运用运筹学模型解决施工实际问题

运用运筹学模型解决施工实际问题
运用运筹学模型解决施工实际问题

运筹学案例分析

皮革厂租用厂库安排 刘梦瑶 12211222 一、研究目的及问题表述 (一)研究目的:在生活中,厂商通常面临货物存储问题,有时便需要租借仓库进行货物存储,而租金也会随着租借时间的长短而有所改变。这时我们就可以运用运筹学算出最优的租借方案,使租金最小,减少存储成本。 (二)1、问题表述:广东黄埔区的某皮革代理商需要寻租可存储采购到的皮革的仓库,并在广州58同城网上找到了位于黄埔区中心地带的具有6000平方米的高标准仓库。出租商原定价1.2元/平方米/天,后经协商,双方同意如下:租期为两个月可打九折,3个月打八折,4个月打七折,5个月打6.5折。 2、皮革代理商根据经验预测租赁期间所需仓库大小,其预测结果如下: 第一个月2000平方米;第二个月3000平方米 第三个月2500平方米;第四个月3500平方米 第五个月1600平方米 将租赁合同设为每月初办理,每月签订合同份数不限,每份所选租期不限。 求租金最小。 3、将各方条件汇表如下 (三)数据来源:在58同城网上找到相关的仓库租赁信息,其中发现位于黄埔区中心地带,107国道旁有高标准仓库招租,并标明其有6000平方米的仓库可供出租,1.2元/平方米/天。经过在网上联系该出租商,了解到其出租价格为按天数算的短期出租,若存储时间长,可另外折扣。于是我便假定租期为两个月可打九折,3个月打八折,4个月打七折,5个月打6.5折。而由于能力有限,尚未查出有公司或厂商具体需要租借仓库并有具体租借时长与租借大小的数据资料,于是按照课本题目例子,假定了如上的皮革代理商与其的租借要求。 二、方法选择及结果分析 (一)方法选择:该问题的目标能为求租金最小,可用线性函数描述该目标的要求,且有多个方案可选。达到目标具有一定的约束条件,且这些条件可用

补充:运筹学经典案例

运筹学经典案例 一、鲍德西(B a w d s e y)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。1935年,英国科学家沃森—瓦特:(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。 “Blackett马戏团”是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了“Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

数学建模是使用数学模型解决实际问题

数学建模是使用数学模型解决实际问题。 对数学的要求其实不高。 我上大一的时候,连高等数学都没学就去参赛,就能得奖。 可见数学是必需的,但最重要的是文字表达能力 回答者:抉择415 - 童生一级 3-13 14:48 数学模型 数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 数学建模 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下: 1、实际问题通过抽象、简化、假设,确定变量、参数; 2、建立数学模型并数学、数值地求解、确定参数; 3、用实际问题的实测数据等来检验该数学模型; 4、符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。 数学模型的分类: 1、按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。 2、按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

《管理运筹学》案例分析报告模版

秋季流行服饰与衣料的准备(五人) 目从办公室的十层大楼里,凯瑟琳·拉里俯视着下面忙忙碌碌的人流,在充塞着黄色出租车的街道以及乱放着一些买热狗的摊位的人行道上,成群的纽约人来来往往,好不热闹。在这闷热的暑天里,她注视着各类女性的穿衣时尚,心里想的却是这些人在秋季将会选择怎样的款式。这并非是她的一时的灵感,而是她工作的重要的一部分因为她拥有并经营着一家妇女精品时装公司――时尚隧道(TrendLines)公司。 今天对她来说是很重要的,因为她将与生产部经理泰德·罗森碰面,一起商讨下一个月秋季生产线的生产计划,特别是在一定的生产能力的基础上确定要各种服装的生产量。制定下个月的周密的生产计划对于秋季的销售是至关重要的,因为这些产品在9 月份将会上市,而妇女们通常在服装一上市时就会购买大部分的秋天的服饰。 凯瑟琳回转身,走到宽大的玻璃台旁去看铺上面的大量的资料及设计图。她扫视着6个月以前就设计出来的服装图样,各种样式所需要的材料,以及在时装展上通过消费者调研取得的各种样式的需求预测。现在,她还记得当时是如何设汁图样并将样品在纽约,米兰和巴黎的服装展上展出,那些天可真是既兴奋而又痛苦。最后,她付给六个设计者的总酬金为$860,000。除此外,每次时装展的费用为$2,700,000,包括雇用职业模特、发型师、化妆师,以及衣服的裁制与缝纫、展台背景的设计、模特的走步与排练、会场的租用。 她研究着衣服的样式和所需的材料。秋季的服装包括职业装和休闲装,而每种服装的价格是由衣服的质量、材料的成本、人工成本、机器成本,以及对该产品的需求与品牌的知名度等因素来确定的。

