材料力学(单辉祖)第十一章压杆稳定问题

第十章杆稳定问

第十一章压杆稳定问题

主讲人:张能辉

1

压杆稳定性概念

2

压杆稳定性概念

工程实例

3

2010年智利地震中剪力墙破坏

压杆稳定性概念

工程实例

2013年大陆首次出现空间钢网架震害现象

连杆屈曲

四川省庐山体育馆

4

压杆稳定性概念

实验现象

(1)粗短压杆

塑性材料(Steel)脆性材料(Iron)

压力增加压力增加

强度问题

5

压杆稳定性概念

强度满足情况下(2)扭转轴

强度满足情况下,变形不能过大

刚度问题

变形特点:连续性

6

压杆稳定性概念

P

(3)细长压杆

P

内燃机挺杆P

油缸中活塞杆

P P

P

P >P cr

P

7

压杆稳定性概念

其它结构

壳受轴压作用

稳定性问题

变形特点:突发性

8

压杆稳定性概念

细长压杆弯曲原因--缺陷

?在杆件轴向压缩变形过程中,

往往伴随着横向弯曲变形

几何缺陷

实际压杆的轴线存在着初始曲率

载荷缺陷

作用在杆件上的外力作用线一般也不

与杆件的轴线恰好重合

材料缺陷

杆件的材料不可能达到理想的均匀性

9

压杆稳定性概念

如果杆件抗弯刚度较大且轴P

?

如果杆件抗弯刚度较大,且轴向压力在一定范围内,杆件的变形可分别由杆件压缩和弯曲变形叠加而得到——组合变形P

w

?

如果轴向压力逐渐增大,轴向压力对杆件弯曲变形影响不可压力对杆件曲变形影响不可忽略,且当轴向压力达到某一极度增大P

P cr

特定值时,杆件变形,而导致受压杆件丧失承载能力

10

压杆稳定性概念

受压杆件理想力学模型

李雅普诺夫观点

作用理想直杆受轴向压力P 作用一理想直杆,则其直线形态是一个平衡态

P

假想有微小横向力P Q 同时作用于直杆上,则在力P 和Q 作用下,Q

P

直杆发生压缩和弯曲组合变形

P

11

压杆稳定性概念

后弯曲变形消失如果撤去横向力Q 后,弯曲变形消失,直

杆恢复到其原来的直线平衡状态,则称

直杆的直线平衡态是稳定的平衡态。

撤去横向力后弯曲变形不能消失Q 后,弯曲变形不能消失,杆的轴线不能保持为一条曲线,则称直杆的直线平衡态是不稳定的平衡态。

则杆的直线平衡态由稳定平衡转化为不

稳定平衡时所受的轴向压力称为临界压力,简称为临界力。

12

压杆稳定性概念

P

P

稳P 撤去横向力Q

稳定的

Q

P

定的

当较小时

不P P

P 临界压力

P cr

P

稳定的

当P 较大时

撤去横向力Q

不稳定的

Q

P

临界压力: 保持直线状态的最大压力

维持曲线状态的最小压力

13

细长中心直

细长中心受压直杆

临界力的欧拉公式

14

欧拉公式

压杆线弹性稳定性问题

设细长中心受压直杆在临界力作用下处

于不稳定平衡直线形态,如果此时材料仍

如果此时材料仍处于理想线弹性范围内(即胡克定理成立),

则称细长中心受压直杆的稳定性问题为

线弹性稳定性问题

线弹性稳定性问题是结构稳定性问题分析中最简单的一类,其中又以细长中心受压

直杆的稳定性问题为最基本的

15

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2) .2(l EI P cr π= ?为什么?并由此判断压杆长因数μ是否可能大于2。

09工程力学答案-第11章---压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时 4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故 0.7 80.83 1.229 0.03 99.35 x P y z l l l l i μ λλ ? ===>> =→mm,

材料力学第9章压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π= 。 [习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动) 解:压杆能承受的临界压力为:2 2) .(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ

