压力传感器在军用与航空环境中的应用

压力传感器在军用与航空环境中的应用
压力传感器在军用与航空环境中的应用

在极端环境下表现优异仔细看一下主要军用与民用航空应用,可以发现使用MEMS压力传感器的地方有很多。其中包括飞行数据系统、环境与舱压、机身中的液压系统、引擎与辅助电源设备,以及其它各种应用,比如舱门、氧气罩、飞行试验与结构监控。

总体来看,航空器、喷气飞机、螺旋桨飞机和直升机中使用的压力传感器数量可能非常庞大。例如,大型喷气飞机需要多达130个传感器。

对于引擎和其它环境恶劣的应用场合,豪华客机中有13个引擎压力传感器和开并,较小的喷气式飞机通常有六到七个传感器。所谓的全权限数字电子控制(FADEC)另外需要五到六个变换器(transducer)。FADEC是一种电子引擎控制器及相关附件,用于接收与分析多个变量,包括空气密度与引擎温度。

采用一级封装的军用或航空MEMS压力传感器价格很容易达到或超过1000美元。与汽车中使用的MEMS器件相比,价格差距非常巨大,主要是因为前者对于芯片性能有更高的要求,而且需要在长达25年的时间里在规定温度范围内保持稳定,而汽车只要求保证10年的稳定性。

总体来看,MEMS压力传感器必须能承受恶劣环境下的剧烈震动、高G过载影响与加速度、极端温度与高压。军用与航空应用通常是这类极端环境。另外,传感器还必须在这种困难环境下表现出完美的性能,具有高精度、低漂移和长期稳定性。必须在非常小的封装内满足这些苛刻要求,而且重量要轻。从这些方面来看,MEMS压力传感器能够主宰军用与航空领域。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解图尔克传感器、亚德克传感器、科瑞传感器、山武传感器、巴鲁夫传感器、倍加福传感器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/f52991277.html,/

中国航空航天事业的现状与未来

中国航空航天事业的现状与未来 随着中国社会主义市场经济体制的初步建立和不断完善,从1956年至今,我国的航空航天事业取得了令世人瞩目的成就。航空航天事业的发展也带动了一系列科学技术的进步,其中包括天文学、地球科学、生命科学、信息科学以及能源技术、生物技术、信息技术、新材料新工艺等的研究与发展,同时各种卫星应用技术、空间加工与制造技术、空间生物技术、空间能源技术大大增强了人类认识和改造自然的能力,促进了生产力的发展。 中国政府高度重视航空航天产业的发展,将其作为国家战略性新兴产业和优先发展的高技术产业。经过艰苦努力,中国依靠自己的力量,研制并成功发射了15种类型、近50颗人造地球卫星和3艘试验飞船。如今,航空航天行业是支持整个中国的重要行业。 航天技术的直接应用为人类可持续发展开辟了更广阔的道路,不仅提高了人类生活的质量,改善了人类的生活环境,还将发挥保护人类、保护地球的重要作用。比如,卫星通信技术为现代社会提供了电话、电报、传真、数据传输、电视转播、卫星电视教育、移动通信、数据收集、救援、电子邮政、远程医疗等上百种服务,使人类生活方式发生了重要变化。而载人航天、空间站、天体探测与地外资源开发技术又为人类的未来开辟了美好的前景。航空航天事业对国家,在军事国防上讲,具有中流砥柱的地位。这也是为什么我国开展“两弹一星”工程的主要原因。拥有航天火箭发射能力,是一个国家拥有核威

慑力能力,远程核打击能力的前提条件。现代战争,是海陆空天为一体的立体复杂信息化战争。拥有制空权、制天权是战争胜利的关键所在,因此,航空航天事业的发展直接影响到国家安全和国防力量。 航天技术作为高科技前沿,其产业化依赖于整个国民经济与社会生产力的发展水平以及传统产业的支持。航天产业与传统产业之间有着相互渗透、相互促进、共同发展的关系。航天技术的发展将牵引传统产业技术水平的提高,航天技术发展过程中产生的许多新技术、新工艺、新材料和新产品,可以直接或经过二次开发后在传统产业中进行推广、应用和移植;航天技术的管理方法、通用软件、人才和设备优势也可以为传统产业借用,极大地促进传统产业的升级。 如今,中国航空航天事业面临难得的发展机遇。我们将继续以大型飞机、载人航天和探月工程、中国第二代卫星导航,以及高分辨率对地观测系统等重大专项为引领,加强航空航天与全国工业和信息化系统的顶层衔接,促进军民用技术相互转移和军民融合式发展,全面振兴航空航天事业,不断扩大国际交流与合作,与世界同行共享发展成果。未来一段时期,我国将不断推出产业发展政策,积极扶持航空航天产业的发展。

