02.线性表的删除,按值查找,定位(链表存储)

02.线性表的删除,按值查找,定位(链表存储)
02.线性表的删除,按值查找,定位(链表存储)

实验目的:

1.掌握线性表的特点及其存储结构

2.掌握线性表的基本操作

实验要求:

1. 线性表可以顺序表也可以用单链表实现,鼓励大家用两种方式实现。

2.创建线性表时,数据从键盘输入整形数据

3. 线性表类型定义和或各种操作的实现,可以用教材给出的方法,也可以自己设计。

实验环境:

硬件平台:计算机CPU 主频2.0G以上;内存128兆以上;

软件平台:Windows2003或以上版本,Visual C++6.0

实验内容:

1. 用结构体描述一个线性表。

2. 创建线性表,在线性表中实现插入、删除、按位置查找、按元素值查找和求表长等操作。

3. 设计选择式菜单,以选择菜单方式进行操作。

定义顺序表

#define LIST_INIT_SIZE 10 // 线性表存储空间的初始分配量

#define LISTINCREMENT 2 // 线性表存储空间的分配增量

struct SqList

{

ElemType *elem; // 存储空间基址

int length; // 当前长度

int listsize; // 当前分配的存储容量(以sizeof(ElemType)为单位)

};

定义算法函数

Status InitList(SqList &L) // 算法2.3

{ // 操作结果:构造一个空的顺序线性表

L.elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));

if(!L.elem)

exit(OVERFLOW); // 存储分配失败

L.length=0; // 空表长度为0

L.listsize=LIST_INIT_SIZE; // 初始存储容量

return OK;

}

Status ListInsert(SqList &L,int i,ElemType e) // 算法2.4

{ // 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)+1

// 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1

ElemType *newbase,*q,*p;

if(i<1||i>L.length+1) // i值不合法

return ERROR;

if(L.length>=L.listsize) // 当前存储空间已满,增加分配

{

if(!(newbase=(ElemType

*)realloc(L.elem,(L.listsize+LISTINCREMENT)*sizeof(ElemType))))

exit(OVERFLOW); // 存储分配失败

L.elem=newbase; // 新基址

L.listsize+=LISTINCREMENT; // 增加存储容量

}

q=L.elem+i-1; // q为插入位置

for(p=L.elem+L.length-1;p>=q;--p) // 插入位置及之后的元素右移

*(p+1)=*p;

*q=e; // 插入e

++L.length; // 表长增1

return OK;

}

主函数例

void main()

{

SqList L;

Status i;

int j;

i=InitList(L);

printf("初始化L后:L.elem=%u L.length=%d L.listsize=%d\n",L.elem,L.length,L.listsize);

for(j=1;j<=5;j++)

i=ListInsert(L,1,j);

printf("在L的表头依次插入1~5后:*L.elem=");

for(j=1;j<=5;j++)

cout<<*(L.elem+j-1)<<' ';

cout<

printf("L.elem=%u L.length=%d L.listsize=%d\n",L.elem,L.length,L.listsize);

}

实验代码:

#include

#include

#include

#include

#include

#include

#include

#include

#include

#define TRUE 1

#define FALSE 0

#define OK 1

#define ERROR 0

#define INFEASIBLE -1

typedef int Status;

typedef int Boolean;

typedef int ElemType;

#define LIST_INIT_SIZE 10

#define LIST_INCREMENT 2

typedef struct

{

ElemType *elem;

int length;

int listsize;

}SqList;

void InitList(SqList *L)

{ (*L).elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));

if(!(*L).elem)

exit(OVERFLOW);

(*L).length=0;

(*L).listsize=LIST_INIT_SIZE;

}

void DestroyList(SqList *L)

{

free((*L).elem);

(*L).elem=NULL;

(*L).length=0;

(*L).listsize=0;

}

void ClearList(SqList *L)

{ (*L).length=0;

}

Status ListEmpty(SqList L)

{

if(L.length==0)

return TRUE;

else

return FALSE;

}

int ListLength(SqList L)

{

return L.length;

}

Status GetElem(SqList L,int i,ElemType *e)

{

if(i<1||i>L.length)

return ERROR;

*e=*(L.elem+i-1);

return OK;

}

int LocateElem(SqList L,ElemType e,Status(*compare)(ElemType,ElemType)) {

ElemType *p;

int i=1;

p=L.elem;

while(i<=L.length&&!compare(*p++,e))

++i;

if(i<=L.length)

return i;

else

return 0;

}

Status PriorElem(SqList L,ElemType cur_e,ElemType *pre_e)

{

int i=2;

ElemType *p=L.elem+1;

while(i<=L.length&&*p!=cur_e)

{

p++;

i++;

}

if(i>L.length)

return INFEASIBLE;

else

{

*pre_e=*--p;

return OK;

}

}

Status NextElem(SqList L,ElemType cur_e,ElemType *next_e)

{

int i=1;

ElemType *p=L.elem;

while(i

{

i++;

p++;

}

if(i==L.length)

return INFEASIBLE;

else

{

*next_e=*++p;

return OK;

