智能控制在机器人领域中的应用

智能控制在机器人领域中的应用
智能控制在机器人领域中的应用

智能控制在机器人领域中的应用

摘要:随着科技的进步,特别是机器人技术的发展,对当前的自动控制提出了更高的要求,本文对智能控制的产生背景和发展过程进行了简单的介绍,同时结合有关机器人的部分相关研究,探讨了智能控制在机器人领域中的应用,并提出了智能控制有待进一步研究的相关问题。

关键词:智能控制;机器人;模糊控制;神经网络控制;专家控制;遗传算法

机器人技术的发展从诞生到20世纪科学家傅京孙首先把人工智能的启发式推

80 年代初,经历了一个长期缓慢的发展过理规则用于学习控制系统,随后,他又于程。到了20世纪90年代,随着计算机1971 年进一步论述了人工智能与自动控

技术、微电子技术、网络技术等的快速发制的交接关系。模糊控制是智能控制的另

展,机器人技术也得到了飞速发展。一重要研究领域,扎德(Zadeh)于1965

一、智能控制及其发展年发表他的著名论文“模糊集合”,随后,

智能机器人的研究是目前机器人研究他又模糊控制的理论探索和实际应用中等中的热门课题。作为一门新兴学科,它融方面进行了大量的研究,并取得了较多的

合了神经生理学、运筹学、控制论和计算成果。1967年,利昂兹(Leondes)等首机技术等多学科思想和技术成果。智能控先正式提出了“智能控制”一词。早期的

制的研究主要体现在对基于知识系统、模智能控制采用一些比较初级的智能方法,糊逻辑和人工神经网络的研究。智能机器发展也十分缓慢。

人可以在非预先规定的环境中自行解决问近十几年来,随着人工智能技术和机题。智能机器人的技术关键就是自适应和器人技术的发展,对智能控制的发展起到自学习的能力,而模糊控制和神经网络控了很大的推动作用。各种智能决策、专家制等在其中的应用显示出诸多优势,成为控制、学习控制、模糊控制、神经控制等当前研究的重要方向。技术被应用到工业系统和智能系统中。

智能控制是指在无人干预的情况下能智能控制系统一般具有以下特点:

够自主地驱动智能机器实现控制目标的控1、能对复杂系统(如非线性、多变量、制技术。控制理论学科发展至今经历了三时变、环境扰动等)进行有效的全局控制,个主要阶段:经典控制理论、现代控制理并具有较强的容错能力;

论、大系统理论和智能控制理论。经典控2、具有以只是表示的非数学广义模型制理论以反馈理论为基础,是一种单回路和以数学模型表示的混合控制过程,能根线性控制理论,主要针对单输入单输出的据被控对象的动态过程进行辨识,采用开设计;现代控制理论主要研究具有高性能、闭环控制和定性与定量相结合的多模态控高精度的多变量参数系统的最优控制问题,制方式;

可以解决多输入多输出的设计;智能控制3、能对获取的信息进行实时处理并给主要为了解决难以用数学模型描述或者具出控制决策,通过不断优化参数和寻找控有时变、非线性、不确定特性的复杂系统。制器的最佳结构形式,以获得整体最优控

智能控制是人工智能和自动控制的重制性能;

要的研究领域,并被认为是当前自主控制4、具有自学习、自适应、自组织能力,的顶峰。智能控制思潮第一次出现于20能从系统的功能和整体优化的角度来分析世纪60年代。1956年,著名的美籍华裔和综合系统,以实现预期的控制目标。

智能控制的技方法有分级递阶智能控下面对各种智能控制在机器人领域的制、神经网络控制、模糊控制、专家控制应用情况进行简单的介绍:

等,在实际的应用中个,通常将多种智能1、机器人领域中的模糊控制

控制的方法融合在一起,以下是几种常用英国学者E?H?Mamdani在1974年首的控制方法的原理:次成功地将模糊集理论运用于工业锅炉的

1、分层递阶智能控制。过程控制之中,并于20世纪80年代初又

分层递阶智能控制是建立在“三元论”将模糊控制引进到机器人的控制中。被控

思想上的控制方法。系统由组织级、协调对象是一个具有两个旋转关节的操作臂,级、执行级共三级组成。组织级的作用是每个关节由直流电动机驱动。关节的实际决策和规划任务。对于给定的外部任务设转角通过测速发电机由A/ D转换电路获

法找到能够完成该任务的子任务的组合,得,其角速度通过SOC的记忆存储器编程并将子任务送到协调级。这一级以人工智来实现。其主要是对操作臂模糊控制系统,能为基础。协调级对要执行的任务进行识分别进行阶跃响应测试和跟踪控制试验。别,通过分派器为各个协调器分配相应的控制结果证明了模糊控制方案具有可行性任务和选择合适的控制步骤,并为组织级和优越性。

产生相应的反馈信息。执行级是控制系统由Lin C M等人提出了在模糊控制器的硬件系统,是控制系统的执行机构,它结构的基础上,引入PI调节机制达到对阶控制对象直接相连。跃输入的快速响应和达到消除隐态误差的

2、模糊控制效果。通过相平面上对两种不同区域的启

模糊控制是以模糊集合论、模糊逻辑发性分类,可得到一组简单的模糊规则,推理和模糊语言变量为基础的一种计算机从而简化了模糊规则库和算法,使最终的数字控制。对于无法建立数学模型或难以控制器易于实现。该控制方案通过仿真实建立数学模型的场合,可以用模糊控制技验得到验证。