航空航天概论习题及试题库

习题及试题库 航空航天发展史(一) 1. 第一个载人航天站是前苏联于______年4月发射的"礼炮号"。美国研制的可重复使用的航天飞机于______年试飞成功。 A 、1971 1984 B、1981 1981 C、1971 1981 D、1981 1982. 2 、航天器又称空间飞行器,它与自然天体不同的是______。 A. 可以按照人的意志改变其运行 B. 不按照天体力学规律运行 C. 其运行轨道固定不变 D. 基本上按照天体力学规律运行但不能改变其运行轨道 3 、______年,第一架装有涡轮喷气发动机的飞机,既______的He-178飞机试飞成功。 A.1949 德国 B.1939 德国 C.1949 英国 D.1939 美国 4 、轻于空气的航空器比重于空气的航空器更早进入使用。中国早在______就有可升空作为战争中联络信号的"孔明灯"出现,这就是现代______的雏形。 A.10 世纪初期飞机 B.12 世纪初期热气球 C.10 世纪初期热气球 D.12 世纪初期飞艇 5 、活塞式发动机和螺旋桨推进的飞机是不能突破"音障"的,_____的出现解决了这一问题。 A. 内燃机 B. 蒸汽机 C. 涡轮喷气发动机 D. 电动机 6 、具有隐身性能的歼击机有______。 A.F-22 B.F-117 C.JAS-39 D.B-2 7 、请判断以下说法不正确的有______。 A. 固定翼航空器是通过其螺旋桨的旋转来提供升力的; B. 飞机和滑翔机的主要区别在于他们的机翼安装形式不同; C. 直升机和旋翼机都是通过其动力装置直接驱动旋翼旋转产生升力的航空器; D. 目前的航天飞机是可以象飞机一样在跑道上着陆的航空器。 8 、飞行器可分为三大类,下列器械属于飞行器的有______。 A. 航空器 B. 航天器 C. 气垫船 D. 火箭和导弹 9 、歼击机的主要任务是______。 A. 空战 B. 侦察 C. 拦截敌机或导弹 D. 运输 10 、下面航空器中可以称为直升机的有______。 A. 直-9 B.F-16D C.V-22 D.AH-64" 阿帕奇" 航空航天发展史(二) 1 、由于航空航天活动都必须经过大气层,所以航空与航天是______的。 A. 互不相关 B. 紧密联系 C. 相互矛盾 D. 完全相同 2 、按导弹的弹道特征和飞行特点可分为______。 A. 弹道导弹、巡航导弹和高机动飞行导弹 B. 地空导弹、空空导弹和空地导弹 C. 战术导弹、战略导弹和洲际导弹 D. 陆基导弹、空基导弹和潜射导弹 3 、___年___研制成功V-2火箭,成为世界上第一个以火箭发动机为动力的弹道导弹。 A.1942 德国 B.1942 美国 C.1944 德国 D.1944 英国 4 、在克服地球引力而进入太空的航天探索中,______科学家戈达德提出火箭飞行的飞行原理,并导出脱离地球引力所需的7.9 km /s的______。 A. 英国第一宇宙速度 B. 美国第一宇宙速度 C. 英国第二宇宙速度 D. 德国第二宇宙速度

LMS国际公司1D 3D仿真平台在航空行业的应用

LMS国际公司1D3D仿真平台在航空行业的应用 作者:LMS国际公司程磊 LMS国际公司,总部位于比利时鲁文,为全球最大的集试验系统、虚拟仿真平台于一体的工程解决方案供应商,以其独特的测试与仿真相结合的整体解决方案,为航空航天、汽车、船舶和其它制造领域的合作伙伴提供工程创新服务。 LMS公司的产品涵盖试验系统、1D多领域系统仿真、3D集成多学科仿真平台、试验和CAE 数据管理、企业流程集成和多学科优化系统在内的完整架构,可以帮助用户解决从产品概念设计、方案设计到详细设计直至试验验证的整个生命周期内的工程难题,如机构设计与动力学分析、控制/液压/电机驱动等电液系统设计、机电一体化分析、结构有限元分析、振动噪声分析、疲劳耐久性分析、结构优化、模态测试、模型修正、多学科优化,等等。基于LMS 所提供的虚拟仿真和试验系统,各领域的制造商可以快速设计、分析、验证并优化产品方案,获得最优的产品品质,加快产品研发进程,节省时间和成本。 LMS公司产品体系与解决方案 LMS公司的虚拟仿真软件主要包括1D多领域系统仿真环境https://www.360docs.net/doc/f52991277.html,bAMESim和3D集成多学科仿真平台https://www.360docs.net/doc/f52991277.html,b。