}

}

Status ListInsert(SqList *L,int i,ElemType e)

{

ElemType *newbase,*q,*p;

if(i<1||i>(*L).length+1)

return ERROR;

if((*L).length>=(*L).listsize)

{

newbase=(ElemType

*)realloc((*L).elem,((*L).listsize+LIST_INCREMENT)*sizeof(ElemType));

if(!newbase)

exit(OVERFLOW);

(*L).elem=newbase;

(*L).listsize+=LIST_INCREMENT;

}

q=(*L).elem+i-1;

for(p=(*L).elem+(*L).length-1;p>=q;--p)

*(p+1)=*p;

*q=e;

++(*L).length;

return OK;

}

Status ListDelete(SqList *L,int i,ElemType *e) {

ElemType *p,*q;

if(i<1||i>(*L).length)

return ERROR;

p=(*L).elem+i-1;

*e=*p;

q=(*L).elem+(*L).length-1;

for(++p;p<=q;++p) *(p-1)=*p;

(*L).length--;

return OK;

}

void ListTraverse(SqList L,void(*vi)(ElemType*)) {

ElemType *p;

int i;

p=L.elem;

for(i=1;i<=L.length;i++)

vi(p++);

printf("\n");

}

Status equal(ElemType c1,ElemType c2)

{

if(c1==c2)

return TRUE;

else

return FALSE;

}

int comp(ElemType a,ElemType b)

{

if(a==b)

return 0;

else

return (a-b)/abs(a-b);

}

void print(ElemType c)

{

printf("%d ",c);

}

void print2(ElemType c)

{

printf("%c ",c);

}

void print1(ElemType *c)

{

printf("%d ",*c);

}

void main()

{

SqList L;

int j;

int e,i;

int k;

InitList(&L);

printf("初始化L后:L.length=%d L.listsize=%d\n",L.length,L.listsize);

for(j=1;j<=5;j++)

ListInsert(&L,1,j);

printf("在L的表头依次插入1~5后:*L.elem=");

for(j=1;j<=5;j++)

printf("%d ",*(L.elem+j-1));

printf("\n");

if(i==ERROR)

printf("删除第2个元素失败\n");

else

printf("删除第2个元素成功,其值为:%d\n",e);

k=LocateElem(L,2,equal);

if(k)

printf("第%d个元素的值为2\n",k);

else

printf("没有值为%d的元素\n",j);

GetElem(L,2,&e);

printf("第2个元素的值为%d\n",e);

实验心得

当听到老师说写数据结构实验报告时,我有点惊讶,才学了不到一个月,就要写实验报告。记得去年学习C++时,学了一个学期,程序设计用了三周,才完成的,这个实验报告居然要一周完成两个设计,觉得很难。但是现在一周过去了,我也写完了,自我感觉良好。

通过这次写实验报告,我深切的理解了这门课的本质。刚开始学这门课时,当时还不清楚这门课程的目的,现在,我真正的理解了:数据结构像是身体的骨骼,而C++是填充这骨骼的肉体,二者相结合才能使整个程序更加完整,健全。数据结构是个框架,模型,抽象数据类型中列举了各种操作,而所用的C++语言,将各种操作描述出来构成算法。数据结构+算法=程序设计。

在这次设计的过程中,我还遇到了,很多的问题。顺序表是按顺序存储的,用了一维数组来存储,又结合C++的程序设计,我又用了类,但是,在执行时出现了问题。后来问同学,指出我的错误,不过获益不少。我又重新整理思路,把顺序表的基本操作写好了。虽然走了很多弯路,但是让我认识到,一定要创新,大胆,不能按照旧的思路去干新的事情。

单链表写起来简单多了,这个很快就搞定了。但是细节上出了问题。比如说,有些变量的重复定义,有些变量又没有定义,在调用函数,就直接复制过来,没有改参数……通过修改,我深刻理解到:细节决定成败,在以后,不管做任何事情都要认真,细心。

这次的实验报告,让我受益匪浅,不仅有知识方面的,还有生活和精神上的。总之,我会继续我的兴趣编程,相信在编程的过程中,能不断的提高自己。

线性表顺序存储结构上的基本运算

实验项目名称:线性表的顺序存储结构上的基本运算 (所属课程:数据结构--用C语言描述) 院系:计算机科学与信息工程学院专业班级:网络工程 姓名:000000 学号:0000000000 实验日期:2016.10.20 实验地点:A-06 406 合作者:指导教师:孙高飞 本实验项目成绩:教师签字:日期: (以下为实验报告正文) 一、实验目的 本次实验的目的掌握顺序表的存储结构形式及其描述和基本运算的实现;掌握动 态链表结构及相关算法设计 实验要求:输入和验证程序例题。正确调试程序,记录程序运行结果。完成实验报 告。 二、实验条件 Windows7系统的电脑,vc++6.0软件,书本《数据结构--用c语言描述》 三、实验内容 3.1 根据41页代码,用c语言定义线性表的顺序存储结构。 3.2 根据42页算法2.1实现顺序表的按内容查找。 3.3 根据43页算法2.2实现顺序表的插入运算。 3.4 根据45页算法2.3实现顺序表的删除运算。 四、实验步骤 3.2实验步骤 (1)编写头文件,创建ElemType。 (2)根据根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。