(f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2).2(l EI P cr π= 为什么并由此判断压杆长因数μ是否可能大于2。 螺旋千斤顶(图c )的底座对丝杆(起顶杆)的稳定性有无影响校核丝杆稳定性时,把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆是否偏于安全 解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的临界力计算公式不同。(b)为一端固定,一端自由的情况,它的长度因素2=μ,其临界力为:2 min 2).2(l EI P cr π= 。但是,(a) 为一端弹簧支座,一端自由的情况,它的长度因素 2≠μ,因此,不能用2 min 2) .2(l EI P cr π= 来计算临界力。 为了考察(a )情况下的临界力,我们不妨设下支座(B )的转动刚度l EI M C 20 ==? ,且无侧向位移,则: )()("w F x M EIw cr -=-=δ 令 2k EI F cr =,得: δ22"k w k w =+ 微分方程的通解为:δ++=kx B kx A w cos sin kx Bk kx Ak w sin cos ' -= 由边界条件:0=x ,0=w ,C F C M w cr δ?== =' ;l x =,δ=w 解得: Ck F A cr δ= ,δ-=B ,δδδ δ+-=kl kl Ck F cr cos sin 整理后得到稳定方程:20/tan == l EI C kl kl

第十一章压杆稳定

第十一章 压杆稳定 是非判断题 1 压杆失稳的主要原因是由于外界干扰力的影响。( ) 2 同种材料制成的压杆,其柔度愈大愈容易失稳。( ) 3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能保持平衡。( ) 4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( ) 5 压杆的临界应力值与材料的弹性模量成正比。( ) 6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。( ) 7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。( ) 8 压杆的临界应力必然随柔度系数值的增大而减小。( ) 9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。 ( ) 填空题 10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总是不可避免地存在 以及 等不利因素的影响。 11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式为 ;1 2λλλ≤≤的压杆称为 ,其临界应力计算公式为 ;2λλ≤的压杆称为 ,其临界应力计算公式为 。 12 理想压杆的条件是① ;② ;③ 。 13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在计算临界压力时,都采 用 的横截面面积A 和惯性矩I 。 14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = ,挠曲线位于 平 面内。 z C 题15图 15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷F cr = 。 16 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的 。 17 提高压杆稳定性的措施有 , ,以及 和 。 18 细长杆的临界力与材料的 有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济, 原因时 。 19 b 为细长杆,结构承载能力将 。 B P

《材料力学》第9章压杆稳定习题解

第九章压杆稳定习题解 [ 习题9-1] 在§9-2 中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线 形状,导出了临界应力公式 2 EI P cr 。试分析当分别取图b,c,d 所示坐标系及挠曲线形2 l 状时,压杆在F作用下的挠曲线微分方程是否与图 a 情况下的相同,由此所得F cr 公式又cr 是否相同。 解:挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 " M x EIw ( ) 。(c)、(d) 的坐标系相同,它们具有相同的挠曲线微分方程: " M x EIw ( ),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: 2 EI P cr 。 2 l

1

[ 习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为: 2 EI P cr 。由这公式可知,对于材料和截面相同的压杆,2 ( .l) 它们能承受的压力与原压相的相当长度l 的平方成反比,其中,为与约束情况有关的长度系数。 (a)l 1 5 5m (b)l 0.7 7 4. 9m (c)l 0.5 9 4.5m (d)l 2 2 4m (e)l 1 8 8m (f )l 0.7 5 3.5m (下段);l 0.5 5 2. 5m (上段) 故图 e 所示杆F最小,图 f 所示杆F cr 最大。 cr [ 习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性 地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为P cr 2 EI min 2 ( 2.l ) ?为什么?并由此判断压杆长因数是否可能大于2。