https://www.360docs.net/doc/f52991277.html,bAMESim是当前CAE领域应用最为广泛的一维多领域仿真平台,它基于动态建模方法建立物理元件的数学模型,提供面向众多学科领域的专业应用库,包括控制、液压、气动、热、多相流、空调与冷却系统、电子电力、电磁、机械与动力传动、车辆动力学、内燃机,等等。这些专业库和库元件都经过了大量工程检验。用户只需要根据系统组成,把来自各专业库的预定义好的物理元件模型连接和组装起来,即可创建完整的系统模型,AMESim可自动形成系统方程,并进行稳态、瞬态或频响计算,分析系统性能;通过AMESim 集成的参数研究与优化工具或LMS公司专业的多学科优化系统Optimus,用户可以进一步对系统参数进行优化,找到达到产品设计目标的最优设计方案。多领域系统仿真技术与AMESim平台,非常适合在产品方案设计阶段,在获得详细的几何模型前,进行整体方案设计和选型。AMESim提供强大的二次开发能力,用户可以开发自己的专业库或元件模型,亦可集成其已有的in-house代码和程序。AMESim的代码生成能力在同类软件中首屈一指,优异的代码生成与优化能力,使其可以方便地将系统模型生成实时代码,在设计验证阶段进行硬件在环等半实物仿真,对控制系统设计方案进行验证,整定系统参数。

我国的航天航空成就与发展

我国航空航天的成就与发展 一.我国航空航天事业已取得的重大成就 1、1968年2月,中国空间技术研究院正式成立,隶属于中国航天工业总公司的前身第七机械工业部,钱学森同志任院长。 2、1970年4月24日,第一颗人造卫星东方红一号发射成功。其发射成功使我国成为继美、苏、法、日后第五个能制造与发射人造卫星的国家,标志着我国空间技术进入了新时代。 3、1971年3月3日,“实践一号”科学实验卫星顺利升空,此后在空间运行了8年,取得了大量的科学数据。 4、1981年,我国利用“风暴一号”运载火箭,一次把三颗卫星送入太空。从而成为世界上第四个掌握一箭多星技术的国家。 5、70年代末,研制发射静止轨道通信卫星被列为国家重点工程。中国空间技术研究院先后攻克了姿态控制、通信转发器、统一载波测控系统等关键技术。1984年4月8日成功地发射了我国第一颗试验通信卫星。在此后不到两年的时间,实用通信广播卫星又于1986年6月2日发射成功,使我国成为继美国、前苏联、欧空局之后,世界上第四个具有发射地球静止轨道卫星能力的国家。1997年5月12日,我院研制的东方红三号广播通信卫星发射定点成功,此举标志着我国通信卫星研制技术又上了一个新的台阶。

6、80年代初,开始了开展气象卫星的研究。于1988年9月7日,发射成功“风云一号”气象卫星。之后利用其所发送回至地面的卫星云图,进行天气预报,为国民经济建设发挥了巨大作用。 7、1997年6月10日,成功地将“风云二号”气象卫星定点于东经105度地球同步轨道,从而使我国成为继美、苏后第三个能同时发射太阳同步轨道与地球同步轨道气象卫星的国家。风云二号气象卫星与与此相配套的由我院研制的指令与数据接收站投入运行,成功地保证了第八届全运会的举行,同时还为长江截流提供了可靠、优质的气象服务。 8、随着卫星研制技术的已日臻成熟。在卫星回收技术,一箭多星技术,卫星姿控、温控、地面指令与数据接收站研制技术等方面,进入了世界前列。在此基础上建立形成了中容量通信广播卫星、返回式卫星、对地观测卫星与现代小卫星等4个系列的卫星平台,这些卫星平台的建立与新技术手段的运用,不仅将有效地提高卫星可靠性与寿命,同 时还将大大加快研制速度,努力达到年均研制4到6颗卫星的能力。 9、1984年4月8日,我国试验通信卫星发射成功,迎来了中国卫星通信的新时代,其社会效益就是无法估量的。 10、多项搭载试验,使空间微重力试验取得了突破性进展,对新材料的研制生产、合成新的药物、改善传统的农作物栽培等,产生了重大影响。特别就是用返回式卫星进行的空间育种试验,取得了重大突破。经过空间育种选育的水稻卫-36株系,单株质量在50克以上,比对照