(3)根据42页算法2.1实现顺序表的按内容查找,创建Locate函数。 (4)创建main函数,输入SeqList L的数据元素。 (5)输入要查找的数据元素的值,调用Locate函数,输出结果。 3.3实验步骤 (1)编写头文件,创建ElemType。 (2)根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。 (3)根据43页算法2.2实现顺序表的插入运算,创建InsList函数。 (4)创建printList函数,逐项输出顺序表内的元素及顺序表元素的个数。 (5)创建main函数,输入插入的元素和其位置,调用printLinst函数输出顺序表,调用IntList函数,再次调用printLinst函数输出顺序表。 3.4实验步骤 (1)编写头文件,创建ElemType。 (2)根据根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。 (3)根据45页算法2.3实现顺序表的删除运算,创建DelList函数。 (4)创建printList函数,逐项输出顺序表内的元素及顺序表元素的个数。 (5)创建main函数,输入删除元素的位置,调用printLinst函数输出顺序表,调用DelList函数,再次调用printLinst函数输出顺序表。 五、实验结果 (1)实验3.2顺序表的按内容查找 # include typedef int Elemtype; typedef struct{ Elemtype elem[100]; int last; }SeqList; int Locate(SeqList L,Elemtype e){ int i; i=0;

01顺序结构的线性表插入删除查找

//* * * * * * * * * * * * * * * * * * * * * * * //PROGRAM NAME :顺序结构的线性表 * //CONTENT :插入,删除,查找 * //* * * * * * * * * * * * * * * * * * * * * * * #include #include #include #define MAX 30 //定义线性表的最大长度 enum BOOL{False,True}; //定义BOOL型 typedef struct{ char elem[MAX]; //线性表 int last; //last指示当前线性表的长度 }sqlisttp; void initial(sqlisttp &); //初始化线性表 BOOL insert(sqlisttp &,int,char); //在线性表中插入元素 BOOL del(sqlisttp&,int,char &); //在线性表中删除元素 int locate(sqlisttp,char); //在线性表中定位元素 void print(sqlisttp); //显示线性表中所有元素 void main() {sqlisttp S; //S为一线性表 int loc,flag=1; char j,ch; BOOL temp; textbackground(3); //设置屏幕颜色 textcolor(15); clrscr(); //---------------------------程序解说-------------------------- printf("本程序用来实现顺序结构的线性表。\n"); printf("可以实现查找、插入、删除等操作。\n"); //------------------------------------------------------------- initial(S); //初始化线性表 while(flag) { printf("请选择:\n"); printf("1.显示所有元素\n"); printf("2.插入一个元素\n"); printf("3.删除一个元素\n"); printf("4.查找一个元素\n"); printf("5.退出程序 \n"); scanf(" %c",&j); switch(j) {case '1':print(S); break; //显示所有元素 case '2':{printf("请输入要插入的元素(一个字符)和插入位置:\n"); printf("格式:字符,位置;例如:a,2\n"); scanf(" %c,%d",&ch,&loc); //输入要插入的元素和插入的位置

数据结构实验报告 实验一 线性表链式存储运算的算法实现

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:数据结构开课实验室:年月日年级、专业、班学号姓名成绩 实验项目名称线性表链式存储运算的算法实现指导教师 教 师 评语教师签名: 年月日 一.实验内容: 线性表链式存储运算的算法实现,实现链表的建立、链表的数据插入、链表的数据删除、链表的数据输出。 二.实验目的: 1.掌握线性表链式存储结构的C语言描述及运算算法的实现; 2.分析算法的空间复杂度和插入和删除的时间复杂度; 3.总结比较线性表顺序存储存储与链式存储的各自特点。 三.主要程序代码分析: LinkList creatListR1() //用尾插入法建立带头结点的单链表 { char *ch=new char(); LinkList head=(LinkList)malloc(sizeof(ListNode)); //生成头结点*head ListNode *s,*r,*pp; r=head; //尾指针初值指向头结点 r->next=NULL; scanf("%s",ch); //读入第一个结点的值 while(strcmp(ch,"#")!=0) { //输入#结束

pp=LocateNode(head,ch); if(pp==NULL) { s=(ListNode *)malloc(sizeof(ListNode)); //生成新的结点*s strcpy(s->data,ch); r->next=s; //新结点插入表尾 r=s; //尾指针r指向新的表尾 r->next=NULL; } scanf("%s",ch); //读入下一个结点的值 } return head; //返回表头指针 } int Insert(ListNode *head) //链表的插入 { ListNode *in,*p,*q; int wh; in=(ListNode *)malloc(sizeof(ListNode));in->next=NULL; //生成新结点p=(ListNode *)malloc(sizeof(ListNode));p->next=NULL; q=(ListNode *)malloc(sizeof(ListNode));q->next=NULL; scanf("%s",in->data); //输入插入的数据 scanf("%d",&wh); //输入插入数据的位置 for(p=head;wh>0;p=p->next,wh--); q=p->next; p->next=in; in->next=q; } void DeleteList(LinkList head,char *key) //链表的删除 { ListNode *p,*r,*q=head; p=LocateNode(head,key); //按key值查找结点的 if(p==NULL) exit(0); //若没有找到结点,退出 while(q->next!=p) //p为要删除的结点,q为p的前结点q=q->next; r=q->next; q->next=r->next; free(r); //释放结点*r } 四.程序运行结果:

单链表的创建、插入和删除

单链表的创建、插入和删除 (数据结构) ——SVS #include #include #include typedef int ElemType; typedef int Status; typedef struct LNode { ElemType data; struct LNode *next; }LNode,*LinkList; void InitList_Link(LinkList L) //创建空链表 { L=(LinkList)malloc(sizeof(LNode)); L->next=NULL; } Status InsertList_Link(LinkList L,int i,ElemType e) //插入链表 { LinkList s,p=L; int j=0; while(p&&jnext;j++;} if(!p||j>i-1)return -1; s=(LinkList)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; return 1; }

Status DeleteList_Link(LinkList L,int i,ElemType e) //删除链表{ LinkList q,p=L;int j=0; while(p->next&&jnext;j++;} if(!(p->next)||j>i-1)return -1; q=p->next; e=q->data; p->next=q->next; free(q); return 1; } void OutPutList_Link(LinkList L) //输出链表 { printf("表中值为:"); LinkList p=L->next; while(p) { printf("%d ",p->data); p=p->next; } printf("\n"); } void CreateList_Link(LinkList L,int len) //创建链表 { int i; LinkList s,p=L; for(i=0;idata); s->next=NULL; p->next=s; p=s; } } int main() { int len; LinkList L; ElemType e; L=(LinkList)malloc(sizeof(LNode));

3线性表及其顺序存储结构

1.3线性表及其顺序存储结构 1.线性表的基本概念 线性表是由n个数据元素组成的一个有限序列,表中的每一个数据元素,除了每一个外,有且只有一个前件,除了最后一个外,有且只有一个后件。即线性表或是一个空表。 显然线性表是一种线性结构,数据元素在线性表中的位置只取决于它们自己的序号,即数据元素之间的相对位置是线性的。 非空线性表有如下一些结构特征: (1)有且只有一个根结点,它无前件; (2)有且只有一个根结点,它无后件; (3)除了根结点与终端结点外,其他所有结点有且只有一个前件,也只有且只有一个后件。 2.线性表的存储结构 线性表的顺序存储结构具有以下两个特征: (1)线性表中所有元素所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 由此可以看出,在线性表的顺序存储结构中,其前件和后件两个元素在存储空间中是紧邻的,且其前件元素一定存储在后件元素的前面。 在程序设计语言中,通常定义一个一维数组来表示线性表的顺序存储看见。因为程序设计语言中的一维数组与计算机中的实际的存储空间结构是类似的,这就便于用程序设计语言对线性表进行各种运算处理。 在线性表的顺序存储结构中,可以对线性表进行各种处理。主要的运算有如下几种: (1)在线性表的指定位置处加入一个新的元素; (2)在线性表中删除指定的元素; (3)在线性表中查找某个特定的元素; (4)对线性表中的元素进行整序; (5)按要求将一个线性表分解成多个线性表; (6)按要求将多个线性表合并成一个线性表; (7)复制一个线性表; (8)逆转一个线性表等。 3.顺序表的插入运算 设长度为n的线性表为 (a1,a2,a3,a4,…,ai, …,an) 现要在线性表的第i个元素ai之前插入一个新元素b,插入后得到长度为n+1的线性表为 (a1,a2,a3,a4,…,aj,aj+1, …,an,an+1) 则插入前后的两线性表中的元素满足如下关系: a j0

线性表的创建插入和删除的操作

实验容:线性表的创建、插入删除等 #include"stdio.h" #include"stdlib.h" int*inistl(int m,int *n) /*建立线性表函数*/ {int*v=NULL; v=malloc(m*sizeof(int*)); /*创建链表,并把首地址赋给指针V*/ n=0; return v; } void insl(int*v,int m,int*n,int i,int b)/*在链表指定位置插入元素b*/ { int j; if(*n>=m) /*检查是否链表溢出*/ {printf("the stack is overflow\n"); return; } if(i>*n-1) i=*n+1; /*若插入点大于元素位置则在表的结束插入*/ if(i<1) i=1; /*空表在首部插入元素*/ for(j=*n;j>=i;j--) /*首位之间任意位置的插入*/ v[j]=v[j-1]; v[i-1]=b; *n=*n+1; /*插入后元素统计指针加1*/ } void desl(int*v,int m,int*n,int i) /*线性表删除函数*/ {int j; if(*n==0) /*判断线性表是否为空*/ {printf("the stack is underflow\n "); return; } if((i<1)||(i>*n)) /*删除点在首部以前和尾部以后特殊情况排除*/ {printf("not this element in the list!"); return; } for (j=i;j<=*n-1;j++) /*在允许位置做删除操作*/ v[j-1]=v[j]; *n=*n-1; /*元素统计指针减1*/ return; }) void input(int*v,int n) /*空表起始输入元素函数*/ {int i; for(i=0;i