她知道已经为下个月采购了下面的这些材料:羊毛45,000码、开司米28,000码、丝绸18,000码、人造纤维30,000码、天鹅绒20,000码、棉布30,000码。各种材料的价格如下图所示: 多余的材料(不包括下脚料)可以运回给衣料供应商,并得到全额的偿还。 凯瑟琳知道生产丝绸上衣和棉汗衫会产生相当的多余边料。每件丝绸上衣和每件棉汗衫分别需要2 码的丝绸和棉布,而其中分别有0.5 码的边料。她不希望浪费这些衣料,因此打算利用矩形的丝绸和棉布的边料来生产丝绸女背心和棉的迷你裙。这样,每生产一件丝绸上衣就可以生产一件丝绸女背心。同样,每生产一件棉汗衫就可以生产一件迷你裙。要注意的是,生产背心和迷你裙并不一定需要首先生产相应数量的丝绸上衣和棉汗衫。 需求的预测表明其中一些产品的需有限的。天鹅绒的裤子和衬衫因为是一时的流行,预测分别只能销售5,500 和6,000件。公司不会生产超过预计需求的产品数量,因为,一旦该式样不再流行,就很难再卖出去。并且,因为公司并不需要满足所有的需求,所以,公司可以生产少于需求数量的产品。开司米汗衫因为价格较高,预计也只能销出4,000。丝绸上衣和背心的需求也是有限的,因为很多女性认为丝绸较难护理。公司预计大约可销出12,000的丝绸上衣和15,000丝绸背心。 预测表明羊毛裤,剪裁考究的衬衫,羊毛夹克的需很大的,因为这些是职业行头的必需品。羊毛裤和羊毛夹克的需求分别为7,000和5,000。凯瑟琳认为必须满足该部分60%的需求,以保持客户的品牌忠诚度,为以后的业务考虑。尽管剪裁考究的衬衫的需无法预测的,凯瑟琳认为必须至少生产2 , 800件。 a .泰德打算说服凯瑟琳不生产天鹅绒衬衫,因为,这种流行服装的需很少的。而它的固定设计费用和其他成本高达$ 500,000,销售该样式的净贡献(售价-材料成本-人工成本)必须能够抵消总成本,他认为,即便是满足了最大的需求,该产品也不能产生一点的利润。你认为泰德的观点如何? 解:净贡献=6000×(200-1.5×12-160)=132000<500000 由上式得,泰德的观点正确的,因为根据软件求解的结果,最优生产计划中X10的最优解为0,因此最好不要生产天鹅绒衬衫。

运筹学案例分析题

案例四监理公司人员配置问题 某监理公司侧重于国家大中型项目的监理。每项工程安排多少监理工程师进驻工地,一般是根据工程的投资、建筑规模、使用功能、施工的形象进度、施工阶段来决定,监理工程师的配置数量随着变化。由于监理工程师从事的专业不同,他们每人承担的工作量也是不等的。有的专业一个工地就需要三人以上,而有的专业一人则可以兼管三个以上的工地。因为从事监理业的专业多达几十个,仅以高层民用建筑为例就涉及到建筑学专业、工民建(结构)专业、给水排水专业、采暖通风专业、强电专业、弱电专业、自动控制专业、技术经济专业、总图专业、合同和信息管理专业等,这就需要我们合理配置这些人力资源。为了方便计算,我们把所涉及的专业技术人员按总平均人数来计算,工程的施工形象进度按标准施工期和高峰施工期来划分。通常标准施工期需求的人数教容易确定。但高峰施工期就比较难确定了,原因有两点: (1)高峰施工期各工地不是同时来到,是可以事先预测的,在同一个城市里相距不远的工地,就存在着各工地的监理工程师如何交错使用的运筹问题。 (2)各工地总监在高峰施工期到来的时候要向公司要人,如果每个工地都按高峰施工期配置监理工程师的数量,将造成极大的人力资源浪费。 因此,为了达到高峰施工期监理工程师配置数量最优,人员合理地交错使用,遏制人为因素,根据历年来的经验对高峰施工期的监理工程师数量在合理交错发挥作用的前提下限定了范围。另经统计测得,全年平均标准施工期占7个月,人均年成本4万元;高峰施工期占5个月,人均年成本7万元。 标准施工期所需监理工程师如表1所示。 表1 另外在高峰施工期各工地所需监理工程师的数量要求如下: 第1和第2工地的总人数不少于14人; 第2和第3工地的总人数不少于13人; 第3和第4工地的总人数不少于11人; 第4和第5工地的总人数不少于10人; 第5和第6工地的总人数不少于9人; 第6和第7工地的总人数不少于7人; 第7和第1工地的总人数不少于14人。 问题: (1)高峰施工期公司最好配置多少个监理工程师 (2)监理工程师年耗费的总成本是多少