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

航空航天概论

《航空航天概论》国家精品课建设 北京航空航天大学贾玉红 一、课程的历史沿革和特色 《航空航天概论》是我校针对全校大学一年级学生开设的工程概论性公共必修课程,作为全校的重要特色基础课一直都受到学校和教师们的高度重视。自1952年建校以来,《航空航天概论》(以下简称《航概》)就被列为全校的选修课。经过几代人50多年的努力,该课程从课程内容、教学方法、组织形式等各方面均有了很大的突破,使本课程成为全校重点建设的基础课程。随着航空航天科技的快速发展,1997年学校又把本课作为全校所有理工类、文史类和法律类大学一年级的必修课,使之成为一门具有浓郁航空航天特色的重要课程。 航空航天技术是一门高度综合的尖端科学技术,是一个国家科学技术先进水平的重要标志,对社会发展影响巨大。因此,《航概》的学习,是学生了解航空、航天科技和世界先进技术的第一窗口,是培养学生爱航空、学航空、投身于航空事业的重要入门课程,也是让学生初步建立航空航天工程意识,并为后继课程的学习打下基础的重要环节。《航概》课不仅对航空类专业的学生有重要的意义,而且对于非航空类专业和其它各类高校的学生来讲,也是他们进一步拓宽知识面和专业面,开拓视野,扩大知识口径,提高文化素质的有效途径。 由于教学对象是低年级的大学生,还不具备相应的专业基础,因此必须考虑如何将先进的航空航天知识更好地传授给学生,使学生达到融会贯

通、学以致用的目的。通过长期的教学实践,我们对传统的单一的以课堂讲授为主的教学模式进行了改革,不断更新教学内容,改进教学方法,形成了一种课堂授课和现场教学相结合,跨院系、跨学科、跨专业的联合教育模式,充分利用各系资源和教学条件,为学生提供更多的学习和实践机会。经过多年来的教学实践,教学水平和教学质量有了显著的提高。二、课程教材建设 航空航天技术的发展日新月异,为了使教学内容充分体现现代航空航天的最新成果,自52年建校以来,教材内容几经改革,由最初的讲义,到史超礼编的《航空概论》和过崇伟等编的《航空航天技术概论》,都凝聚了很多教师的心血,课程内容浓缩了航空航天技术每个阶段的发展历程。 教材建设是教学改革的重要内容,1996年学校组织了一批以何庆芝教授为组长的在航空航天领域有较高学术造诣的专家编写了《航空航天概论》教材,教材内容丰富翔实,通俗易懂,被评为普通高等教育“九五”国家级重点教材,教材发行量在20000册以上,已成为航空院校和相关院校的首选教材。为了使教学内容充分体现现代航空航天技术的特点,需要对教材内容进行及时更新,从2002年起,课程组又组织新版教材的编写。新编的《航空航天技术概论》(谢础主编)即将出版,并作为国防“十五”重点教材向全国推行。新编教材在吸收原教材优点的基础上,突出了航空航天新技术和新成果的介绍,使教材具有很强的时代性。 三、教学改革与教学实践 《航概》的特点是图片多,信息量大,涉及内容广,如果采用传统的

无人机介绍

飞行器大疆PHANTOM 4 PRO 产品类型四轴飞行器 产品定位专业级 悬停精度垂直:±0.1m(视觉定位正常工作时);±0.5m(GPS定位正常工作时) 水平:±0.3m(视觉定位正常工作时);±1.5m(GPS定位正常工作时)m 旋转角速度最大旋转角速度:250°/s(运动模式);150°/s(姿态模式) 升降速度最大上升速度:6m/s(运动模式);5m/s(定位模式) 最大下降速度:4m/s(运动模式);3m/s(定位模式) 飞行速度最大水平飞行速度:72km/h(运动模式);58km/h(姿态模式);50km/h(定位模式)飞行高度最大飞行海拔高度:6000m 飞行时间约30分钟 轴距350mm 遥控器 工作频率 2.400-2.483GHz和5.725-5.850GHz 控制距离FCC:7000m;CE:3500m(无干扰、无遮挡)m 发射功率 2.400-2.483GHz FCC:26dBm;CE:17dBm 5.725-5.850GHz FCC:28dBm;CE:14dBm 云台 角度控制精度俯仰:-90°至+30° 可控转动范围±0.03° 控制转速俯仰:90°/s 相机 镜头FOV84°;8.8mm/24mm(35mm格式等效);光圈f/2.8-f/11 带自动对焦(对焦距离1m-无穷远) 传感器1英寸CMOS;有效像素2000万(总像素2048万) ISO范围视频:100-3200(自动);100-6400(手动) 照片:100-3200(自动);100-12800(手动) 快门速度机械快门:8-1/2000s 电子快门:1/2000-1/8000s 照片分辨率 3:2宽高比:5472×3648 4:3宽高比:4864×3648 16:9宽高比:5472×3078 PIV拍照尺寸:16:9宽高比: ?5248×2952(3840×216024/25/30p,2720×153024/25/30p, 1920×108024/25/30p,1280×72024/25/30p) ?3840×2160(3840×216048/50p,2720×153048/50p, 1920×108048/50/60p,1280×72048/50/60p) 17:9宽高比: ?4896×2592(4096×216024/25/30p) ?4096×2160(4096×216048/50p) 录像分辨率 H.265 ?C4K:4096×216024/25/30p@100Mbps