线性表ADT的顺序存储与链式存储实验报告

实验报告 题目:完成线性表ADT的顺序存储和链式存储方式的实现 一、需求分析 1、本演示程序中,线性表的数据元素类型限定为整型 2、演示程序以用户和计算机的对话方式执行,即在计算机的终端上显示“提 示信息”之后由用户在键盘上键入演示程序规定的运算命令,相应的输出 结果显示在后面。 3、程序的执行命令包括: 创建、撤销、清空、插入、修改、删除、定位等线性表ADT各项基本操作二、概要设计 为实现上述功能,我们给出线性表的抽象数据类型定义,具体的有单向链,双向 链,顺序表等,同时对于上述功能的实现还采用有/无头结点两种方式来实现 1.线性表的抽象数据类型定义为 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={|ai-1,ai∈D,i=2,…,n} 基本操作: InitList(&L) 操作结果:构造一个空的线性表L DestroyList(&L) 初始条件:线性表L已存在。 操作结果:销毁线性表L。 ClearList(&L) 初始条件:线性表L已存在。 操作结果:将L重置为空表。 ListEmpty(L) 初始条件:线性表L已存在。 操作结果:若L为空表,则返回TRUE,否则返回FALSE。 ListLength(L) 初始条件:线性表L已存在。 操作结果:返回L中的i个数据元素的值。 GetElem(L,i,&e) 初始条件:线性表L已存在,1≤i≤ListLength(L)。 操作结果:用e返回L中第i个数据元素的值。 LocateElem(L,e,compare()) 初始条件:线性表L已存在,compare()是数据元素判定函数 操作结果:返回L中第一个与e满足compare()的数据元素的位序。 若这样的数据元素不存在,则返回值为0. PriorElem(L,cur_e,&pre_e) 初始条件:线性表已存在 操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e 返回它的前驱,否则操作失败,pre_e无定义。

单链表的初始化,建立,插入,查找,删除

单链表的初始化,建立,插入,查找,删除。 #include <stdio.h> #include <stdlib.h> typedef int ElemType; //定义结点类型 typedef struct Node { ElemType data; //单链表中的数据域

struct Node *next; //单链表的指针域 }Node,*LinkedList; //单链表的初始化 LinkedList LinkedListInit() { Node *L; L = (Node

*)malloc(sizeof(Node)); //申请结点空间 if(L == NULL) //判断是否有足够的内存空间 printf("申请内存空间失败\n"); L->next = NULL; //将next设置为NULL,初始长度为0的单链表return L; }

//单链表的建立1,头插法建立单链表 LinkedList LinkedListCreatH() { Node *L; L = (Node *)malloc(sizeof(Node)); //申请头结点空间 L->next = NULL; //初始化一个空链表

ElemType x; //x为链表数据域中的数据 while(scanf("%d",&x) != EOF) { Node *p; p = (Node *)malloc(sizeof(Node)); //申请新的结点 p->data = x; //结点数据域赋值

线性表的插入与删除的实现

线性表的插入与删除的实现 一.算法的基本概念 计算机解题的过程实际上是在实施某种算法,这种算法称为计算机算法。 1.算法的基本特征:可行性,确定性,有穷性,拥有足够的情报。 2.算法的基本要素:算法中对数据的运算和操作、算法的控制结构。 3.算法设计的基本方法:列举法、归纳法、递推、递归、减半递推技术、回溯法。 4.算法设计的要求:正确性、可读性、健壮性、效率与低存储量需求 三.数据结构的定义 1.数据的逻辑结构:反映数据元素之间的关系的数据元素集合的表示。数据的逻辑结构包括集合、线形结构、树形结构和图形结构四种。 2.数据的存储结构:数据的逻辑结构在计算机存储空间种的存放形式称为数据的存储结构。常用的存储结构有顺序、链接、索引等存储结构。 在数据结构中,没有前件的结点称为根结点;没有后件的结点成为终端结点。插入和删除是对数据结构的两种基本运算。还有查找、分类、合并、分解、复制和修改等。 五.线性结构和非线性结构 根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构和非线性结构。 线性结构:非空数据结构满足:有且只有一个根结点;每个结点最多有一个前件,最多只有一个后件。非线性结构:如果一个数据结构不是线性结构,称之为非线性结构。 常见的线性结构:线性表、栈、队列 七.线性表的顺序存储结构 线性表的顺序表指的是用一组地址连续的存储单元依次存储线性表的数据元素。线性表的顺序存储结构具备如下两个基本特征: 1.线性表中的所有元素所占的存储空间是连续的; 2.线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 即线性表逻辑上相邻、物理也相邻,则已知第一个元素首地址和每个元素所占字节数,则可求出任一个元素首地址。 假设线性表的每个元素需占用K个存储单元,并以所占的第一个单元的存储地址作为数据元素的存储位置。则线性表中第i+1个数据元素的存储位置LOC(ai+1)和第i个数据元素的存储位置LOC(ai)之间满足下列关系: LOC(ai+1)=LOC(ai)+K LOC(ai)=LOC(a1)+(i-1)*K ① 其中,LOC(a1)是线性表的第一个数据元素a1的存储位置,通常称做线性表的起始位置或基地址。 因为在顺序存储结构中,每个数据元素地址可以通过公式①计算得到,所以线性表的顺序存储结构是随机存取的存储结构。 在线性表的顺序存储结构下,可以对线性表做以下运算: 插入、删除、查找、排序、分解、合并、复制、逆转