材料力学习题册答案第9章 压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

第十章 压杆稳定

第十章 压杆稳定 学时分配:共6学时 主要内容:两端铰支细长压杆的临界压力,杆端约束的影响,压杆的长度系数μ,临界应力欧拉公式的适用范围;临界应力总图、直线型经验公式λσb a cr -=,使用安全系数 法进行压杆稳定校核。 $10.1压杆稳定的概念 1.压杆稳定 若处于平衡的构件,当受到一微小的干扰力后,构件偏离原平衡位置,而干扰力解除以后,又能恢复到原平衡状态时,这种平衡称为稳定平衡。 2.临界压力 当轴向压力大于一定数值时,杆件有一微小弯曲,一侧加一微小干扰且有一变形。任一微小挠力去除后,杆件不能恢复到原直线平衡位置,则称原平衡位置是不稳定的,此压力的极限值为临界压力。 由稳定平衡过渡到不稳定平衡的压力 的临界值称为临界压力(或临界力),用 τ c P 表示。 3.曲屈 受压杆在某一平衡位置受任意微小挠动,转变到其它平衡位置的过程叫屈曲或失稳。 $10.2细长压杆临界压力的欧拉公式 1.两端铰支压杆的临界力 选取如图所示坐标系xOy 。距原点为x 的任意截面的挠度为v 。于是有 Pv M -= 2.挠曲线近似微分方程: 将其代入弹性挠曲线近似微分方程,则得 ()Pv x M EIv -=='' 令 EI P k = 2 则有 0'2''=+v k v 该微分方程的通解为 kx B kx A v cos sin += c r c r

式中A 、B ——积分常数,可由边界条件确定 压杆为球铰支座提供的边界条件为 0=x 和l x =时,0=v 将其代入通解式,可解得 0=B ,0sin =kl A 上式中,若A=0,则0=v ;即压杆各处挠度均为零,杆仍然保持直线状态,这与压杆处于微小弯曲的前提相矛盾。因此,只有 0sin =kl 满足条件的kl 值为 πn kl =),2,1,0(Λ=n 则有 l n k π= 于是,压力P 为 2222 l EI n EI k P π= = 1=n 得到杆件保持微小弯曲压力-临界压力τc P 于是可得临界压力为 2 2l EI P c πτ= 此式是由瑞士科学家欧拉(L. Euler )于1744年提出的,故也称为两端铰支细长压杆的 欧拉公式。 此公式的应用条件:理想压杆;线弹性范围内;两端为球铰支座。 $10.3其他条件下压杆的临界压力 欧拉公式的普遍形式为 22)(l EI P cr μπ= 式中μ称为长度系数,它表示杆端约束对临界压力影响,随杆端约束而异。l μ表示把压杆折算成相当于两端铰支压杆时的长度,称为相当长度。 两端铰支,1=μ;一端固定另一端自由2=μ;两端固定,2 1=μ;一端固定令一 端铰支,7.0=μ。

建筑力学第11章压杆稳定

第11章压杆稳定 [内容提要]稳定问题是结构设计中的重要问题之一。本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。 11.1 压杆稳定的概念 工程中把承受轴向压力的直杆称为压杆。前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。 为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。 P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值 cr P时,杆件虽位置上保持平衡。但如果继续增加荷载,当轴向压力等于某个临界值,即P= cr 然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。 P= cr

