概率论中几种常用的重要的分布

概率论中几种常用的重要的分布
概率论中几种常用的重要的分布

概率论中几种常用的重要的分布

摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词

1 一维随机变量分布

随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常

用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.

随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X

x x

=∈-∞=-∞

+∞.

这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=

称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使

([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那

么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。

(3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

得概率都是

1n

,称这种随机变数的分布为离散型均匀分布。一个离散型均匀分布可以用一个正整数n 及n 个不同的常数12,...,a a 来确定。 定义1.2 若随机变量X 的概率分布为

{0}1,{

1}P X p P X p ==-== 其中01p ,则称X 服从参数为p 的(0-1)分布。

(0-1)分布是最简单的一种分布,它用于描述只有两个可能结果的试验。例

如,对新生婴儿的性别登记,观察机器是否正常工作,考察一件产品是否为合格品等,均可用(0-1)分布来描述。 定义1.3 若随机变量X 的概率分布为

(){}(1),0,1,...,k k

n k n X k C p p k n -==-=

其中1n ≥为正整数,0

1p ,则称X 服从参数为,n p 的二项分布,记作

~(,)X B n p

由二项分布的导出可知,该种分布用于描述n 重伯努利试验中发生的概率为

p .在研究某事件A 发生的概率时,我们对事件A 所在的试验进行独立重复观察,

统计出事件A 发生的次数n μ。这里n μ是一个随机变量,它就服从二项分布。另外,一批种子能发芽的个数,一定人群中患某种疾病的人数,某时刻一个城市开着的灯的盏数都可以认为是服从二项分布的。

在二项分布中,如果1n =,那么只能取0或1,这是显然有

01p p =-, 1p p =

抛掷均匀硬币的例子中,随机变量η 的分布列为

它就是(0-1)分布当2

p =时的特例。

定义1.4 若随机变量X 的概率分布为

{},0,1,2,...!

k

P X k e k k λλ-==

=

其中0λ为常数,则称X 服从参数为λ的泊松分布,记作~()X P λ.

泊松分布是作为二项分布的极限分布而引入的。事实上,泊松定理表明,当

n 很大时,p 很小,np 适中时,(,)B n p 分布就近似于()P λ分布,其中np λ=。由二项分布描述的内容可知,泊松分布主要用于描述大量独立重复实验中稀有事件发生的次数,所谓稀有事件指概率很小的事件。由此,纺织品上的疵点数,印刷品中的错字数,某时间段内电话交换台接到的呼叫次数,某时间段内公共汽车站等车的乘客人数等均可用泊松分布来描述。

定理 1.1 (泊松定理) 在n 重贝努力试验中,事件A 在一次实验中出现的概率为n p (与实验总数n 有关),如果当n →∞时,n np λ→(0λ常数),则

lim (;,),0,1,2,...!

k

n n b k n p e k k λλ-→∞

=

=

证明 记n n np λ=,则 (;,)(1)k n k n n n n b k n p p p k -??

=- ?

??

(1)...(1)1!k

n k

n n n n n k k n n λλ---+??

??

=- ?

?

???

?

12111...11!n k

k n n k k n n n n λλ--??

?

?????=---- ??? ???

????????

对于任一固定的k ,显然有

l i m

k k n n λλ→∞

= lim 1lim 1n

n

n

n k

n k

n

n n n n e n n λλλλλ---→∞→∞??

??-=-= ?

??

??

?

还有

11lim 1...11n k n n →∞-????--= ? ?????

从而

lim (;,)!

k

n n b k n p e k λλ-→∞

=

对任意k (0,1,2,...k =)成立,定理得证。

2 连续性随机变量分布

以上对离散型随机变量做了一些研究,下面将要研究另一类十分重要而且常见的随机变量——连续型随机变量

定义2.1 若()ξω是随机变量,()F x 是它的分布函数,如果存在函数()p x ,使对任意的,有

()()x

F x p y dy -∞

=?

则称()ξω对连续型随机变量,相应的()F x 为连续型分布函数,同时称()p x 是

()F x 的概率密度函数或简称为密度。

由分布函数的性质即可验证任一连续型分布的密度函数()p x 必具有下述性质:

(1)()0p x ≥

(2)

()1p x dx ∞

-∞

=?