运筹学 参考书

参考书 1.《运筹学》(科学版精品课程立体化教材·管理学系列)(第2版),张伯生等编著,科学出版社,2012年; 2.《数据、模型与决策》(第13版),戴维·R·安德森/丹尼斯·J·斯威尼编著,于淼译,机械出版社,2012年; 3、《运筹学》(新体系经济管理系列教材),李成标,刘新卫主编,清华大学出版社,2012年; 4.《运筹学——优化模型与算法》,(美)拉丁(Rardin,R.L.) 著,电子工业出版社,2007年 5.《Introduction to Operations Research》(第6 版)(外原版经典教材), F. S. Hillier and G. J. Lieberman 著,McGraw-Hill 出版社; 6. 《运筹学》,党耀国,李帮义等编著,科学出版社,2009年; 7. 《物流运筹学》,刘蓉主编,电子工业出版社,2012年; 8. 《运筹学导论》(第9版)(美国麦格劳-希尔教育出版公司工商管理最新教材(英文版)),(美)希利尔,(美)利伯曼著,清华大学出版社,2010年; 9. 《运筹学》(第4版)(面向21世纪课程教材(信息管理与信息系统专业教材系列),《运筹学》教材编写组编,清华大学出版社,2012年; 10.《运筹学:应用与解决方法》(第4版)(美国商学院原版教材精选系列),(美)温斯顿著,清华大学出版社,2011年; 11.《管理运筹学》(高等学校经济与工商管理系列教材),茹少峰,申卯兴编著,清华大学出版社,2008年; 12.《运筹学》(第3版),刁在筠等编,高等教育出版社,2007年;

13.《实用运筹学:模型、方法与计算》,韩中庚主编,清华大学出版社,2007年; 14.《运筹学》(现代信息管理与信息系统系列教材),李红艳,范君晖主编,清华大学出版社,2012 年; 15.《管理运筹学:管理科学方法》(21世纪管理科学与工程系列教材),谢家平著,中国人民大学出版社,2010年; 16.《运筹学与实验》,薛毅,耿美英编著,电子工业出版社,2008年; 17.《实用运筹学——上机实验指导及习题解答》,叶向编,中国人民大学出版社,2007年; 18.《应用运筹学》(第二版),曹勇,周晓光,李宗元编著,经济管理出版社,2008年; 19.《运筹学导论》(第8版),(美)希利尔(Hillier,F.S.),(美)利伯曼(Lieberman,G.J.)著,胡运权等译,清华大学出版社,2007年; 20.《经济管理运筹学习题集》,王玉梅,孙在东,张志耀编著,中国标准出版社,2012年; 21.《运筹学习题集》(第4版),胡运权主编,清华大学出版社,2010年; 22.《运筹学解题指导》,周华任主编,清华大学出版社,2006年; 23.《运筹学概率模型应用范例与解法》(第4版),(美)温斯顿(Winston,W.L.)著,李乃文等译,清华大学出版社,2006年; 24.《运筹学学习辅导与习题解析》(第3版),戎晓霞,宿洁,刘桂真编,高等教育出版社,2009年; 25.《管理运筹学习题集》(普通高等学校管理科学与工程类学科核心课程教材辅