数据结构实验线性表的顺序存储结构

南昌航空大学实验报告 课程名称:数据结构实验名称:实验一线性表的链式存储结构班级:080611 学生姓名:冯武明学号:16 指导教师评定:XXX 签名: XXX 题目:设计并实现以下算法:给出用单链表存储多项式的结构,利用后接法生成多项式的单链表结构,实现两个多项式相加的运算,并就地逆置相加后的多项式链式。 一、需求分析 ⒈先构造两个多项式链表,实现两个多项式的和及删除值为零元素的操作,不同用户输入 的多项式不同。 ⒉在演示过程序中,用户需敲击键盘输入值,即可观看结果。 ⒊程序执行的命令包括: (1)构造多项式链表A (2)构造多项式链表B (3)求两张链表的和(4)删除值为零元素,即不创建链表。 二、概要设计 ⒈为实现上述算法,需要线性表的抽象数据类型: ADT Stack { 数据对象:D={a i:|a i∈ElemSet,i=1…n,n≥0} 数据关系:R1={|a i-1,a i∈D,i=2,…n≥0} 基本操作: init(linklist *L) 操作结果: destroylist(List *L) clearlist(List *L) 初始条件:线性表L已经存在,1≤i≤ListLength(&L) 操作结果:用e返回L中第i个数据元素的值。 insfirst(link h,link s) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项作为判定e1,e2是否相等的依据。 delfirst(link h,link *q) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项(为字符串)的≤来判定e1,e2是否有 ≤的关系。

线性表的顺序储存结构

交通大学《算法与数据结构》课程 实验报告 班级:计算机科学与技术2014级2班 实验项目名称:线性表的顺序储存结构 实验项目性质: 实验所属课程:算法与数据结构 实验室(中心): B01407 指导教师:鲁云平 实验完成时间:2016 年 3 月21 日

一、实验目的 1、实现线性表的顺序存储结构 2、熟悉C++程序的基本结构,掌握程序中的头文件、实现文件和主文件之 间的相互关系及各自的作用 3、熟悉顺序表的基本操作方式,掌握顺序表相关操作的具体实现 二、实验容及要求 对顺序存储的线性表进行一些基本操作。主要包括: (1)插入:操作方式为在指定元素前插入、在指定元素之后插入、在指定位置完成插入 (2)删除:操作方式可分为删除指定元素、删除指定位置的元素等,尝试实现逻辑删除操作。 (3)显示数据 (4)查找:查询指定的元素(可根据某个数据成员完成查询操作) (5)定位操作:定位指定元素的序号 (6)更新:修改指定元素的数据 (7)数据文件的读写操作等。 其它操作可根据具体需要自行补充。 要求线性表采用类的定义,数据对象的类型自行定义。 三、实验设备及软件 VC6.0 四、设计方案

㈠题目 线性表的顺序存储结构 ㈡设计的主要思路 1、新建SeqList.h头文件,定义SeqList模板类 2、设计类数据成员,包括:T *data(用于存放数组)、int maxSize (最大可容表项的项数)、int last(当前已存表项的最后位置) 3、设计类成员函数,主要包括: int search(T& x)const;//搜索x在表中位置,函数返回表项序号 int Locate(int i)const;//定位第i个表项,函数返回表项序号 bool getData(int i,T& x)const;//去第i个表项的值 void setData(int i,T& x)//用x修改第i个表项的值 bool Insert(int i,T& x);//插入x在第i个表项之后 bool Remove(int i,T& x); //删除第i个表项,通过x返回表项的值 bool IsEmpty();//判表空否,空则返回true;否则返回false bool IsFull();//判表满否,满则返回true;否则返回false void input(); //输入 void output();//输出 void ofile();/存储在文件中 void ifile();//读取文件并显示 ㈢主要功能 1、建立新表 2、对表进行插入(指定元素前、后以及指定位置插入)、删除(指定 元素删除及指定位置删除)、修改等操作 3、显示当前操作表的全部容 4、存储在文件中 5、从文件中读取表 五、主要代码 ㈠SeqList.h中的主要代码: 1、类成员声明部分: protected: T *data; //存放数组 int maxSize; //最大可容纳表项