定义2.2 若随机变量X 的概率分布为

2

()

22(),(,(0))x a x a σ?σ--=都是常数

为密度连续型分布,称这种分布为正态分布,记作2~(,)X N a σ 下面验证()x ?是一个密度函数。

因为这时为显然,此外还可以验证有

22

()2()1x x dx e dx μσ?--

-∞

-∞

=

=?

为此,可令

x y μ

σ

-=,则

222

()22

x y e

dx e

dy μσ

--

-

-∞

-∞

=

这时有

222222

2

2

2

2

121

2y x y x y e

dy e

dx e

dy e dxdy

ππ

∞--

-

-∞

-∞

-∞

+∞∞

--∞-∞

??=????

=

?

?

???

现在作坐标变换

cos sin x r y r θ

θ=??=?

这时,变换的雅可比式J r =,而 222

2

1r r e

rdr e ∞

--∞-∞=-=?

所以有

22

2

22

2

01

1122y r e

dy e rdr d π

θππ∞

∞---∞

????

==

? ? ? ??

?

??

?

?

? 于是

()1x dx ?∞

-∞

=?

这说明给出的的确是一个密度函数,这个密度函数成为正态密度。

正态分布是德国数学家和天文学家棣莫弗于1733 年在求二项分布的渐进公式时得到的. 棣莫弗- 拉普拉斯中心极限定理表明正态分布是二项分布的极限分布. 正态分布2()N μσ,的密度函数曲线是钟型曲线,它的“钟型”特征与实际中很多随机变“中间大,两头小”的分布规律相吻合. 人的各种生理指标,一个班的一次考试成绩,测量的误差等均服从或近似服从正态分布.

在许多实际问题中,遇到的随机变数是受到许多互不相干扰的随机因素的影响的,而每个个别因素的影响都不起决定性作用,且这些影响是可以叠加的。例如,电灯泡的耐用时数(寿命)受到原料,工艺,保管条件等因素的随机变动的影响,而这些因素的波动在正常情况下是互不干扰的,且,每一个都不起决定性作用,又,可以认为是可以叠加的。在概率论的极限理论中可以证明:具有上述特点的随机变数一般都可以认为服从正态分布。

二项分布,泊松分布和正态分布(或称高斯分布)时概率论中最重要的分布,在实际理论中有着广泛的应用。本文从三中分布的区别与联系出发,采用实例计算及比较方法,以达到较准确选择合适的分布解决实际问题为目的,对三种分布进行进一步探讨。

一、三种分布的区别

1.定义不同:以每个分布的定义为切入点,阐明定义特征。二项分布B(n,p)、泊松分布P(λ)和正态分布N(μ,σ2)的分布规律分别由它们的参数确定,并且三种分布的数字特征均值及方差是用不同的参数来描述。因此,区别参数的意义是深刻理解定义的关键。

2.随机变量的取值范围不同:二项分布的随机变量取值是有限个,泊松分布的随机变量取值是无穷可列,它们属于离散型的。正态分布的随机变量取值无穷不可列,充满某一区间,属于连续型的。

3.适用的条件不同:二项分布用于描述只有“成功”与“失败”两种试验结果的数学模型。例如:某个学生做n 道数学题,每道题的结果只有“对”与“错”,若每题做对的概率已知,则可利用二项分布求出做对k 道题的概率;泊松分布适用于描绘大量重复试验中稀有事件(飞机意外坠落、高楼突然倒塌等);正态分布用于一个随机变量由大量相互独立的偶然因素之和构成,每个因素所起的作用对总的来说很微小。

例如:某校2002级3000名学生的数学考试分数,受每个学生考分的影响,但每个学生的考试分数对总的分数影响不大,所以,考试分数服从正态分布。

二、三种分布之间的联系

尽管三种分布有许多不同点,但它们之间还有着相互的联系。在n 次贝努力试验中,二项分布的极限是泊松分布,我们可以用二项分布逼近泊松分布。反之,也可以用泊松分布近似具有较大n 的二项分布,即若已知泊松分布P(λ),可用二项分布B(n,λ/n)去逼近它;若已知二项分布B(n,p),可用泊松分布P(λ)近似二项分布,其理论根据是近似公式:

()

(1)

!

k k k

n k n

e C p p λλκ---≈ (1)

这里要求n 较大,p 较小,np λ=。

正态分布是二项分布的极限分布,当n 较大时,可用正态分布近似二项分布,其近似公式为:

()(1)

k k n k n C p p --≈

(2) 若~(,)n B n p η,则有

12{}n P k k η≤≤≈Φ-Φ (3)

从上面可以看到,泊松分布和正态分布都是二项分布的极限分布,在满足

一定条件下都能近似二项分布。在实际中,利用这种关系有时能够带来很多方便,从而简化计算。

三、三种分布在实际中的应用

三种分布在实际中有广泛的应用。二项分布适用于抽查产品、能量供应、药效试验、保险公司估计利润等;泊松分布用于公共汽车站来到的乘客数、电话总机在一段时间内收到的呼唤次数、运输损耗等;正态分布用于年平均气温和降雨量、测量误差、发电站电能消耗、人的身高和体重等。在日常生活、生产实际和科学研究中,怎样利用三种分布的特点及联系,简单准确计算出所求事件的概率呢?下面通过实际例子说明这一问题。

例如:某大城市有一个繁忙的交通岗,若每天有100000人通过,每人出事故的概率为0.0001,求该天出事故的人数X 不超过2人的概率。

解法一:显然~(1000000,0.0001)X B ,利用二项分布得{2}P X ≤=0.00276849 这里n 较大,p 较小,直接用二项分布计算比较麻烦。

解法二:用泊松分布近似二项分布的方法计算,代入公式(1)得

10

2

10{2}0.002769!k K e P X k -=≤≈=∑

这里10np λ==,直接查泊松分布表求出,产生的误差为75.110-?。由此可见,当n 较大时,p 较小时,泊松分布近似二项分布,其近似程度非常好,而且计算简单。

解法三:用正态分布的分布函数近似二项分布的方法计算,由近似公式(3)得

{2}( 2.53)( 3.16)0..00501P X ≤≈Φ--Φ-=

这里直接查标准正态分布的分布函数表求得,其误差为0.00224151,这比

用泊松分布产生的误差要大。在实际中,用二项分布计算量较大时,一般满足

0.13p ≤≤≥的条件下,采用正态分布近似二项分布的方法,较为方便准确有效。

解法四:用正态分布的密度函数近似二项分布的计算方法,近似公式(2)得

{2}(3.16)(2.85)(2.53)]0.0081907P X ???≤≈

++= 这里通过查标准正态分布的密度函数表直接求出,产生的误差为0.00542221,其误差比上面的两种近似求值所产生的误差都大。所以,在实际中,当p 不太接近0或1,n 不太小,随机变量的取值较小时,应该利用近似(2)计算,结果更准确。

从以上四种解法中可以得到:对于一个实际问题,首先应该根据三中分布适用的条件,判断是服从什么分布。然后用此分布去解决问题。若随机变量

~(,)X B n p ,当n 不太大,p 不很小(一般10,0.001n p ≥)时,可以用二项分

布直接计算,也可以查二项分布表求出;当10,0.1n p ≥≤,且随机变量的取值

个数较少时,可以用泊松分布直接查表计算;当0.13p ≤≤≥,随机变量的取值比较多,用二项分布计算量太大时,可以用正态分布直接查表求出结果。

定义2.2 (均匀分布)若随机变量X 的密度函数为

1

()0 a x b f x b a ?≤≤?

=-???其他

则称服从区间上的均匀分布,记作~[,]X U a b

均匀分布描述的是在一个区间上等可能取值的分布规律,也即是说概率在该区间上的分布是均匀的。均匀分布是最简单。最基本的连续型分布,就像直线运动中的匀速运动,物体中的均匀物体一样.设某路公共汽车每10 分钟一趟,则乘客的等车时间可认为是在区间[0,10]上均匀分布的.

还可以把这个分布推广到一个在实数轴上某个指定的长度不为0的集合B 上的连续型均匀分布。相应的密度函数为

1 0 , B x B B ??

∈?

=???

,的长度

其余地方 按连续型随机变数X 的密度函数()x ?的定义,有

()([])(),()x

F x P X

x x dx x ?-∞

==-∞

+∞?

这是用密度函数来表达分布函数的公式。

下面用一个例子来说明均匀分布的分布函数的推导过程 【例2】算出区间[),a b 上的均匀分布的分布函数 解 :当x a ≤

[),()()00x

x

a b F x x dx dx ?-∞

-∞===?

?