用数学模型思想方法解决实际问题

用数学模型思想方法解决 初中数学实际应用问题 关键词: 数学模型难点策略 随着新课改的进步落实,素质教育全方位、深层次推进,数学学科要求学生具有较高的数学素质、数学意识和较强的数学应用能力。而数学实际应用问题具有这种考查功能。它不仅具有题材贴近生活,题型功能丰富,涉及知识面广等特点,而且其应用性、创造性及开放性的特征明显。新课标把探索培养学生应用数学知识和数学思想方法解决实际问题的能力已落实到各种版本的数学实验教材中去了。今天社会对数学教学提出更高要求,不仅要求培养出一批数学家,更要求培养出一大批善于应用数学知识和数学思想方法解决实际问题的各类人才。初中阶段是探索和培养各类数学人才的黄金时段,而把实际问题转化为数学问题又是绝大多数初中学生的难题,如果在教学中我们有意识地运用数学模型思想帮助学生克服和解决这一难题,那么学生就会摆脱实际应用问题的思想束缚,释放出学习和解决实际应用问题的强大动力,激活创造新思维的火花。 把实际问题转化为一个数学问题,通常称为数学模型。数学模型不同于一般的模型,它是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。建立数学模型的过程称为数学建模。它主要有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解。对初中学生来说,最关键最困惑的是第一步。 一、初中学生解决实际应用问题的难点 1.1、缺乏解决实际问题的信心 与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。具体表现在:在信息的吸收过程中,受应用题中提供信息的次序,过多的干扰语句的影响,许多学生读不懂题意只好放弃;在信息加工过程中,受学生自身阅读分析能力以及数学基础知识掌握程度的影响,许多学生缺乏把握应用题的整体数学结构,并对全立体结构的信息作分层面的线性剖析的能力。即使能读懂题意,也无法解题;在信息提炼过程中,受学生数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换成数学问题的转译能力。 数学建模问题是用数学知识和数学分法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。 1.2、对实际问题中一些名词术语感到生疏 由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。例如:从2001年2月21日起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算)。上星期天,一位同学调查了A、B、C、D、E五位同学某天打本地网营业区内电话

管理运筹学lindo案例分析报告

管理运筹学lindo案例分析 ⑻Lindo的数据分析及习题 用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么围(此时假定其它系数不变)时,最优基保持不变。灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab , 在Dual Computations 列表框中,选择Prices and Ranges 选项。灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。 下面我们看一个简单的具体例子。 例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示: 用DESKS TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。 max=60*desks+30*tables+20*chairs; 8*desks+6*tables+chairs<=48; 4*desks+2*tables+1.5*chairs<=20; 2*desks+1.5*tables+.5*chairs<=8; tables<=5; 求解这个模型,并激活灵敏性分析。这时,查看报告窗口(Reports Window),可以看到如下结果。Global optimal solution found at iteration:3 Objective value:280.0000 Variable Value Reduced Cost DESKS 2.0000000.000000 TABLES0.000000 5.000000 CHAIRS8.0000000.000000 Row Slack or Surplus Dual Price 1280.0000 1.000000 224.000000.000000 30.00000010.00000 40.00000010.00000 5 5.0000000.000000 “ Global optimal solution found at iteration: 3 ”表示 3 次迭代后得到全局最优解。 a Objective value:280.0000 ”表示最优目标值为280。“Value”给出最优解中各变量的值:造2个书桌(desks), 0 个餐桌(tables ), 8 个椅子(chairs )。所以desks、chairs 是基变量(非0), tables 是非基变量(0 )。 “ Slack or Surplus ”给出松驰变量的值: 第1行松驰变量=280 (模型第一行表示目标函数,所以第二行对应第一个约束) 第2行松驰变量=24 第3行松驰变量=0 第4行松驰变量=0 第5行松驰变量=5 “ Reduced Cost ”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时,目 标函数的变化率。其中基变量的reduced cost 值应为0, 对于非基变量X j,相应的reduced cost 值 表示当某个变量X j 增加一个单位时目标函数减少的量( max 型问题)。本例中:变量tables 对应的

运筹学答案_第_11_章__图与网络模型

第11章图与网络模型 习题1 配送的最短距离。用解:这是一个最短路问题,要求我们求出从v1到v 7 Dijkstra算法求解可得到这问题的解为27。我们也可以用此书附带的管理运筹学软件进行计算而得出最终结果为: 从节点1到节点7的最短路 ************************* 起点终点距离 ------------ 124 2312 356 575 此问题的解为:27 → 12357 习题2 解:这是一个最短路的问题,用Dijkstra算法求解可得到这问题的解为4.8,即在4年内购买、更换及运行维修最小的总费用为:4.8万元。 最优更新策略为:第一年末不更新 第二年末更新 第三年末不更新 第四年末处理机器 我们也可以用此书附带的管理运筹学软件进行求解,结果也可以得出此问题的解为4.8。 习题3 解:此题是一个求解最小生成树的问题,根据题意可知它要求出连接v1到v8的最小生成树。解此题可以得出结果为18。也可以使用管理运筹学软件,得出如下结果: 此问题的最小生成树如下: ************************* 起点终点距离 ------------ 132 342 124 252 573