C语言链表的建立、插入和删除

数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。但数组也同样存在一些弊病。如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个大小的数组,有时需要5 0个数组的大小,难于统一。我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。链表就是我们需要的动态数组。它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。 链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面将逐一介绍。 7.4.1 单链表 图7 - 3是单链表的结构。 单链表有一个头节点h e a d,指向链表在内存的首地址。链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。 图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。 看一下链表节点的数据结构定义: struct node { int num; struct node *p; } ; 在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。这是在C中唯一规定可以先使用后定义的数据结构。 ?单链表的创建过程有以下几步: 1 ) 定义链表的数据结构。 2 ) 创建一个空表。 3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。 4 ) 将新节点的指针成员赋值为空。若是空表,将新节点连接到表头;若是非空表,将新 节点接到表尾。 5 ) 判断一下是否有后续节点要接入链表,若有转到3 ),否则结束。 ?单链表的输出过程有以下几步 1) 找到表头。

线性表逆置(顺序表)实验报告

实验一:线性表逆置(顺序表)实验报告 (一)问题的描述: 实现顺序表的逆置算法 (二)数据结构的设计: 顺序表是线性表的顺序存储形式,因此设计如下数据类型表示线性表: typedef struct { ElemType *elem; /* 存储空间基址*/ int length; /* 当前长度*/ int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */ }SqList; (三)函数功能、参数说明及概要设计: 1.函数Status InitList(SqList *L) 功能说明:实现顺序表L的初始化 算法设计:为顺序表分配一块大小为LIST_INIT_SIZE的储存空间 2.函数int ListLength(SqList L) 功能说明:返回顺序表L长度 算法设计:返回顺序表中的length变量 3.函数Status ListInsert(SqList *L,int i,ElemType e) 功能说明:将元素e插入到顺序表L中的第i个节点 算法设计:判断顺序表是否已满,已满则加空间,未满则继续,将元素e插入到第i个元素之前,并将后面的元素依次往后移 4.函数Status ListTraverse(SqList L,void(*vi)(ElemType*)) 功能说明:依次对L的每个数据元素调用函数vi() 算法设计:依次对L的每个数据元素调用函数vi() 5.函数void Exchange(SqList *L) 功能说明:实现顺序表L的逆置 算法设计:用for循环将顺序表L中的第i个元素依次与第(i+length)个元素交换6.函数void print(ElemType *c) 功能说明:打印元素c 算法设计:打印元素c 2. (四)具体程序的实现

数据结构循环链表插入和删除源代码代码

typedef struct LNode//结点类型 { int data;//数值域 struct LNode *next;//指针域 }CrLNode,*CrLinklist; #include"Base.h" #include"construct.h" #include"circulate_operation.c" int main() { CrLinklist L; int i,choice,n,e; printf("请输入链表元素个数:"); scanf("%d",&n); L=Initlist_L(n); printf("请选择执行语句,选择输入1,执行插入操作或选择输入2,执行删除操作:"); scanf("%d",&choice); switch(choice) { case 1: { printf("请输入插入元素的位置:"); scanf("%d",&i); if(i<=0||i>n) printf("您输入的值不合法"); else printf("请输入插入元素的值:"); scanf("%d",&e); L=ListInsert_L(L,i,e); printf("插入后的链表为:"); printlist_L(L); };break; case 2: { printf("请输入删除元素的位置:"); scanf("%d",&i); if(i<=0||i>n) printf("您输入的值不合法"); else L=ListDelete_L(L,i); printf("删除后的链表为");

printlist_L(L); };break; } } CrLinklist Initlist_L(int n)//创建带头结点的单链表 { CrLinklist L; CrLinklist P; int i; L=(CrLinklist)malloc(sizeof(CrLNode)); L->next=L;/* 先建立一个带头结点的单链表*/ printf("请输入%d个数据\n",n); for(i=n;i>0;--i) { P=(CrLinklist)malloc(sizeof(CrLNode)); /* 生成新结点*/ scanf("%d",&P->data); /* 输入元素值*/ P->next=L->next; /* 插入到表头*/ L->next=P; } return L; } CrLinklist ListInsert_L(CrLinklist L,int i,int e)//单链表的插入 { CrLinklist P,S; int j; P=L; j=0; while(P&&jnext; ++j; }//寻找第i-1个节点 if(!P||j>i-1) return ERROR; S=(CrLinklist)malloc(sizeof(CrLNode));//生成新节点 S->data=e; S->next=P->next;//插入到S中 P->next=S; return L; } CrLinklist ListDelete_L(CrLinklist L,int i)//单链表的删除 { CrLinklist P,S;

