算求解控制参数。所以接下来对本文的研究对象即对风刀吹风管进行改进前后做一个模态的对比分析。 1 风刀吹风管的振动分析 风刀吹风管在工作的过程中,由于受到气流连续不断的冲击作用,所产生的高频振动量就是风刀吹风管的固有频率,风刀吹风管的固有振动频率一般是指风刀吹风管系统风刀振动的固有频率,风刀吹风管系统的风刀振动主要是由高压高速的气流所引起的.影响风刀振动的固有频率的因素很多,如气流压缩强度、流速大小、单位面积流通量以及各种阻尼等等,近似可由公式π2//0m k f =进行计算,其中m 和k 分别为气流的等效质量.为了避免气流流过吹风管发生共振现象,必须精确地测出吹风管的固有振动频率,同时也为风刀吹风管系统的故障诊断提供了一个重要参数. 2 风刀吹风管的模态分析 2.1 模态分析简介 模态分析可以分为理论模态分析和试验模态分析,以及二者相结合的理论—试验模态分析这三种研究手段和方法。理论模态分析是基于线性振动理论、有限元理论的,它通过计算机及工程分析软件,首先建立研究对象的几何或数学模型,分析其物理参数,从研究激励、振动系统特性、响应三个方面来求解研究对象的动态特性。实验模态显然是依赖于实验仪器的,主要基于线性振动理论,或者可以间接的从声音振动频率上可以测得。总之,模态分析就是分析引起最低振动频率的大小,因此,模态分析也可以称为振动模态分析,而振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的

模态分析实验报告

研究生学院 机械工程专业硕士结课作业 课程题目:机械结构模态分析实验 指导老师: 姓名: 学号: 2015年08月23日

一、概述 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷 二、实验的基本过程 1、动态数据的采集及频响函数或脉冲响应函数分析 (1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 (3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。

相关文档
最新文档