习题4 782 763此问题的解为:18 解:此题是一个求解最大流的问题,根据题意可知它要求出连接v1到 v6 的最 大流量。解此题可以得出最大流量为 出结果为: 22。使用管理运筹学软件,我们也可以得v1从节点1到节点6的最大流 ************************* 起点终点距离 ------------ 126 146 1310 240 256 345 365 455 466 5611 此问题的解为:22 即从v1到v6的最大流量为:22 习题5 解:此题是一个求解最小费用最大流的问题,根据题意可知它要求出连接v1到v6的最小费用最大流量。解此问题可以得出最大流为5,最小费用为39。使用管理运筹学软件,我们也可以得出结果如下: 从节点1到节点6的最大流 ************************* 起点终点流量费用 ---------------- 1213 1341 2424 3211 3533 4624

构建数学模型 解决生活中的实际问题

构建数学模型解决生活中的实际问题 青州市王府街道刘井小学邢文谦 每次听课对我的课堂教学都有一个新的提升,今天我听了本校教师刘老师的“相遇问题”这节课,我有一种新的感觉是老师引导的太到位了,从学生的生活实际出发,创设与学生的日常生活紧密联系的上学情境,且采用动画形式呈现,学生在现实而有趣的情境吸引下,主动发现问题、提出问题,进而提炼生成完整的数学问题、解决问题,帮助学生构建起“相遇问题的情景模型”。通过观课学习和根据自己的教学实践浅谈一下如何帮助学生构建数学模型: 第一,应激发学生学习数学的兴趣。学生在实际的操作过程中,必须考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。只有对实际原形有充分的了解,明确原型的特征,只有做到这一点,才能使学生对实际问题进行简化。从而培养学生对事物的观察和分辨能力,增强学生的数学意识。结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为应用题教学的问题背景,这样既克服了教材的不足,又对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。 第二,要让学生参与数学模型的建立形成过程。数学模型的建立过程中教师要善于调动学生主动建模的积极性,千万不能对学生的不合理的归纳或不恰当的抽象,以及不合常情的假设加以批评和指责,恰恰相反要抓住他们闪光的地方加以表扬、鼓励,并通过适度的引导和点拨使学生对实际问题的简化更加清楚。 总之,我们要提供实际问题不同层面学生对数模的理解,问题的难易是有层次。例如基本练习,拓展练习和延伸练习。在本节相遇问题的课例中,刘老师通过三个层次的练习:基本练习,拓展练习和延伸练习。让学生将相遇问题的解题策略和解题经验进行迁移,解决生活中简单的实际问题,体会数学与生活的密切联系,获得数学学习的积极情感体验。

数学建模 运筹学模型(一)

运筹学模型(一) 本章重点: 线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题 复习要求: 1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵. 2.进一步理解数学模型的作用与特点. 本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题. 1.营养配餐问题的数学模型 n n x C x C x C Z ++=211m i n ????? ?? ??=≥≥+++≥+++≥+++??) ,,2,1(0, ,, 22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n 或更简洁地表为 ∑== n j j j x C Z 1 m i n ??? ??? ?==≥≥??∑=),,2,1,,2,1(01 n j m i x b x a t s j n j i j ij 其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量. 2.合理配料问题的数学模型 有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大? 设生产第j 种产品x j 个单位(j =1,2,…,n ),则有 n n x C x C x C Z +++= 2211m a x