线性表的插入,删除,修改

#include"stdio.h" #include"stdlib.h" int*inistl(int m,int *n) /*建立线性表函数*/ {int*v=NULL; v=malloc(m*sizeof(int*)); /*创建链表,并把首地址赋给指针V*/ n=0; return v; } void insl(int*v,int m,int*n,int i,int b)/*在链表指定位置插入元素b*/ { int j; if(*n>=m) /*检查是否链表溢出*/ {printf("the stack is overflow\n"); return; } if(i>*n-1) i=*n+1; /*若插入点大于元素位置则在表的结束插入*/ if(i<1) i=1; /*空表在首部插入元素*/ for(j=*n;j>=i;j--) /*首位之间任意位置的插入*/ v[j]=v[j-1]; v[i-1]=b; *n=*n+1; /*插入后元素统计指针加1*/ } void desl(int*v,int m,int*n,int i) /*线性表删除函数*/ {int j; if(*n==0) /*判断线性表是否为空*/ {printf("the stack is underflow\n "); return; } if((i<1)||(i>*n)) /*删除点在首部以前和尾部以后特殊情况排除*/ {printf("not this element in the list!\n"); return; } for (j=i;j<=*n-1;j++) /*在允许位置做删除操作*/ v[j-1]=v[j]; *n=*n-1; /*元素统计指针减1*/ return; } void input(int*v,int n) /*空表起始输入元素函数*/ {int i; for(i=0;i

《数据结构》实验一 线性表及其应用

实验一线性表及其应用 一、实验目的 1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。 2.掌握线性表的顺序存储结构的定义及C语言实现。 3.掌握线性表的链式存储结构——单链表的定义及C语言实现。 4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5.掌握线性表在链式存储结构——单链表中的各种基本操作。 二、实验内容 1.顺序线性表的建立、插入及删除。 2.链式线性表的建立、插入及删除。 三、实验步骤 1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。 2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。 3.建立一个带头结点的单链表,结点的值域为整型数据。要求将用户输入的数据按尾插入法来建立相应单链表。 四、实现提示 1.由于C语言的数组类型也有随机存取的特点,一维数组的机内表示就是顺序结构。因此,可用C语言的一维数组实现线性表的顺序存储。 在此,我们利用C语言的结构体类型定义顺序表: #define MAXSIZE 1024 typedef int elemtype; /* 线性表中存放整型元素*/ typedef struct { elemtype vec[MAXSIZE]; int len; /* 顺序表的长度*/ }sequenlist; 将此结构定义放在一个头文件sqlist.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出顺序表的建立及常量的定义。 2. 注意如何取到第i个元素,在插入过程中注意溢出情况以及数组的下标与位序(顺序表中元素的次序)的区别。 3.单链表的结点结构除数据域外,还含有一个指针域。用C语言描述结点结构如下: typedef int elemtype; typedef struct node

线性表顺序存储实现、插入、删除操作

#include #include #define list_init_size 100 #define listincrement 10 #define ok 1 #define overflow -1 #define elemtype int #define error -1 elemtype *q; elemtype *p; typedef struct{ elemtype *elem; int length; int listsize; }sqlist; int initlist_sq(sqlist &l)//线性表动态分配存储结构// { l.elem=(elemtype*)malloc(list_init_size*sizeof(elemtype)); if(!l.elem) { cout<<"the list have no space"<>m;

数据结构实验一顺序表

数据结构实验一 1、实验目的 ?掌握线性表的逻辑特征 ?掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算 2、实验内容: 建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空; 1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作: ?创建一个新的顺序表,实现动态空间分配的初始化; ?根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表; ?根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除); ?利用最少的空间实现顺序表元素的逆转; ?实现顺序表的各个元素的输出; ?彻底销毁顺序线性表,回收所分配的空间; ?对顺序线性表的所有元素删除,置为空表; ?返回其数据元素个数; ?按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回; ?按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回; ?判断顺序表中是否有元素存在,对判断结果进行返回; .编写主程序,实现对各不同的算法调用。 2.实现要求: ?“初始化算法”的操作结果:构造一个空的顺序线性表。对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间; ?“位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ; 操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1; ?“位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ; 操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ; ?“逆转算法”的初始条件:顺序线性表L 已存在; 操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换; ?“输出算法”的初始条件:顺序线性表L 已存在; 操作结果:依次对L 的每个数据元素进行输出; ?“销毁算法”初始条件:顺序线性表L 已存在;

顺序存储结构线性表基本操作 纯C语言实现

/////////////////////////////////////////////////////////// //--------------------------------------------------------- // 顺序存储结构线性表基本操作纯C语言实现 // // a simple example of Sq_List by C language // // by wangweinoo1[PG] //--------------------------------------------------------- /////////////////////////////////////////////////////////// #include #include //以下为函数运行结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 #define LIST_INIT_SIZE 5 //线性表存储空间的初始分配量 #define LISTINCREMENT 1 //线性表存储空间分配增量 typedef int Status; //函数类型,其值为为函数结果状态代码 typedef int ElemType; //假设数据元素为整型 typedef struct { ElemType*elem; //存储空间基址 int length; //当前长度 int listsize; //当前分配的存储容量 }Sqlist; //实现线性表的顺序存储结构的类型定义 static Sqlist L;//为了引用方便,定义为全局变量 static ElemType element; /////////////////////////////////////// //函数名:InitList() //参数:SqList L

相关文档
最新文档