术来解决。模糊控制器由模糊化、规则库、2、机器人领域中的神经网络控制

模糊推理和清晰化四个功能模块组成。模神经网络的研究20世纪60年代,并糊控制的特点为:提供了一种实现基于自在20世纪80年代得到了快速的发展。近

然语言描述规则的控制规律的新机制;提几年来,神经网络研究的目标是复杂的非供了一种非线性控制器,这种控制器一般线性系统的识别和控制等方面,神经网络用于控制含有不确定性和难以用传统非线在控制应用上具有以下特点:能够充分逼

性理论处理的场合。近任意复杂的非线性系统;能够学习与适

3、神经网络控制应不确定系统的动态特性;有很强的鲁棒

神经网络控制是在控制系统中采用神性和容错性等。因此,神经网络对机器人经网络这一工具,对难以通过常规方法进控制具有很大的吸引力。

行描述的复杂非线性对象进行建模,或充由Albus提出了一种独特的基于人脑当控制器,或信息处理,或模式识别,或记忆和神经肌肉控制模型的小脑模型关节

故障诊断等,或以上几种功能的组合,这控制方法,即CMCA法。该方法以数学模

种神经网络控制系统的控制方式即为神经块为基础,采用查表方式产生一个以离散网络控制。神经网络控制的特点为:能充状态输入为响应的输出矢量。在控制中,分逼近任意非线性特性;分布式并行处理状态矢量输入来自机器人关节的位置与速机制;自学习和自适应能力;数据融合能度反馈,输出矢量为机器人驱动信号。

力;适合于多变量系统,可进行多变量处F.L. Lewis 基于无源理论,提出了理。一类网络利用功能连接神经网络逼近机器

二、智能控制在机器人领域的应人动力学模型,连接权在线调整方法,可用保证神经网络自适应控制算法闭环稳定。

3、机器人领域中智能控制技术的融合控制

在现代的机器人技术中,机器人在动力学方面常常是一个强耦合、时变、非线性的,在传感器信息方面是多信息的,在控制参数上是多变量的,在控制任务要求上是多任务的,这些特性都决定了在控制中单单靠一种控制是很难完成控制任务的,这就需要对多种智能控制技术进行融合。

例如,模糊控制和神经网络控制的融合,一般称为模糊神经网络( Fuzzified

neural network) 或神经网络模糊控制器(neuro-fuzzy cont roller)。

模糊系统和人工神经网络相结合实现对控制对象进行自动控制,是由美国学者B?Kosko 首先提出的。模糊系统和神经网络都属于一种数值化和非数学模型函数估计器的信息处理方法,它们以一种不精确的方式处理不精确的信息。模糊控制引入了隶属度的概念,即规则数值化,从而可直接处理结构化知识;神经网络则需要大量的训练数据,通过自学习过程,借助并行分布结构来估计输入与输出间的映射关系。虽然模糊控制与神经网络处理模糊信息的方式不同,但仍可以将二者结合起来。利用模糊控制的思维推理功能来补充神经网络的神经元之间连接结构的相对任意性;以神经网络强有力的学习功能来对模糊控制的各有关环节进行训练。可利用神经网络在线学习模糊集的隶属度函数,实现其推理过程以及模糊决策等。在整个控制过程中,两种控制动态地发生作用,相互依赖。

三、对智能控制的未来展望

智能控制作为一种新兴的学科,无论

是在理论上还是在实际的应用中都还不够

完善,有待于进一步的研究和探索。

1、探求新的理论方法面对众多的挑

战和基于,要完成智能控制的研究任务,需要寻找和建立更新的智能控制框架和理论体系,为智能控制的进一步发展打下稳固的理论基础。需要深入研究智能控制的基本理论和概念,寻找新理论,建立新的控制机理。例如,建立

控制知识和控制系统的统一描述,完整地和系统地研究智能控制系统的稳定性、鲁棒性和动态特性,构造新一代基于模型的专家控制系统,以及开发新的基于仿生学和拟人学控制机制等。

2、智能控制要面向实际和复杂的系

在进行智能系统的控制研究的过程中,不仅要能在一般的系统中得到应用,还要面向一些复杂的系统,体现智能控制的优越性。同时要提高硬件水平,例如,大多数的神经网络控制系统还停留在仿真的水平上,更别谈及应用了,因此在这些方面需要作的事情也还有很多。

四、结语

智能控制的发展极大的提高了机器人技术的水平,使其有了长足的进步,但是智能控制方法本身也有局限性,在进行控制的过程中有很多的问题需要我们进一步的探讨和研究。

参考文献:

【1】蔡自兴.智能控制(第2版)[M].

北京:电子工业出版社,2004.

【2】Lin C M ,Hiyama T. Application of fuzzy logic controlto a manipulator [J] . Robot and

Automation ,1991 ,7(5) :688 - 691.

【3】王耀南,孙炜.基于模糊神经网络的机器人自学习控制[J ] .电机与控制学报,2001,5 (2) :92 - 102.

【4】蔡自兴.智能控制及移动机器人研究现状[J ].中南大学学报,

2005,10.

【5】Albus J S.A new approach to manipulator control:the cerebellar model articulation controller(CMAC).J Dyn Sys,Meas,Contr,1975;220-227.

【6】王灏,毛宗源.机器人的智能

控制方法[M] .北京:国防工业出版

社,2002.