当a

x b ≤时

[),1()()0x a

x

a b a

x a F x x dx dx dx b a b a

?-∞

-∞

-==+=--??? 当b

x 时

[),1()()00001x

a

b

x a b a

b b a

F x x dx dx dx dx b a b a

?-∞

-∞

-==++=++=--???

?

即,

0 , () , 1 , x a

x a F x a x b b a b x

≤??-?

=≤?-???

为了推导用分布函数来表达密度函数的公式,考虑x 从0x 变化到0x x +?时

()F x 的增量

00

00()()()()x x

x F x F x x F x x dx ?+??=+?-=?

当()x ?在0x 处连续时,对于任意给定的0ε

,存在着0δ

,使得:当x

δ?时,

0()

x x x ??ε+?-?,从而,当x δ?时,

0()

()F x x x

?ε?-≤?。因此,当()x ?在0x 处连续时,0()()x F x ?'=.这就是用分布函数表达密度函数的公式. 定义2.3 (指数分布)若随机变量的密度函数为

, 0()0 , x e x f x λλ-?=?

?

其他 其中0λ为常数,则称X 服从参数为λ的指数分布(有的称为负指数分布),记

作~()X e λ

下面验证()f x 是一个连续型分布密度函数。

由于()f x 在整个实轴上都不为负,又, 00

()()()f x dx f x dx f x dx ∞

+∞

-∞

-∞=+?

??

001

kx kx

dx ke dx

e

+∞

--∞

+∞

-=+??=+-??=??

所以,()f x 是一个连续型分布的密度函数

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率统计分布表(常用)

标准正态表

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

几种重要的概率分布

1、均匀分布(uniform) 定义:设连续型 随机变量X的分布函数为F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]. 若[x1,x2]是[a,b]的任一子区间,则P{x1≤x≤x2}=(x2-x1)/(b-a) 这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性. 在实际问题中,当我们无法区分在区间[a,b]内取值的随机变量X取不同值的可能性有何不同时,我们就可以假定X服从[a,b]上的均匀分布 若随机变量X的密度函数为 则称随机变量X服从区间[a,b]上的均匀分布。记作X~U(a,b). 均匀分布的分布函数为

图像如下图所示: 均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。 2、正态分布 如果连续型随机变量X的密度函数为

其中,-∞

3.F分布 F分布定义为: 设X、Y为两个独立的随机变量,X服从自由度为k1的>2分布,Y服从自由度为k2的>2 分布,这2 个独立的>2分布被各自的自由度除以后的比率这一统计量的分布。即:上式F服从第一自由度为k1,第二自由度为k2的F分布 F分布的性质 1、它是一种非对称分布; 2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F(n1 –1,n2-1),n1 –1通常称为分子自由度,n2-1通常称为分母自由度; 3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。 4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2 密度函数表达式

概率统计分布表(常用)

. 标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 .

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

统计概率知识点归纳总结

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

考研数学概率论重要知识点梳理

2017考研数学:概率论重要知识点梳理 来源:文都图书 概率论在历年考研数学真题中特点比较明显。概率论与数理统计对计算技巧的要求低一些,一些题目,尤其是文字叙述题要求考生有比较强的分析问题的能力。所以考生应在这门中尽量做到那全分,这样才能保证数学的分数,下面我们整理了一些概率论的重要知识点: 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视, 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布 其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质

(4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理 其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。 第六部分:数理统计的基本概念 (1)总体与样本 (2)样本函数与统计量 (3)样本分布函数和样本矩 其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下 第七部分:参数估计 (1)点估计 (2)估计量的优良性 (3)区间估计

概率统计分布表常用

标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842

重要的概率分布

第三章重要的概率分布 (1)正态分布; χ分布; (2)2 (3)t分布; (4)F分布。 3.1 正态分布 对于连续型随机变量而言,正态分布(normal distribution)是最重要的一种概率分布。 经验表明:对于依赖于众多微小因素;且每一因素均产生微小的或正或负影响的连续型随机变量来说,正态分布是一个相当好的描述模型。 如人的体重,因为遗传、骨骼结构、饮食、锻炼、等都对人的体重有影响,但又没有一种因素起到压到一切的主导作用。与此相类似,人的身高、考试分数等都近似地服从正态分布。 通常用: δ) (3 - 1) X~N(u, 2 δ称为正态分布的表示随机变量X服从正态分布。N表示正态分布,括号内的参数u, 2 总体均值(或期望)和方差。