我国航空航天的现状与发展前景

我国航空航天的现状与发展前景 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。 2003年10月15日,中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华起到了巨大的推动作用。 载人航天是航天技术向更高阶段的发展。不过,由于载人航

天技术与无人航天技术有很大差别,主要反映在安全性、复杂性和成本高三个方面,所以从1961年第一名航天员上天到现在,它还没有表现出特别明显的用途。但从可以预见的未来来看,人类现在面临的资源枯竭、人口急增等急待解决的几大问题,只有通过开放地球、扩大人类生存空间来解决。即使在当代,发展载人航天也可以起到以下作用: 首先,它能体现一个国家综合国力和提升国际威望。因为航天技术的水平与成就是一个国家经济、科学和技术实力的综合反映。载人航天是航天技术向更高阶段的发展,载人航天的突破--用本国的载人航天器将航天员送入太空并安全返回,更是一个国家综合国力强大的标志。发展载人航天需要依靠先进的技术水平、发达的工业基础和雄厚的经济实力。迄今为止,只有俄罗斯和美国实现了载人航天。其他拥有一定航天技术基础或较强经济实力的国家,虽欲染指载人航天,但因力不从心,所以只能求助于与他们合作,出钱出资,用俄、美的载人航天器将本国航天员送上太空,以图逐步加入世界"载人航天俱乐部"。邓小平同志曾经说过:没有两弹一星就没有中国的大国地位。所以,我国航天员进入太空,也能像上世纪六七十年代我国拥有"两弹一星"那样,引起全世界注视,提高我国的国际地位,振奋民族精神,增强全民的凝聚力。 其次,它能体现现代科技多个领域的成就,同时又给现代科技各个领域提出新的发展需求,从而可以大大促进整个科技的发

压力传感器的分类及应用原理

压力传感器的分类及应用原理 教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3、扩散硅压力传感器原理及应用 工作原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一

航空航天发展史

航空航天发展史课程论文——论战争与航空发展的关系 15191001 李想

摘要 每当我们提起战争,总会联想到残酷,杀戮等不好的名词。由于战争,人民流离失所,血流漂橹,社会动荡不安。虽然战争是社会科学技术的发展的最大阻碍,但战争同时也是科学技术发展的推动剂。从航空航天技术来看,战争无疑是该技术发展的最大推动剂。从1903年莱特兄弟自制飞机的试飞成功,到第二次世界大战结束,空天战争已经形成一定的规模。从第一架飞机的产生到二战结束种类繁多,数量巨大的飞机,可以看出,不到50年的时间里,航空技术取得了巨大进步。航空技术也是由于世界局势的紧张,美俄之间的冷战促进发展的。同时,随着航空技术的发展,在未来的战争中,空战将成为战争中最主要的战争形态。 关键词 战争,航空技术,发展

引言 时代背景 我们羡慕鸟儿在蓝天中自由的翱翔,对飞行的渴望深深的植入人类的心中,我们将对飞行的美好愿望寄托于一个又一个的神话故事之中。嫦娥奔月,阿波罗,赫尔墨斯等都是有关飞行的神话。在历史的长河中,我们也发明了很多有关飞行的技艺。例如竹蜻蜓,木鸟,风筝。同时还有一些人为飞行的尝试付出了生命。这些都不断的激励着后人对航空技术的研制。 发展过程

正文 战争对航空航天技术的影响 自从莱特兄弟发明飞机开始,航空技术不断发展,日新月异,但航空发展道路并不是一帆风顺的。当李林塔尔因滑翔事故牺牲后,欧洲航空技术一度陷入困境,许多科学家和航空探索者对飞机失去了信心。直到莱特兄弟飞机试飞成功后,欧洲航空技术才一改之前低迷的状态。人们对飞机不断的进行改造,飞机速度不断提高,飞行时长不断增加,性能不断提高。单翼机,双翼机多种种类的飞机不断出现。但第一次世界大战之前的飞机只是被人们看做一种有趣的玩物,其应用价值和潜力还没有被完全挖掘出来。1914年第一次世界大战爆发,人们首先发现飞机具有空中侦察和同炮兵配合校准炮弹落点。这两种作用促进了对于飞机飞行平稳以及观察精度提高的研究。于此同时,在侦察的过程中,不可避免的产生空中战斗。于是人们逐渐意识到提高飞机的战斗力的重要性。人们尝试着在飞机上安装机枪,大炮等,形成了战斗机的雏形。到战争结束时,已经出现了战斗机,轰炸机等。第一次世界大战持续了4年之久,飞机的性能有了很大的提高。下面是具体数据。