服务机器人行业现状及发展趋势分析

报告编号:1657362

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1657362←咨询时,请说明此编号。 优惠价:¥8280 元可开具增值税专用发票 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 根据国际机器人联合会的定义,服务机器人是一种半自主或全自主工作的机器人,它能帮助人类完成除生产制造加工过程以外的设备。服务机器人包括专用服务机器人和家用服务机器人。其中专用服务机器人是指在特殊环境下作业的机器人,如核电站事故检测与处理机器人、极地科考机器人、反恐防暴机器人、军用机器人、救援机器人等;家用服务机器人是指服务于人的机器人,如助老助残机器人、康复机器人、清洁机器人、护理机器人、医疗机器人、教育娱乐机器人等。 目前,世界上至少有48个国家在发展机器人,其中25个涉足服务型机器人开发。在服务机器人领域,发展处于前列的国家主要是日本、韩国、美国和德国。清洁是服务机器人应用最广泛的领域之一,主要应用有家用吸尘器、公共建筑地板清洗机和大型建筑物的擦窗机器人和外墙清洗机器人等。2012年全球家务机器人销量达到196万台,同比增长15%,预计到2015年全球家务机器人销量将达到300万台。 我国在服务机器人领域的研发与日本、美国等国家相比起步较晚,但在国家863计划的支持下,我国在服务机器人研究和产品研发方面已开展了大量工作并取得一定的成果。我国服务机器人产业发展较好的地区主要集中在北京、上海、深圳、浙江、沈阳、哈尔滨、广州、江苏、西安等地。 2012年4月,中国科技部正式印发了《服务机器人科技发展“十三五”专项规划》,提出“十三五”服务机器人重点专项安排公共安全机器人、仿生机器人平台、医疗康复机器人和模块化核心部件等4个方面任务。 据中国产业调研网发布的2015-2020年中国服务机器人行业现状研究分析及市场前景预测报告显示,纵观国内外服务机器人的发展,可以发现服务机器人在我国具有广阔的市场空间。随着城市化进程加速、人口老龄化和人口素质的提高,服务机器人的商业

机器人的发展及其应用

机器人的发展及其应用 摘要:本文介绍了机器人的定义、机器人产生的背景,具体阐述了机器人的应用领域,通过多个方面的考虑,结合我国国内的市场情况,预测了未来机器人的未来发展前景。 关键词:机器人定义产生背景应用领域发展前景 0、引言 机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,也同时,为社会经济发展产生了一个重大影响的一门科学技术。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么人类的发展随着人们这种社会发展的情况,人们越来越不断探讨自然过程中,在改造自然过程中,认识自然过程中,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 一、机器人的定义 上世纪60年代,可实用机械的机器人被称为工业机器人;上世纪80年代到现在,正越来越向智能化方向发展;机器人学是一门不断发展的科学,对机器人的定义也随其发展而变化。国际上,关于机器人的定义主要有以下几种: (1)美国机器人协会(RIA)的定义:机器人是“一种用于移动各种材料、零件、工具或专用装置的,通过可编程序动作来执行种种任务的,并具有编程能力的多功能机械手(manipul ator)”。 (2)日本工业机器人协会(JIRA)的定义:工业机器人是“一种装备有记忆装置和末端执行器(end effector)的,能够转动并通过自动完成各种移动来代替人类劳动的通用机器”。(3)美国国家标准局(NBS)的定义:机器人是“一种能够进行编程并在自动控制下执行某些操作和移动作业任务的机械装置”。 (4)国际标准化组织(ISO)的定义:“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能够借助于可编程序操作来处理各种材料、零件、工具和专用装置,以执行种种任务”。 (5)我国对机器人的定义。蒋新松院士曾建议把机器人定义为“一种拟人功能的机械电子装置”(a mechantronic device to imitate some human functions)。 结合各国关于机器人的定义,对机器人给出以下定义:机器人是一种计算机控制的可以编程的自动机械电子装置,能感知环境,识别对象,理解指示命令,有记忆和学习功能,具有情感和逻辑判断思维,能自身进化,能计划其操作程序来完成任务。 二、机器人产生的背景 机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,也同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中,各国加强了经济的投入,就加强了本国的经济的发展。 另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么人类的发展随着人们这种社会发展的情况,人们越来越不断探讨自然过程中,在改造自然过程中,认识自然过程中,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 1、古代机器人 西周时期,出现了能歌善舞的伶人,这是我国最早记载的机器人。春秋后期,鲁班曾制造

浅谈机器人智能控制研究.答案

陕西科技大学 2015 级研究生课程考试答题纸 考试科目机械制造与装配自动化 专业机械工程 学号1505048 考生姓名乔旭光 考生类别专业学位硕士

浅谈机器人智能控制研究 摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了模糊控制和人工神经网络控制在机器人中智能控制的方法。讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。 关键词:机器人;智能控制;模糊控制;人工神经网络 1 智能控制的主要方法 随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出崭新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。1.1 模糊控制 模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。 1.2 专家控制 专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。 1.3 神经网络控制 神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表

服务机器人行业分析

服务机器人行业分析 Prepared on 22 November 2020

服务机器人行业分析 一、服务机器人行业概述 服务机器人定义 机器人是自动执行工作的机器装置,既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则行动。按照国际机器人联盟IFR (International Federation of Robotics)的分类,机器人一般分为工业机器人和服务机器人。 服务机器人指用于非工业生产,具备半自主或全自主工作模式,可在非结构化环境中为人类提供有益服务的设备。 相比于工业机器人,服务机器人更靠近下游终端消费者,因此服务机器人的客户群体更加广泛。更加靠近终端消费者使得服务机器人具备耐用消费品如电子类、家电类产品的属性。目前,服务机器人主要从事维护保养、修理、运输、清洗、保安、救援、监护等,应用范围十分广泛。 服务机器人的分类 从实体形态来分,可以分为虚拟服务机器人和实体服务机器人。 1)虚拟服务机器人已经被广泛运用于商业化,例如银行、电信系统的自动客服应答系统等,例如苹果的Siri、微软的小冰等都是虚拟服务机器人。 2)实体服务机器人就是通常意义下的具备实物的机器人,包括送餐、客服导购、陪护、教育机器人等。实物服务机器人主要是基于功能性需求场景开发。