第10章 压杆稳定

第10章压杆稳定 10.1 压杆稳定的概念 在前面讨论压杆的强度问题时,认为只要满足直杆受压时的强度条件,就能保证压杆的正常工作。这个结论只适用于短粗压杆。而细长压杆在轴向压力作用下,其破坏的形式与强度问题截然不同。例如,一根长300mm的钢制直杆(锯条),其横截面的宽度11mm和厚度0.6mm,材料的抗压许用应力等于170MPa,如果按照其抗压强度计算,其抗压承载力应为1122N。但是实际上,约承受4N 的轴向压力时,直杆就发生了明显的弯曲变形,丧失了其在直线形状下保持平衡的能力从而导致破坏。它明确反映了压杆失稳与强度失效不同。 1907年8月9日,在加拿大离魁北克城14.4Km横跨圣劳伦斯河的大铁桥在施工中倒塌。灾变发生在当日收工前15分钟,桥上74人坠河遇难。原因是在施工中悬臂桁架西侧的下弦杆有二节失稳所致。 杭州某研发生产中心的厂房屋顶为园弧形大面积结构,屋面采用预应力密肋网架结构,密肋大梁横截面(600mm×1400mm),屋面采用现浇板,板厚120mm 。2003年2月18日晚19时,当施工到26~28轴时,支模架失稳坍塌,造成重大伤亡事故。 为了说明问题,取如图10.1a所示的等直细长杆,在其两端施加轴向压力F,使杆在直线形状下处于平衡,此时,如果给杆以微小的侧向干扰力,使杆发生微小的弯曲,然后撤去干扰力,则当杆承受的轴向压力数值不同时,其结果也截然不同。当杆承受的轴向压力数值F小于某一数值F cr时,在撤去干扰力以后,杆能自动恢复到原有的直线平衡状态而保持平衡,如图10.1a、b所示,这种能保持原有的直线平衡状态的平衡称为稳定的平衡;当杆承受的轴向压力数值F逐渐增大到(甚至超过)某一数值F cr时,即使撤去干扰力,杆仍然处于微弯形状,不能自动恢复到原有的直线平衡状态,如图10.1c、d所示,则不能保持原有的直线平衡状态的平衡称为不稳定的平衡。如果力F继续增大,则杆继续弯曲,产生显著的变形,发生突然破坏。 图10.1 上述现象表明,在轴向压力F由小逐渐增大的过程中,压杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆丧失稳定性或者压杆失稳。显然压杆是否失稳取决于轴向压力的数值,压杆由直线形状的稳定的平衡过渡到不稳定的平衡

材料力学 压杆稳定答案

9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)? 解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。 (a)=1×5=5m (b)=0.7×7=4.9m (c)=0.5×9=4.5m (d)=2×2=4m (e)=1×8=8m (f)=0.7×5=3.5m 故图e所示杆最小,图f所示杆最大。 返回 9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间, 这时杆不受力。已知钢的线膨胀系数。试问当温度升高至多少度时,杆将丧失稳定? 解:

返回 9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按 细长杆考虑),确定最小临界力的算式。 解:在总压力F作用下,立柱微弯时可能有下列三种情况: (a)每根立柱作为两端固定的压杆分别失稳: (b)两根立柱一起作为下端固定而上 端自由的体系在自身平面内失稳 失稳时整体在面内弯曲,则1,2两杆 组成一组合截面。 (c)两根立柱一起作为下端固定而上端 自由的体系在面外失稳

故面外失稳时最小 =。 返回 9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。 解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故 返回 9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。已知杆的材料为Q235钢,强度许用应力,试求压杆的许可荷载。

09工程力学答案 第11章 压杆稳定讲课教案

09工程力学答案第11章压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故

材料力学压杆稳定概述

第九章压杆稳定 9-1由五根圆截面钢杆组成的正方形平面桁架,杆的直径均为d=40mm,材料的弹性模量E=200GPa, a=1m,试求使结构到达临界状态时的最小荷载。如F力向里作用,则最小荷载又是多少? 答:F t=124kN, F c=350.2kN F 题 9 - 1 图解:当F的杆受压 由静力学平衡方程可知该杆所受压力为 F 294 2 2 200100.04 124 () 124 cr t cr EI F kN l F F kN π π π μ ???? ===∴== 当F 为压力时,长为a的杆受压 由静力学平衡方程可知该杆所受压力为 2 F 294 2 22 200100.04 64248 ()(11) 248 2 350.7 cr c c EI F kN l F kN F kN π π π μ ???? === ? = ∴= 9-2 如图所示细长杆,试判断哪段杆首先失稳。 答:(d) 解:0.5 μ= a 0.7 μ= b 0.7 μ= c 2 μ= d 2 2 () π μ μμμμ = >=> cr d c b a EI F l