航空航天技术概论--实验报告

实验一、飞行原理实验 (一)实验目的 1.熟悉风洞的功用和典型构造; 2.通过烟风洞实验观察模型的气流流动情况; 3.通过低速风洞的吹风实验了解升力与迎角、相对速度之间的关系; 4.通过对不同的飞机模型进行吹风实验掌握飞机的稳定性和操纵性。 (二)实验内容 1.观察翼型模型或飞机模型在烟风洞中的气流流动情况; 2.观察飞机模型的迎角大小和相对速度对升力的影响规律; 3.观察飞机模型在受到扰动失衡之后如何自动恢复到平衡状态; 4.观察飞机模型通过操纵设备来改变飞机的哪些飞行状态。 (三)实验设备 实验设备主要包括:直流式低速风洞、烟风洞、以及各种不同类型的飞机吹风模型教具。如图1-1所示是烟风洞构造示意图。烟风洞也是一种低速风洞,主要用于形象地显示出环绕实验模型的气流流动的情况,使观察者可以清晰地看出模型的流线谱,或拍摄出流线谱的照片。 1-发烟器;2-管道;3-梳状管;4-实验段;5-沉淀槽;6-烟量开关; 7-烟速调整纽;8-模型迎角调整纽;9-发烟器及照明开关 图1-1 烟风洞构造示意图 烟风洞一般由风洞本体、发烟器、风扇电动机和照明设备等组成。风洞的剖面呈矩形,为闭口直流式。烟从发烟器1产生,沿管道2流向梳状管3(很多并列的细管),烟雾通过梳状管形成一条条细的流线,流线流过实验段4时,就可以观察气流流过模型时的流动情况。烟雾流过实验段后流人沉淀槽5,最后流到风洞的外面。发烟器底部装有电加热器,把注入的矿油点燃而发烟。为了看得更清楚或方便摄影,风洞实验段后壁常漆成黑色,并用管状的电灯来照明。 如图1-2所示是一种简单的直流式风洞的构造示意图。风洞的人造风是由风扇旋转式产生的,风扇由电动机带动,调整电动机的转速,可以改变风洞中气流的流速。

飞机环境控制系统并行设计

收稿日期:2002 07 10 基金项目:航空基础科学基金资助项目(03E09003) 作者简介:王晓文(1968-),女,北京人,博士生,wangxwbuaa@https://www.360docs.net/doc/f52991277.html,. 飞机环境控制系统并行设计 王晓文 王 浚 (北京航空航天大学航空科学与工程学院,北京100083) 摘 要:基于飞机环境控制系统(ECS)的研制,分析了系统设计的结构层次,借助于近年来飞速发展的信息技术、设计技术、仿真技术,提出了基于系统管理 结构设计 系统仿真为一体的面向对象的系统并行设计框架.设计体系贯穿于飞机环境控制系统设计的全生命周期. 关 键 词:环境控制;飞机;并行设计 中图分类号:V 245 3 文献标识码:A 文章编号:1001 5965(2003)12 1073 04 Con cu rren t design of environmen tal control systems for aircraft Wang Xiao wen Wang Jun (School of Aeronautics Science and Technology,Beijing Uni versity of Aeronautics and As tronautics,Beijing 100083,China) Abstract :Based on the development of the environmental control systems for aircraft,the arrangement for the structure of systems design was analyzed.To recur information technology,designing technology,imitating technolo gy,an concurrent engineering frame was proposed based on management structure design imitate.Design system runs through the whole life of the design period of the environmental c ontrol systems for aircraft. Key words :environmental c ontrol;airplanes;concurrent engineering 现代企业的设计理念已由过去单纯的针对产品的结构设计发展到今天以并行工程为代表的产品开发的过程重构和组织重组.计算机技术融入了产品开发研究和应用全过程,产品设计正从以往的详细设计阶段向需求分析和概念设计阶段转移,产品信息的管理则向产品的全生命周期扩展[1] .将这样一个设计理念贯穿于飞机环境控制系统的设计中,涵盖了飞机环控系统的产品结构设计、性能分析、系统仿真、以及系统设计过程中的系统部件分类管理、产品数据管理、流程管理和组织管理等设计行为. 这一设计体系的实现是基于现行信息化软件、仿真软件以及结构设计软件平台基础之上的,构筑了飞机环境控制系统的并行设计框架.该设计框架的建立,涉及环控系统仿真功能模型同CAD 系统的几何模型集成,实现飞机环控系统的产品结构设计和分析过程仿真的集成.同时,结合 热能和环境控制专业,为相关系统如空调制冷系统、机车环控系统、地面环境实验系统以及热动力试验系统等等的设计,探索并行设计模式和系统设计管理方法. 1 飞机环境控制系统设计分析 飞机环境控制系统在现代航空技术的发展中占据日益重要的位置.按照实际飞行包线的外界环境、发动机引气状态和飞机结构、人员及设备实际工作状况,进行飞机环境控制系统及其附件的 综合动态设计(即进行环控系统和其附件的多参数综合动态设计)是今后飞机环控系统的发展方向.围绕系统综合动态设计,要求设计者在设计系统状态时更多的考虑到系统综合因素的影响,产品结构设计与性能分析及仿真之间的沟通.同时,设计流程间的相互衔接,也应是设计体系完整性的一个重要表现[2] . 2003年12月第29卷第12期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics December 2003Vol.29 No 12