根据应用领域来分,可以分为个人/家用机器人和专业服务机器人。 根据形态区分:可以分为人形机器人和非人形机器人 人形机器人:包含头、躯干、四肢这种结构,同时行为、决策和感知也类似于人。 非人形机器人:人形机器人以外的服务机器人。 服务机器人的产业链 服务机器人行业的产业链可以分为上游、中游和下游。 上游企业是指生产各种服务机器人所需零部件的零部件供应商或材料供应商。其中,主要零部件包括自动焊机、电子器件、微处理器、机器人用伺服电机、高精度减速器、机加件、气动元器件、传感器、电池、单板机、舵机等,归属于标准零部件、电子设备以及电子元器件等。 中游制造环节包括总装厂、操作系统提供商、云系统提供商等。 下游则主要是医疗、家用、农用、军事等行业和领域的消费和流通环节。 服务机器人的核心技术 上游企业的核心技术:传感器技术 相比工业机器人,服务机器人对精度的要求苛刻程度较小,而对智能的要求更高。因此以往机器人产业的进入壁垒高性能交流伺服电机和高精密减速器大大降低,而传感器、信号处理算法、运动规划算法将成为新的核心技术。

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

工业机器人在汽车制造业中的应用

工业机器人在汽车制造业中的应用

工业机器人在汽车制造业中的应用 Application of industrial robo t in automobile manufacturing industry 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的重要的现代制造业自动化装备。 目前,国际上的工业机器人公司主要分为日系和欧系。日系中主要有安川、OTC、松下、FANUC、不二越、川崎等公司的产品。欧系中主要有德国的KUKA、CLOOS、瑞典的ABB、意大利的COMAU及奥地利的IGM公司。工业机器人已成为柔性制造系统(FMS)、工厂自动化(FA)、计算机集成制造系统(CIMS)的自动工具。 我国工业机器人是从20世纪80年代开始起步,经过二十年余年的努力,已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示,中国市场上工业机器人总共拥有量近万台,占全球总量的0.56%,其中完全国产工业机器人(行业内规模比较大的前三家工业机器人企业)行业集中度占30%左右,其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为0.2亿以上。 工业机器人50%以上用在汽车领域,当前,工业机器人的应用领域主要有弧焊、点焊、装配、搬运、喷漆、检测、码垛、研磨抛光和激光加工等复杂作业。目前,国际上工业机器人技术在制造业应用范围越来越广阔,现已从传统制造业推广到其他制造业,进而推广到诸如采矿、建筑、农业、灾难救援等各种非制造行业。但汽车工业仍是工业机器人的主要应用领域。据了解,美国60%的工业机器人用于汽车生产;全世界用于汽车工业的工业机器人已经达到总用量的37%,用于汽车零部件的工业机器人约占24%。 在我国,工业机器人的最初应用是在汽车和工程机械行业,主要用于汽车及工程机械的喷涂及焊接。目前,由于机器人技术以及研发的落后,工业机器人还主要应用在制造业,非制造业使用的较少。据统计,近几年国内厂家所生产的工业机器人有超过一半是提供给汽车行业。可见,汽车工业的发展是近几年我国工业机器人增长的原动力之一。 焊接机器人在汽车制造业中发挥着不可替代的作用,焊接机器人是在工业机器人基础上发展起来的先进焊接设备,是从事焊接(包括切割与喷涂)的工业机器人,主要用于工业自动化领域,其广泛应用于汽车及其零部件制造、摩托车、工程机械等行业,在汽车生产的冲压、焊装、涂装、总装四大生产工艺过程都有广泛应用,其中应用最多的以弧焊、点焊为主。 目前,焊接工业机器人在一汽、上汽、沈阳中顺、金杯通用、重庆长安、湖南长丰等整车制造企业广泛应用,据统计每辆汽车车身上,大约有3000~4000个电阻点焊焊点,电阻点焊技术的应用实现了汽车车身制造的量产化与自动化。 多年来,我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位,劳动强度大,作业环境恶劣,焊接质量不易保证,而且生产的柔性也很差,无法适应现代汽车生产的需要。近年来由于焊接机器人的大量应用,提高了零部件生产的自动化水平及生产效率,同时使生产更具有柔性,焊接质量也