crd F ∴最小 ∴d 杆最容易失稳 9-3 试求图示压杆的临界力,材料是HPB235。 答:F cr =19.7kN 题 9 - 3 图 30X 30X 4 解:一端为自由端,一端为固定端,则2μ = 22 ()cr EI F l πμ= 查表可知: 84084 0 2.92100.7710x y I m I m --=?=? 因为最容易失稳的方向是惯性矩最小的方向 所以8400.7710y I I m -==? 298 2 210100.771019.7(20.45) cr F kN π-????∴= =? 9-4两端为球铰的压杆的横截面为图示各种不同形状时,压杆会在哪个平面内失稳(即失稳时,横截面绕哪根轴转动)?

《材料力学》压杆稳定习题解

第九章压杆稳定习题解 [习题9-1]在§ 9-2中已对两端球形铰支的等截面细长压杆,按图a所示坐标系及挠度曲线 状时,压杆在F cr作用下的挠曲线微分方程是否与图a情况下的相同,由此所得F cr公式又是否相同。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 Elw" M(x)°( c)、(d)的坐标系相同,它们具有相同的挠曲线微分方程: Elw" M (x),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 形状,导出了临界应力公式P cr 2EI 。试分析当分别取图b,c,d所示坐标系及挠曲线形解:挠曲线微分方程与坐标系的y轴正向规定有关,与挠曲线的位置无关。 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: P er 2EI

?为什么?并由此判断压杆长因数 是否可能大于2。 [习题9-2]图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 所示杆在中间支承处不能转动)? 它们能承受的压力与原压相的相当长度 丨的平方成反比,其中,为与约束情况有关的长 度系数。 (a ) l 1 5 5m (b ) l 0.7 7 4.9m (e ) l 0.5 9 4.5m (d ) l 2 2 4m (e ) l 1 8 8m (f ) l 0.7 5 3.5m (下段); l 0.5 5 2.5m (上段) 故图e 所示杆F cr 最小,图f 所示杆F cr 最大。 [习题9-3]图a,b 所示的两细长杆均与基础刚性连接, 但第一根杆(图a )的基础放在弹性 解:压杆能承受的临界压力为: P er 2 EI (.l )2 由这公式可知, 对于材料和截面相同的压杆,

材料力学习题册答案-第9章压杆稳定

第九章压杆稳定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A、弯曲变形消失,恢复直线形状; B、弯曲变形减少,不能恢复直线形状; C、微弯状态不变; D、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C ) A、完全消失 B、有所缓和 C、保持不变 D、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A、长度 B、横截面尺寸 C、临界应力 D、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A、长度,约束条件,截面尺寸和形状; B、材料,长度和约束条件; C、材料,约束条件,截面尺寸和形状; D、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m,直径50mm。其柔度为 ( C ) ;;; 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A、弹性模量E越大或柔度λ越小; B、弹性模量E越大或柔度λ越大; C、弹性模量E越小或柔度λ越大; D、弹性模量E越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A、λ≤ 、λ≤ C、λ≥ D 、λ≥