运筹学案例分析报告文案

武城万事达酒水批发案例分析 导言:每个企业都是为了赚取利润,想要赚取更多的利润就要想办法节约自己的成本,那怎么节约自己的成本呢?运筹学是一门用纯数学的方法来解决最优方法的选择安排的学科。运输是配送的必需条件,但是怎么才能让武城万事达酒水批发厂在运输问题是节约运输成本呢?我们就运用运筹学的方法来进行分析。我们对他原来的运输路线进行调查,计算原来需要的运输成本,对它的运输方式我们进行研究然后确定新的运输路线为他节约运输成本。 一、案例描述 武城万事达酒水批发有四个仓库存储啤酒分别为1、2、3、4,有五个销地A、B、C、D、E,各仓库的库存与各销售点的销售量(单位均为t),以及各仓库到各销售地的单位运价(元/t)。半年中,1、2、3、4仓库中分别有300、400、500、300吨的存量,半年A、B、C、D、E五个销售地的销量分别为170、370、500、340、120吨。且从1仓库分别运往A、B、C、D、E五个销售地的单位运价分别为300、350、280、380、310元,从2仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、270、390、320、340元,从3仓库分别运往A、B、C、D、E五个销售地的单位运价分别290、320、330、360、300元,从4仓库分别运往A、B、C、D、E五个销售地的单位运价分别310、340、320、350、320元。具体情况于下表所示。求产品如何调运才能使总运费最小?

仓库 A B C D E 存量 销地 1 300 2 400 3 500 4 300 150销量170 370 500 340 120 武城万事达酒水批发原来的运输方案: E销售地的产品从1仓库供给,D销售地的产品全由2仓库供给,C销售地全由3仓库供给,A、B销售地产品全由4仓库供给。 即:产生的运输费用为Z1 Z1=310*120+320*340+330*500+340*370+310*170=489500 二、模型构建 1、决策变量的设置 设所有方案中所需销售量为决策变量X ij(i=1、2、3、4,j=A、B、C、D、E),即: 方案1:是由仓库1到销售地A的运输量X1A 方案2:是由仓库1到销售地B的运输量X1B 方案3:是由仓库1到销售地C的运输量X1C

运筹学经典案例

运筹学经典案例 案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪30年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935年,英国科学家沃森—瓦特(R.Watson-Wart)发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的Bawdsey建立了一个秘密的雷达站。 当时,德国已拥有一支强大的空军,起飞17分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160公里之外的飞机,但空防中仍有许多漏洞,1939年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett为首,组织了一个小组,代号为“Blachett 马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“Blackett马戏团”是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operational Research”一词,意指作战研究”或“运用研究”。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

构建数学模型解决实际问题

构建数学模型解决实际问题 “能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下: 解题步骤如下: 1、阅读、审题: 要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。 2、建模: 将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。 3、合理求解纯数学问题 4、解释并回答实际问题 一、方程模型 例:小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。 ⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费) ⑵小刚想在这两种灯中选购一盏: ①当照明时间是多少时,使用两种灯的费用一样多; ②试用特殊值推断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低; ⑶小刚想在这两种灯中选购两盏

假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。 解:(1)用一盏节能灯的费用是(49+0.0045x)元, 用一盏白炽灯的费用是(18+0.02x)元. (2)①由题意,得49+0.0045x=18+0.02x ,解得x=2000, 所以当照明时间是2000小时时,两种灯的费用一样多. ②取特殊值x=1500小时, 则用一盏节能灯的费用是49+0.0045×1500=55.75(元), 用一盏白炽灯的费用是18+0.02×1500=48(元), 所以当照明时间小于2000小时时,选用白炽灯费用低; 取特殊值x=2500小时, 则用一盏节能灯的费用是49+0.0045×2500=60.25(元), 用一盏白炽灯的费用是18+0.02×2500=68(元), 所以当照明时间超过2000小时时,选用节能灯费用低. (3)分下列三种情况讨论: ①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元; ②如果选用两盏白炽灯,则费用是36+0.02×3000=96元; ③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低. 费用是67+0.0045×2800+0.02×200=83.6元 综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低. 变式1:某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆 后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的 20 3 ,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的5 2 。问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 解:(1)设公司第一次改装了y 辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x