国内外机器人发展的现状及发展动向

国内外机器人发展的现状及发展动向 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制

智能控制及其在机器人领域的应用

智能控制及其在机器人领域的应用 本文通过对智能控制的发展轨迹和特点进行简单的介绍,对智能控制的技术方法进行了分析,对比了智能控制和传统控制的优缺点,对智能控制在机器人领域的应用进行了分析和探究+提出了智能控制的未来发展方向应该是由多种智能控制模式组成以及把智能控制模式和传统控制相结合的思维方法。 标签:智能控制;机器人;应用 1.控制的概述 从20世纪初到今天,控制理论已经由以传递函数为理论基础的传统模式发展到了以状态空间理论为依据的现代模式。到了今天,控制理论经历了由人工智能向自动控制的转变过程,从而形成了智能控制的相关理论。 2.智能控制的发展轨迹和特点 智能控制的理论思想最早被提出时是由人工智能思想和自动控制交叉的思想相融合而得出的一种思想理论,并且把智能控制的系统分为人工控制器为核心的智能控制、人工和机器同时作为核心的智能控制系统、纯机器控制作为核心的智能控制系统。智能控制的理论基础是运筹学的相关理论、人工智能的相关理论以及自动控制理论相结合的一种控制理论学说;智能控制系统是由传统控制理论进化而来,主要利用自主智能机来达到预设目标,从而实现无人操作的目的。 智能控制的整套系统结构具有开放式、分级式以及分布式的特点,处理综合信息的能力非常强大。但是智能控制的终极目标却不是高级自动控制,而是优化系统的各个方面。智能控制的服务对象主要是一些非线性和不确定性的研究对象,这种研究对象是主要研究线性结构的传统控制理论无法操作的内容。智能控制在对数学模型的描述以及对符号和相关环境的识别等方面都十分擅长。 3.智能控制的技术方法 智能控制的主要技术方法有神经网络智能控制、模糊网络智能控制以及分层递阶智能控制等。在日常实际操作中,进行智能控制应用时常用的方法是把几种智能控制模式融合在一起来使用。比较典型的智能控制方法有以下几个。 (1)模糊智能控制方法。模糊智能控制方法主要是把知识库和模糊模式推理机以及输出量清晰化的模块等进行组合,模糊智能控制的具体方式是,由模糊量的互相转化以及推理,最后得出具体的参数来执行。[1] (2)专家智能控制方法。专家智能控制方法就是把智能控制与传统控制理论相融合的一种典型的智能控制方法。这种方法就是以专家智能控制的理论基础作为依据,对控制方法进行优化。

服务机器人的发展现状及趋势

服务机器人的发展现状及趋势 【摘要】服务机器人是机器人家族中的一个年轻成员,是一种半自主或全自主工作的机器人,它能完成有益于人类健康的服务工作。进入二十一世纪,人们已经愈来愈亲身地感受到机器人深入生产、生活和社会的坚实步伐。一方面随着各个国家老龄化越来越严重,更多的老人需要照顾,社会保障和服务的需求也更加紧迫,老龄化的家庭结构必然使更多的年青家庭压力增大,而且生活节奏的加快和工作的压力,也使得年轻人没有更多时间陪伴自己的孩子,随之酝酿而生的将是广大的家庭服务机器人市场。另一方面服务机器人将更加广泛地代替人从事各种生产作业, 使人类从繁重的、重复单调的、有害健康和危险的生产作业中解放出来。 【关键词】服务机器人发展现状发展趋势 引言 截至2014年底,我国60岁以上的老龄人口已达2.97亿,占人口总数的6.07%,劳动力人口比重正在逐年下滑,迫切需要大力发展机器人自动化产业。服务机器人是机器人发展的主攻方向,受到国内外学术界和产业界的高度重视。近年来,原中型组和人形组中的国际一流研究型大学纷纷加入服务机器人研发制造,使得行业技术得到快速的发展,服务机器服务机器人是集机械、电子、控制、材料、生物医学等多学科交叉的战略性高技术,不仅能应对劳动力成本上升、人口老龄化等问题,而且对于相关技术与产业的发展起着重要的支撑和引领作用。目前,主导全球研发机器人技术的国家主要有美国、日本、德国、韩国、中国,我国目前已经跻身了全世界五大强国之列,但是与美国、日本差距非常大,我国服务机器人研究与市场化生产运作仍处于初级阶段,国内专门研发生产服务机器人的企业少且多半集中于低端市场[1]。 1 服务机器人的市场现状和前景 中国产业调研网发布的2015-2020年中国服务机器人市场现状研究分析与发展趋势预测报告认为:根据国际机器人联盟的数据(表1),2014年,全球专业服务机器人销量22163台,比2013年增加1163台,与2010 年相比翻了一番,销售额达到45.48亿美元,同比增长8.3%;全球个人/家用服务机器人440台,比2013年增加40 台,销售额达到12.05亿美元,同比增长27.2%;2013年,全球国防应用机器人销量8013台,比2012年增加759台;全球医用服务机器人销量1106台,比2012年增加33台。全球家用服务机器人销量224万台,比2012年增加29万台。2014年,我国服务机器人销售额45.56亿元,同比增长34%;2014年中国服务机器人投入使用仅仅少部分是国产的,大部是国外进口机器人。我国服务机器人

智能机器人控制系统

机器人的控制 机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。机器人控制技术的主要任务就是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等。具有编程简单、软件菜单操作、友好的人机交互界面、在线操作提示和使用方便等特点。 智能机器人控制的关键技术 关键技术包括: (1)开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。 (2)模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。整个控制器软件系统分为三个层次:硬件驱动层、核心层和应用层。三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。 (3)机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。 (4)网络化机器人控制器技术:目前机器人的应用工程由单台机器人工作站

向机器人生产线发展,机器人控制器的联网技术变得越来越重要。控制器上具有串口、现场总线及以太网的联网功能。可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。 PID控制原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入积分项。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制