10、在材料相同的条件下,随着柔度的增大( C ) A 、细长杆的临界应力是减小的,中长杆不是; B 、中长杆的临界应力是减小的,细长杆不是; C 、细长杆和中长杆的临界应力均是减小的; D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A ) A.?临界应力一定相等,临界压力不一定相等; B.?临界应力不一定相等,临界压力一定相等; C.?临界应力和临界压力一定相等; D. 临界应力和临界压力不一定相等; 12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。 A 、细长杆的σe 值与杆的材料无关; B 、中长杆的σe 值与杆的柔度无关; C 、中长杆的σe 值与杆的材料无关; D 、粗短杆的σe 值与杆的柔度无关; 13、细长杆承受轴向压力P 的作用,其临界压力与( C )无关。 A 、杆的材质 B 、杆的长度 C 、杆承受压力的大小 D 、杆的横截面形状和尺寸 二、计算题 1、 有一长l =300 mm ,截面宽b =6 mm 、高h =10 mm 的压杆。两端铰接,压杆材料为Q235钢,E =200 GPa ,试计算压杆的临界应力和临界力。 解:(1)求惯性半径i 对于矩形截面,如果失稳必在刚度较小的平面内产生,故应求最小惯性半径 mm 732.112 612 1 123min min == =?== b bh hb A I i (2)求柔度λ λ=μl /i ,μ=1, 故 λ=1×300/=519>λp =100 (3)用欧拉公式计算临界应力 () MPa 8.652.1731020ππ2 4 22 2cr =?= = λ σE (4)计算临界力 F cr =σcr ×A =×6×10=3948 N= kN 2、一根两端铰支钢杆,所受最大压力KN P 8.47=。其直径mm d 45=,长度mm l 703=。 钢材的E =210GPa ,p σ=280MPa ,2.432=λ。计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=λ(MPa)。 试 (1)判断此压杆的类型; (2)求此杆的临界压力;

第10章 压杆稳定

第10章压杆稳定 学习目标: 1.了解失稳的概念、压杆稳定条件及其实用计算; 2.理解压杆的临界应力总图; 3.掌握用欧拉公司计算压杆的临界荷载与临界应力。 对承受轴向压力的细长杆,杆内的应力在没有达到材料的许用应力时,就可能在任意外界的扰动下发生突然弯曲甚至导致破坏,致使杆件或由之组成的结构丧失正常功能,此时杆件的破坏不是由于强度不够引起的,这类问题就是压杆稳定问题。本章主要从压杆稳定的基本概念、不同支撑条件下的临界力、欧拉公式的适用条件以及提高压杆稳定性的措施方面加以介绍。 第一节压杆稳定的概念 在研究受压直杆时,往往认为破坏原因是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,杆才会发生破坏。实验表明对于粗而短的压杆是正确的;但对于细长的压杆,情况并非如此。细长压杆的破坏并不是由于强度不够,而是由于杆件丧失了保持直线平衡状态的稳定性造成的。这类破坏称为压杆丧失稳定性破坏,简称失稳。 一、问题的提出 工程结构中的压杆如果失稳,往往会引起严重的事故。例如1907年加拿大魁北克圣劳伦斯河上长达548m的大铁桥,在施工时由于两根压杆失稳而引起倒塌,造成数十人死亡。1909年,汉堡一个大型储气罐由于其支架中的一根压杆失稳而引起的倒塌。 这种细长压杆突然破坏,就其性质而言,与强度问题完全不同,杆件招致丧失稳定破坏的压力比招致强度不足破坏的压力要少得多,同时其失稳破坏是突然性,必须防范在先。因而,对细长压杆必须进行稳定性的计算。 二、平衡状态的稳定性

压杆受压后,杆件仍保持平衡的情况称为平衡状态。压杆受压失稳后,其变形仍保持在弹性范围内的称为弹性稳定问题。 如图1 10-所示,两端铰支的细长压杆,当受到轴向压力时,如果是所用材料、几何形状等无缺陷的理想直杆,则杆受力后仍将保持直线形状。当轴向压力较小时,如果给杆一个侧向干扰使其稍微弯曲,则当干扰去掉后,杆仍会恢复原来的直线形状,说明压杆处于稳定的平衡状态(如图) -所示)。当轴向压力达到某一值时,加干扰力杆件变弯, 10a (1 而撤除干扰力后,杆件在微弯状态下平衡,不再恢复到原来的直线状态(如图) -所 10b (1示),说明压杆处于不稳定的平衡状态,或称失稳。当轴向压力继续增加并超过一定值时,压杆会产生显著的弯曲变形甚至破坏。称这个使杆在微弯状态下平衡的轴向荷载为临界荷载,简称为临界力,并用 F表示。它是压杆保持直线平衡时能承受的最大压力。对于一 cr 个具体的压杆(材料、尺寸、约束等情况均已确定)来说,临界力 F是一个确定的数值。 cr 压杆的临界状态是一种随遇平衡状态,因此,根据杆件所受的实际压力是小于、大于该压杆的临界力,就能判定该压杆所处的平衡状态是稳定的还是不稳定的。 10- 图1 工程实际中许多受压构件都要考虑其稳定性,例如千斤顶的丝杆,自卸载重车的液压活塞杆、连杆以及桁架结构中的受压杆等。 同一压杆的平衡是否稳定,取决于压力F的大小。压杆保持稳定平衡所能承受的最大