航空航天技术概论课后感想

航空航天技术概论课后感 想 Prepared on 22 November 2020

航空航天技术概论课后感 张弛 这学期选课,当看到有航空航天技术概论课的时候,我毫不犹豫地选择了这门课,因为我很热爱星空,原因一是喜欢那句名言:“世界上唯有两样东西能让我们的内心受到深深的震撼,一是我们头顶浩瀚灿烂的星空,一是我们心中崇高的道德法则。”二是喜欢梵高的举世名画《星月夜》。说来奇妙,因为对于文学的热爱,而选择对于科学做更深入的了解。 之前,我对航空航天并没有足够的了解。只知道莱特兄弟发明了飞机,前苏联的米高扬是飞机设计之父,设计了着名的米格系列战机等零碎的航空航天知识。经过郑老师的认真细致的讲解,我逐渐对航空航天技术概论课产生了兴趣,在课后上网查询了一些航空航天知识,并对航天事业做了一份简单的了解。 近代以前,世界各国都没有重视空军乃至天空的发展,这是时代的局限性,我们不能妄加指责前人。20世纪后,由于第二次科学技术革命的推动,飞机作为最具代表性的航空器受到了世人的广泛推崇。后来,随着时间的流逝,航天飞机,火箭,卫星,空间站等新科技成果不断出现,大大促进了地球航空航天事业额发展。 其实,在航空航天技术概论课上感触最深的是那些与航空航天事业相关的人员对于航空航天事业的热爱,以及他们把一腔热血付诸航空航天事业的无私,勇于探索新事物的无畏,还有对于年少理想的执着追求。

不可否认,很多人对于年轻时候的理想不够坚持。所以他们只能永远平庸。布伦克特说过,只要不让年轻时的梦想随风飘逝,成功总有一天会出现在你的面前。确实,如果初心不改,历经岁月的磨练,成功必定指日可待。可惜的是,大多数人耐不住寂寞,不能平心静气地做自己的本职工作,所以他们注定是人生的失败者。与之成对比的是中国老一代的航空航天事业工作者们,他们的坚持初心让人不得不心生敬意。他们用自己的能力和努力,为新中国的航空航天事业做出了卓越的贡献,所以他们理应获得鲜花和掌声。 课上的学习亦使我明白,航空航天技术的发展,需要高素质的全面的人才。这种人才并不能只是书本知识的权威,更要是各种社会技能的掌握者。众所周知,航空航天事业的研究环境相当艰苦,温室里的花朵不能适应这种环境。若想推动中国航空航天事业的迅速发展,除了学业上的努力,在课外,我们也要锻炼好身体,好的身体素质有利于在艰苦的科研环境下做持久的研究工作。另外,要用良好的心里承受能力武装自己。科学研究失败的可能性远远多于成功的可能性,只有能以平常心来应对前999次的失败,才能赢得第1000次的成功。

压力传感器的应用领域

压力传感器的应用领域 压力传感器主要应用于:增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。 1、应用于液压系统 压力传感器在液压系统中主要是来完成力的闭环控制。当控制阀芯突然移动时,在极短的时间内会形成几倍于系统工作压力的尖峰压力。在典型的行走机械和工业液压中,如果设计时没有考虑到这样的极端工况,任何压力传感器很快就会被破坏。需要使用抗冲击的压力传感器,压力传感器实现抗冲击主要有2种方法,一种是换应变式芯片,另一种方法是外接盘管,一般在液压系统中采用第一种方法,主要是因为安装方便。此外还有一个原因是压力传感器还要承受来自液压泵不间断的压力脉动。 2.应用于安全控制系统 压力传感器在安全控制系统中经常应用,主要针对的领域是空压机自身的安全管理系统。在安全控制领域有很多传感器应用,压力传感器作为一种非常常见的传感器,在安全控制系统中应用也不足为奇。 在安全控制领域应用一般从性能方面来考虑,从价格上的考虑,还有从实际操作的安全性方便性来考虑,实际证明