工业机器人常见五大应用领域及关键技术【最新整理】

工业机器人常见五大应用领域及关键技术 去年全球工业机器人销量达到24万台,同比增长8%。其中,我国工业机器人市场销量超过6.6万台,继续保持全球第一大工业机器人市场的地位。但是,按机器人密度来看,即每万名员工对应的机器人保有量,我国不足30台,远低于全球约为50多台的平均水平。 前瞻产业研究院《2016-2021年中国工业机器人行业产销需求预测与转型升级分析报告》数据显示:2015年我国工业机器人产量为32996台,同比增长21.7%。2016年机器人产业将继续保持快速增长,今年一季度我国工业机器人产量为11497台,同比增长19.9%。此外,数据显示,2015年我国自主品牌工业机器人生产销售达22257台,同比增长31.3%。国产自主品牌得到了一定程度的发展,但与发达国家相比,仍有一定差距。 2016年未来全球工业机器人市场趋势包括:大国政策主导,促使工业与服务机器人市场增长;汽车工业仍为工业机器人主要用户;双臂协力型机器人为工业机器人市场新亮点。 一、什么是工业机器人 工业机器人是一种通过重复编程和自动控制,能够完成制造过程中某些操作任务的多功能、多自由度的机电一体化自动机械装备和系统,它结合制造主机或生产线,可以组成单机或多机自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。 当前,工业机器人技术和产业迅速发展,在生产中应用日益广泛,已成为现代制造生产中重要的高度自动化装备。

二、工业机器人的特点 自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,但工业机器人最显著的特点归纳有以下几个。 1.可编程。生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。 2.拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 3.通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。 4.机电一体化。工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。 三、工业机器人常见的五大应用领域 1.机械加工应用(2%) 机械加工行业机器人应用量并不高,只占了2%,原因大概也是因为市面上有许多

服务机器人的应用领域

得分评卷教师哈尔滨远东理工学院 电气工程概论 题目:服务机器人的应用领域 姓名:赵启飞 分院:机器人科学与技术学院 专业电气工程及其自动化 学号:12160319 二0一五年六月二十八日

服务机器人的应用领域 一、引言 机器人技术作为20世纪人类最伟大的发明之一,自问世以来,就一直备受瞩目。40余年来,有关它的研究取得了长足的进展。各种形态、功能的机器人相继面世,而未来的机器人将是一种能够代替人类在非结构化环境下从事危险、复杂劳动的自动化机器,是集机械学、力学、电子学、生物学、控制论、计算机、人工智能和系统工程等多学科知识于一身的高新技术综合体。正是由于机器人在多方面应用的可能性,才使得机器人在财会方面也是可以取得成就的。本文拟就机器人的现状与发展前景,探讨机器人发展的多方面可能性。 你初印象中的机器人是什么样子的呢?是不是说一个长的像机器人样子的玩意就是机器人呢?其实说起机器人,我们头脑里马上会联想到那些会唱歌跳舞干工作而且有头有手的小东西。其实那只是机器人的狭意理解。人们提出来机器人的定义是能够感知环境,能够有学习、情感和对外界一种逻辑判断思维的这种机器。人们提出来机器人的定义是能够感知环境,能够有学习、情感和对外界一种逻辑判断思维的这种机器。可以说与人类类比的话,机器人的完整意义应该是一种可以代替人进行某种工作的智能程序化及自动化设备。 二、发展 那什么是服务机器人呢?服务机器人是机器人家族中的一个年轻成员,到目前为止尚没有一个严格的定义。不同国家对服务机器人的认识不同。大致分为几种类型;护士助手、脑外科机器人、口腔修复机器人、进入血管机器人、智能轮椅、爬缆索机器人、外清洗机器人、消防机器人 随着人们生活水平的提高,对服务行业的要求也越高,所以服务机器人的发展也在加速进行服务机器人是机器人家族中的一个年轻成员,可以分为专业领域服务机器人和个人/家庭服务机器人,服务机器人的应用范围很广,主要从事维护保养、修理、运输、清洗、保安、救援、监护等工作。 数据显示,目前,世界上至少有48个国家在发展机器人,其中25个国家已涉足服务型机器人开发。在日本、北美和欧洲,迄今已有7种类型计40余款服务型机器人进入实验和半商业化应用。 近年来,全球服务机器人市场保持较快的增长速度,根据国际机器人联盟的数据,2010年全球专业领域服务机器人销量达13741台,同比增长4%,销售额为320亿美元,同比增长15%;个人/家庭服务机器人销量为220万台,同比增长35%,销售额为5.38亿美元,同比增长39%。 另外一个方面,全球人口的老龄化带来大量的问题,例如对于老龄人的看护,以及医疗的问题,这些问题的解决带来大量的财政负担。由于服务机器人所具有的特点使之能够显著的降低财政负担。因而服务机器人能够被大量的应用。 我国在服务机器人领域的研发与日本、美国等国家相比起步较晚。在国家863计划的支持下,我国在服务机器人研究和产品研发方面已开展了大量工作,并取得了一定的成绩,如哈尔滨工业大学研制的导游机器人、迎宾机器人、清扫机器人等;华南理工大学研制的机器人护理床;中国科学院自动化研究所研制的智能轮椅等。 三、简介 服务机器人的应用范围很广,主要从事维护保养、修理、运输、清洗、保安、救援、监护等工作。国际机器人联合会经过几年的搜集整理,给了服务机器人一个初步的定义:服务机器人是一种半自主或全自主工作的机器人,它能完