《运筹学》期末复习题

《运筹学》期末复习题 第一讲运筹学概念 一、填空题 1.运筹学的主要研究对象就是各种有组织系统的管理问题,经营活动。 2.运筹学的核心主要就是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。 3.模型就是一件实际事物或现实情况的代表或抽象。 4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。5.运筹学研究与解决问题的基础就是最优化技术,并强调系统整体优化功能。运筹学研究与解决问题的效果具有连续性。 6.运筹学用系统的观点研究功能之间的关系。 7.运筹学研究与解决问题的优势就是应用各学科交叉的方法,具有典型综合应用特性。 8.运筹学的发展趋势就是进一步依赖于_计算机的应用与发展。 9.运筹学解决问题时首先要观察待决策问题所处的环境。 10.用运筹学分析与解决问题,就是一个科学决策的过程。 11、运筹学的主要目的在于求得一个合理运用人力、物力与财力的最佳方案。 12.运筹学中所使用的模型就是数学模型。用运筹学解决问题的核心就是建立数学模型,并对模型求解。 13用运筹学解决问题时,要分析,定议待决策的问题。 14.运筹学的系统特征之一就是用系统的观点研究功能关系。 15、数学模型中,“s·t”表示约束。 16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。 17.运筹学的主要研究对象就是各种有组织系统的管理问题及经营活动。 18、1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。 二、单选题 1.建立数学模型时,考虑可以由决策者控制的因素就是( A ) A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格 2.我们可以通过( C )来验证模型最优解。 A.观察 B.应用 C.实验 D.调查 3.建立运筹学模型的过程不包括( A )阶段。 A.观察环境 B.数据分析 C.模型设计 D.模型实施 4、建立模型的一个基本理由就是去揭晓那些重要的或有关的( B ) A数量B变量 C 约束条件 D 目标函数 5、模型中要求变量取值( D ) A可正B可负C非正D非负 6、运筹学研究与解决问题的效果具有( A ) A 连续性 B 整体性 C 阶段性 D 再生性 7、运筹学运用数学方法分析与解决问题,以达到系统的最优目标。可以说这个过程就是一个(C) A解决问题过程B分析问题过程C科学决策过程D前期预策过程8、从趋势上瞧,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的就是 ( C )

运筹学案例分析

运筹学案例 分析 指导老师: 班级: 姓名: 学号:

个人学习时间优化分配 设计总说明(摘要) 合理的安排时间方案,采取最优化的时间组合,有利于我们充分发挥各个时间阶段的学习效益。同时可以使我们的学习符合日常行为及自身特点,不仅使时间得到有效安排,也使得我们的身心得到和谐。此次,研究分配一天中四个阶段四门课程的学习时间,就是根据学生的身心特点,和各阶段对各课程学习的收获程度,采取获得程度量化的方法,设计出一个最优的时间组合方案,从而获得最大的收获效益。即获得学习的最大价值。 在这个过程中要将运筹学的各种理论知识与具体实际情况相结合。首先是确定所要研究的问题,考虑所需要的各种数据,根据实际需求确定所需要的数据和模拟量化的数据。将数据整理形成分析和解决问题的具体模型。其次对已得模型利用计算机进行求解,得出方程的最优解。最后结合所研究问题的实际背景,对模型的解进行评价、分析以及调整,并对解的实施与控制提出合理化的建议。 关键词:时间优化,线性规化,最优解,获得效益最大

目录 1.绪论 1.1研究的背景 (3) 1.2研究的主要内容与目的 (3) 1.3研究的意义 (3) 1.4研究的主要方法与思路 (3) 2.理论方法的选择 2.1 所研究的问题的特点 (4) 2.2 拟采用的运筹学理论方法的特点 (4) 2.3 理论方法的适用性及有效性论证 (5) 3.模型的建立 3.1 基础数据的确定 (5) 3.2 变量的设定 (6) 3.3目标函数的建立 (6) 3.4 限制条件的确定 (6) 3.5 模型的建立 (7) 4 .模型的求解及解的分析 4.1 模型的求解 (7) 4.2 解的分析与评价 (9) 5 .结论与建议 5.1 研究结论 (11) 5.2 建议与对策 (11)

北师大版高中数学必修一教案用函数模型解决实际问题

《用函数模型解决实际问题》教学设计用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。解决函数建模问题,也就是根据实际问题建立起数学模型来。所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。 学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。 用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。 一.一次函数模型的应用 某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。 (1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。 (2)几个月后这位同学可以第一次汇款? 这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。 二.二次函数模型的应用 建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。 某商店进了一批服装,每件售价为90元,每天售出30件,在一定范围内这批服装的售价每降低1元,每天就多售出1件。请写出利润(元)与售价(元)之间的函数关系,当售价为多少元时,每天的利润最大? 学生首次接触这种类型的题,往往是束手无策,这时教师可引导他们从他们最熟悉的问题做起:利润=单件售价×售出件数,设售价为x,则下面只需要找出售出件数即可,而售出件数又与价钱降低的幅度有关,所以设计下列相关问题让学生去找答案:售价比原定的售价降低了:90-x 售出件数比原来多了:(90-x)×1=90-x 则现在售出件数为:30+(90-x)=120-x 因此,利润y=x(120-x)

相关文档
最新文档