选择压力传感器的效果非常好。压力传感器利用机械设备的加工技术将一些元件以及信号调节器等装置安装在一块很小的芯片上面。所以体积小也是它的优点之一,除此之外,价格便宜也是它的另一大优点。在一定程度上它能够提高系统测试的准确度。在安全控制系统中,通过在出气口的管道设备中安装压力传感器来在一定程度上控制压缩机带来的压力,这算是一定的保护措施,也是非常有效的控制系统。当压缩机正常启动后,如果压力值未达到上限,那么控制器就会打开进气口通过调整来使得设备达到最大功率。 3.应用于注塑模具 压力传感器在注塑模具中有着重要的作用。压力传感器可被安装在注塑机的喷嘴、热流道系统、冷流道系统和模具的模腔内,它能够测量出塑料在注模、充模、保压和冷却过程中从注塑机的喷嘴到模腔之间某处的塑料压力。 4.应用于监测矿山压力 作为矿山压力监控的关键性技术之一。一方面,我们应该正确应用已有的各种传感器来为采矿行业服务;另一方面,作为传感器厂家还要研制和开发新型压力传感器来适应更多的采矿行业应用。压力传感器有多种,而基于矿山压力监测的特殊环境,矿用压力传感器主要有:振弦式压力传感器、半导体压阻式压力传感器、金属应变片式压力传感器、差动变压器式压力传感器等。这些传感器在矿产行业都有广泛的

飞行器环境与生命保障工程

航空宇航学院 飞行器环境与生命保障工程专业 培养方案 一、培养目标 培养适应我国科学技术和经济发展需要,受到系统的科学知识教育和初步的科学研究训练,具有良好的科学素养,具备航空航天环境模拟及控制、生命保障系统设计与研究能力,能在航空航天领域从事环境控制与生命保障系统设计,在民用领域从事能源利用、制冷空调、环境控制和设备散热等系统设计的高级工程技术人才。 二、培养要求 本专业毕业生在知识、素质和能力等方面应满足如下要求,力求成为高素质公民和未来开拓者。 (一)知识学习方面: 1、较系统地掌握本专业领域必需的技术基础理论知识,主要包括:高等数学、工程图学、机械设计、计算机应用、电工电子学等。 2、较系统地掌握传热学、流体力学、工程热力学、理论力学、材料力学、测试技术等专业基础理论。 3、系统掌握制冷技术、飞行器环境控制、防护救生及气动减速、飞机防除冰等专业知识,并了解本领域的现状与发展趋势。 4、掌握工程经济分析及管理方面的基本原理与方法,并具有较好的自然科学基础及人文社会科学基础。 (二)素质提升方面: 1、热爱祖国,具有较高的政治素质,良好的道德品质,较强的法制观念、诚信意识和社会责任感,具有团队协作精神。 2、具有良好的思想品德、文化修养、心理素质和健康的体魄,受到必要的军事训练,达到国家规定的学生体育和军事训练合格标准,具备健全的心理和健康的体魄,能够履行建设祖国和保卫祖国的神圣义务。 3、具有一定的人文社会科学和自然科学基本理论知识,掌握本专业的基础知识、基本理论、基本技能、具有独立获取知识、提出问题、分析问题和解决问题的能力及开拓创新的精神。具备一定的从事本专业业务工作的能力和适应相邻专业业务工作的基本能力与素质。 (三)能力培养方面: 1、具有较强的自学能力,创新意识和较高的综合素质,较系统的掌握本专业领域宽广的理论基础知识。 2、较系统地掌握飞行器环境与生命保障系统的设计方法,具有系统集成、调试及运行管理的能力。 3、具有较扎实的自然科学基础知识及较好的人文、艺术、道德和社会科学基础知识,语言和文字表达能力强,有良好的沟通和组织协调能力。 4、具有较强的外语应用能力,掌握工程制图、计算机应用和试验设备使用的基本能力,能综合应用外语、网络等知识查询文献资料和获取信息。

MEMS压力传感器原理与应用.

MEMS压力传感器原理与应用 摘要:简述MEMS压力传感器的结构与工作原理,以及应用技术,MEMS压力传感器Die的设计、生产成本分析,从系统应用到销售链。 关键词:MEMS压力传感器 惠斯顿电桥 硅薄膜应力杯 硅压阻式压力传感器硅电容式压力传感器 MEMS(微电子机械系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者 都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空

相关文档
最新文档