矿山机器人分类及应用

机器人技术在矿山中的应用 摘要机器人技术已经广泛应用于各种领域,矿山机器人在井下的作用也越来越变得重要,文章主要列出以及简要的介绍了机器人技术在煤矿采掘、凿岩、喷浆、巡检、抢险救灾这几个方面的应用。 主题词机器人技术矿山应用 前言 我国是产煤大国,现年产量近38亿吨而居世界首位。我国又是以煤炭为第一能源的国家,近年来,随着国家经济的发展,对煤炭的需求量也在逐年增加,但由于煤炭生产多是在井下作业,井下环境恶劣、条件复杂、灾害严重。在井下采煤工作面以及掘进巷道,往往伴随着粉尘、潮湿、振动、噪声,甚至辐射等严重的环境污染问题。而且,这些施工作业不仅劳动强度大,有时还会使操作人员遭遇冒顶、透水、瓦斯爆炸、瓦斯突出等危险。 矿山中的机器人 伴随着经济和科技的飞速进步,机器人技术越来越广泛地应用到各种领域中开发未知及不确定环境。目前,国际上的机器人学者从应用环境出发将机器人分为2 类,即制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。而煤矿机器人属于非制造环境下的特种机器人,也可称机器人化机器。根据井下作业的特殊条件和特点,机器人在煤矿中的应用主要有采掘、凿岩、喷浆、巡检、抢险救灾。 ①采掘机器人 在采煤工作面会有采煤和移架产生的大量煤尘,而煤尘具有爆炸性就会存在隐患。煤层中溢出的瓦斯也具有威胁性。以及顶板支护处理不当则会造成冒顶事故。可以说采煤工作面的工作环境是十分恶劣和危险的,还是不太适宜人类工作。因此,采用通过采掘设备加装智能控制单元构成的遥控机器人进行煤层的采掘是不错的方法。这种采掘机器人可以应用现有合适的采掘设备通过加装有合适光源和视觉、听觉、振动等传感器,经处理单元人工智能化处理,进行自主采掘作业。 ②凿岩机器人 巷道掘进是现代煤矿大规模基础设施建设中的一项难度大、耗资耗时多、劳动条件差但又十分关键、十分重要的施工作业。隧道开挖一般采用掘进法和钻爆法,但是这两种方法都没能达到经济效益最好的效果。随后,世界上几乎所有的发达国家都推出了具有机器人特征的半自动计算机辅助凿岩台车和全自动凿岩台车,也就是凿岩机器人。由于这类凿岩机器人主要用于隧道的开挖,所以将它称为巷道凿岩机器人。这种机器人可以利用传感器来确定巷道的上缘,这样就可以自动瞄准巷道缝,然后把钻头按规定的间隔布置好,钻孔过程用微机控制,随时根据岩石硬度调整钻头的转速和力的大小以及钻孔的形状,这样可以大大提高生产率,人只要在安全的地方监视整个作业过程就行了。以我国为例,中南大学何清华教授率领的科研团队,在上世纪80年代就开始了对凿岩机器人的研究,于2000年成功开发出具有国际先进水平的我国第一台隧道凿岩机器人(如图1)。

【机器人智能技术论文】人工智能机器人论文

【机器人智能技术论文】人工智能机器人论文 随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。下面是的机器人智能技术论文,希望你能从中得到感悟! 刍议智能机器人及其关键技术 【摘要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。 【关键词】智能机器人;信息融合;智能控制 一、机器人的定义 自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致, __标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)

于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变 和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。 二、智能机器人关键技术 随着社会发展的需要和机器人应用领域的扩大,人们对智能 机器人的要求也越来越高。智能机器人所处的环境往往是的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术: (1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任 意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、 触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合多个传感器的感知数据,以产生更可靠、

服务机器人调研报告

服务机器人调研报告 球坐标型有移动关节和两个转动关节,可以回转、俯仰和伸缩;关节型有多个转动关节。按应用领域的不同,服务机器人可以分为:弧焊机器人、电焊机器人、喷涂机器人、码垛机器人、搬运机器人、装配机器人、检测机器人和其他机器人等。此外,按受控方式的不同,还可以分为点位控制型和连续控制型等。 目前,我国企业主要销售坐标型机器人,属于低端服务机器人产品,占国内企业销售量的40%以上。国外企业在我国市场主要销售多关节型机器人,属于当前国际市场的主流产品,占外国企业在我国销售量的80%以上。 (二)服务机器人产业链 服务机器人产业链主要包括研发设计、核心零部件制造、本体制造、系统集成和行业应用等部分。上游的核心零部件制造是服务机器人产业链的核心环节,包括减速器、伺服电机、控制器三部分我国服务机器人产业在系统集成环节具有相对优势,而核心零部件制造是相对薄弱的环节。以精密减速器为例,欧洲和日本均已实现了减速器的自主化生产,减速器仅占国际品牌服务机器人单体成本的1/6。而国产减速器技术工艺相对落后,高价进口减速器约占成本的1/3,大幅高于国际品牌。 二服务机器人产业发展及动态

(一)服务机器人产业规模 根据IFR统计,2013年,全球服务机器人的销量为178132台,同比增加12%,销量为历史最高水平。IFR预测,2014年,全球服务机器人的销量将达到20万台左右,同比增加15%。2015~2017年,服务机器人的安装量将以年均12%的速度增长(见图2)。 从各大洲服务机器人供应量及预测看,亚洲/澳大利亚将是服务机器人供应量最大的地区。一方面,由于日本、韩国等亚洲生产大国将持续领跑地区的服务机器人产业,中国的服务机器人产业也呈迅速发展的态势,因此,亚洲地区的服务机器人产业仍将快速发展。另一方面,包括中国在内的亚洲地区国家,大力推广应用服务机器人,市场空间广阔,吸引大批国外生产商投资建厂、扩大产能。欧洲和美洲的市场相对饱和,未来将保持小幅增加、相对平缓的增长趋势(见图3)。 2013年,中国成为全球第一大服务机器人市场,约占全球销量的1/5。2013年,全球服务机器人销量的约70%集中在中国、日本、美国、韩国和德国市场。其中,中国的购买量达到36560台,同比增加59%,超过日本成为全球第一大服务机器人消费市场。IFR预测,中国2017年服务机器人的安装量将增至10万台。外资企业是中国市场的主要供应商,据中国机器人产业联盟统计,2013年,国内企业在我国销售服务机器人约9500台;而外资企业在我国的服务机器人销售总量约2.7万台。2014年1~6月,国产机器人的销售量为6400台,是2013年全年的67%。