09工程力学答案第11章压杆稳定讲课教案

09 工程力学答案第11 章压杆稳定

11-1两端为铰支座的细长压杆,如图所示,弹性模量 E=200GPa 试计算其临界荷载。 (1) 圆形截面,d 25mml 1m ; ( 2)矩形截面h 2b 400ml 1m ;( 3) 16号工字钢,I 2m 故采用欧拉公式计算其临界力: (2) 矩形截面 h 2b 400ml 1m 界力。故 (1)圆形截面,d 25mml 1m : F C r 2 EI 2 2 9 0.025 200 10 64 ——N 37.8kN 12 当压杆在不同平面约束相同即长度系数相同均为 1时,矩形截面总是绕垂直短边的轴先 失稳 I min(l y , l z ) I y 2 0.04 0.02 故: 12 P cr 卡 2 200 109 °.。4 °.°2 2 12 N 52.7kN 12 (3) 16号工字钢,I 2m 查表知:l y 93.1cm 4 4 ,l z 1130cm , 当压杆在不同平面约束相同即长度系数相同均为 min(l y ,l z ) I y 93.1cm ,故:P 軍 2 200 10 : 93. 1 10 8 N 459.4kN I 2 22 11-3有一根30mn¥50mm 的矩形截面压杆,一端固定, 另一端铰支,试问压杆多长时可以用 欧拉公式计算临界荷载?已知材料的弹性模量 E=200GPa 比例极限oP=200MPa 。 解: (1)计算压杆能采用欧拉公式所对应的 P 2 9 200 10 ----------- 6 99.35 200 106 (2) 矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P 可米用欧拉公式计算临 解:三根压杆均为两端铰支的细长压杆, P 2 E 2 E T P P

第11章 压杆稳定

第十一章 压杆稳定 11-1 图示压杆在主视图a 所在平面内,两端为铰支,在俯视图b 所在平面内,两端为固定,材料的为Q235钢,弹性模量GPa 210=E 。试求此压杆的临界力。 (a ) (b ) 解: 在主视图所在平面内,如图(a)所示,压杆的柔度为 6.1386240 323212 13=?==?= =h l bh bh l i l a a a μλ 在俯视图所在平面内,如图(b)所示,压杆的柔度为 9.1034240 3312 5.03=?=== =b l bh hb l i l b b b μλ ∵ 100p ≈>>λλλb a ,∴为大柔度压杆,且失稳时在主视图平面内 失稳 故压杆的临界力为 kN 9.258N 40606.1381021023 222cr =????= =πλπA E F a 11-2 两端固定的矩形截面细长压杆,其横截面尺寸为 m m 60=h ,m m 30=b ,材料的比例极限MPa 200p =σ,弹性模量GP a 210=E 。试求此压杆的临界力适用于欧拉公式时的最小长度。 解: 由于杆端的约束在各个方向相同,因此,压杆将在惯性矩最小的平面内失稳,即压杆的横截面将绕其惯性矩为最小的形心主惯性轴转动。 3 2123 min min b bh hb A I i === 欧拉公式适用于max λp λ≥,即 m i n m a x i l μλ=p σπ E ≥ 由此得到 =≥P E i l σμπm i n m 76.1m 10 200102105 .0321030326 9 3p =?????= -π σμπE b 故此压杆适用于欧拉公式时的最小长度为1.76m 。

相关文档
最新文档