(完整版)关于机器人的发展历史

关于机器人的发展历史 库卡公司最早于1898年由Johann Josef Keller和Jakob Knappich在奥格斯堡建立。最初主要专注于室内及城市照明。但与此不久公司就涉足至其它领域(焊接工具及设备,大型容器),1966年公司成为欧洲市政车辆的市场领导者。1973年公司研发了其名为FAMULUS第一台工业机器人。当时库卡公司属Quandt集团旗下,而Quandt家族则于1980年退出。公司成为一个上市公司。1995年库卡机器人技术脱离库卡焊接及机器人有限公司独立成立有限公司,与库卡焊接设备有限公司(即后来的库卡系统有限公司),同属属于库卡股分公司(前身IWKA集团)。现今库卡专注于向工业生产过程提供先进的自动化解决方案。 库卡机器人公司目前全球拥有3150名员工(2012年9月30日数据),其总部在德国奥格斯堡。公司主要客户来自汽车制造领域,但在其他工业领域的运用也越来越广泛。 重要发展 1971 –为Daimler-Benz建成欧洲第一台焊接传输线。 1973 –库卡建成全球第一台六轴机电驱动的工业机器人FAMULUS。1976 – IR 6/60 –全新的机器人类型六轴机电驱动带角手。 1989 –新一代工业机器人诞生–无刷电机的使用降低了维护成本提高了技术可用性。 2007 –库卡…titan“ - 当时最强大的6轴工业机器人,被计入吉尼斯纪录。2010 – KR QUANTEC系列工业机器人贴补了机器人家庭中载重90-300公斤工作范围达3100毫米这一部分的空白。 2012 –最新小型机器人系列KR AGILUS上市。 ABB是全球领先的电力和自动化集团,总部设在瑞士。ABB集团业务遍布全球100多个国家,拥有120,000名员工。在中国的13,000名员工,在60 个不同城市服务于26家本地企业和38个销售与服务分公司。 ABB致力于研发、生产机器人已有30多年的历史并且拥有全球160000多套机器人的安装经验。作为工业机器人的先行者以及世界领先的机器人制造厂商,在瑞典、挪威和中国等地设有机器人研发、制造和销售基地。ABB

智能机器人的控制技术前景分析

智能机器人的控制技术前景分析 随着科学技术的发展,机器人控制技术也日渐成熟,不仅在力矩和位置控制等基础技术上有所进步,在智能化控制上也有显著提高。可是机器人基础控制技术尽管比较完善,但是想要得到进一步提升却有很大难度,因此,智能化发展成为了机器人控制技术的研发方向,该技术上突破会给基础控制技术的发展带来契机,本文重在研究机器人控制技术的发展方向及难度,希望本文内容能对机器人控制技术的研究带来帮助。 机器人技术一直是国内外科学家重点研究的课题,尤其是美国、日本等发达国家更是机器人研究能力较强的国家,他们对机器人的研究工作有近60年了,而且实现了编程机器人向智能化机器人的发展。他们经过多年研究总结,把机器人控制技术分为三大部分,分别是力矩技术、位置技术和智能技术,其中,力矩技术和位置技术是基础,智能技术是研究的发展方向,所以说,前者是基础技术,后者是重点技术,两者都要快速地向前发展。 1.机器人基础控制技术的重要性及所面临的技术难题 力矩技术和位置技术是机器人控制技术的基础,智能化技术是在这两种技术的基础上进行发展的,所以说,我们要想实现机器人智能化发展,就要先认识到力矩技术和位置技术的作用,了解到两种基础控制技术的重要性。 以前,在机器人基础控制技术中的研究重点是速度、位置和受力等要素,而随着科学技术的发展,控制技术又需要研究各种实用的系统技术,从而保证机器人基础控制技术更加完善。可以这样说,在当今时代,机器人基础控制技术已经达到了一定的水平,这给机器人控制技术的发展打下了坚实的基础,但是,对于作为基础技术中的力矩技术和位置技术来说,要想实现突破,却要依赖智能化技术的发展,因此,位置技术、力矩技术、智能技术三者是紧密联系和相互制约的,位置技术和力矩技术为机器人控制技术智能化发展打下了基础,智能化技术又为机器人基础控制技术的突破带来了机会。下面,我介绍一下机器人控制基础技术所面临的难题。 第一,机器人基础技术研发中存在技术难题。机器人系统设置和实际运动出现不一致问题,这个问题一直难以解决,这对位置技术和力矩技术来说是一个大的挑战。第二,数据模型不能解决机器人运动中的复杂问题。机器人在实际运行中遇到复杂问题时,数据模型就出现工作不正常现象,还有一些难以预见的问题,更是机器人控制基础技术难以解决的。第三,机器人基础控制技术系统不够完善。由于机器人基础控制技术都是建立在数字模型基础上的,该数字模型只是简单的力矩控制系统,根本不能完成复杂的指令,因此,机器人为了提高系统的性能,就需要增加设备来实现,这对基础控制系统来说难度很大。第四,机器人基础控制技术不能解决不确定对象的有关问题。机器人运行中会遇见很多不确定因素,由于这些不确定因素没有建立数字模型,因此,这些问题就难以靠基础控制技术来解决。所以说,机器人性能要想得到提高,光靠基础控制技术是难以实现的,

相关文档
最新文档