3.1.1 正态分布的性质 (1) 正态分布曲线以均值u 为中心,对称分布。 (2) 正态分布的概率密度函数呈中间高、两边低,在均值u 处达到最高,向两边逐渐降低,即随机变量在远离均值处取值的概率逐渐变小。 (3) 正态曲线下的面积约有68%位于u ±δ 两值之间;约有95%的面积位于u±22 δ之间; 而约有99.7%的面积位于u±3 δ之间。 ★ (4) 两个(或多个)正态分布随机变量的线性组合仍服从正态分布。 令X 和Y 相互独立: X ~N(u X ,2x δ) Y ~N(u Y , 2y δ) 现在考虑两个变量的线性组合:W =a X+b Y 则 W ~N(u W , 2w δ) ( 3 - 2 ) 其中, u W =(au X +bu Y ) ( 3 - 3 ) 2w δ = (22x a δ+22y b δ) (3 - 4) 例3.1 令X 表示在下沙高教区一花店每日出售玫瑰花数量, Y 表示在下沙镇一花店每日出售玫瑰花的数量,假定X 和Y 服从正态分布,且相互独立,并有: X ~N( 100,64 ),Y ~N( 150,81 ) 求两天内两花商出售玫瑰花数量的期望及方差? W =2X +2Y 根据式( 3 - 3 ) E(w)=E( 2X+ 2Y) = 5 0 0, Var (w) = 4var(X) + 4var(Y) = 5 8 0 因此,W 服从均值为5 0 0,方差为5 8 0的正态分布,即W ~N( 5 0 0,5 8 0 )。

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

《概率统计》公式、符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( ) ()()( (1)?=?= ) () ()()( )()()()()( )3() (1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?= ?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑ = j ij i p P ,? +∞ ∞ -= dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(1 1n X X 与),,(21n Y Y 独立),,(1 1n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,max =、{}Y X N ,min =的分布- ? ? +∞ ∞ -+∞ ∞ --=-= dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:?? ? +∞∞ -+∞ ∞-+∞ ∞ -= = dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(2 2 2 X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2 ))(()( 连续:? +∞ ∞ --= dx x f X E x X D X )())(()(2

概率论中几种常用的重要的分布

伯努利试验、泊松过程、独立同分布生成 的重要分布 敖登 (内蒙古大学数学科学学院2010级数理基地,01008104) 摘要 本文是一篇读书报告。主要研究了伯努利试验与二项分布的关系,泊松过程生成泊松分布的过程和在泊松条件下的埃尔朗分布,正态分布的生成用到的独立同分布以及均匀分布生成任意分布的重要性质。 关键词:伯努利试验泊松分布独立同分布均匀分布的生成性

Important in theory of probability distribution of exploration Author:Ao Deng Tutor: Luo Cheng (School of Mathematical sciences ,Huhhot Inner Mongolia 01008104 ) Abstract This article mainly discusses the theory of several common distribution (0-1) distribution, binomial distribution, poisson distribution and uniform distribution, exponential distribution, normal distribution and normal distribution out three kinds of important distribution, distribution, distribution and the distribution of the source and the relationship among them and their application in actual. Key words: random variable; The discrete distribution ;Continuous distribution

概率论知识点的总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。

3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)德摩根律:B A = A B = A B A B

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点 第二章知识点: 1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 2.常用离散型分布: (1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为 12{},{}1(01) P X x p P X x p p ====-<<, 则称X 服从 12 ,x x 处参数为p 的两点分布。 两点分布的概率分布:12{},{}1(01) P X x p P X x p p ====-<< 两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =- (2)二项分布: 若一个随机变量X 的概率分布由式 {}(1),0,1,...,. k k n k n P x k C p p k n -==-= 给出,则称X 服从参数为n,p 的二项分布。记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,. k k n k n P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =- (3)泊松分布: 若一个随机变量X 的概率分布为{},0,0,1,2,... ! k P X k e k k λ λλ-==>=,则称X 服从参 数为λ的泊松分布,记为X~P (λ) 泊松分布的概率分布:{},0,0,1,2,... ! k P X k e k k λ λλ-==>= 泊松分布的期望: ()E X λ=;泊松分布的方差:()D X λ= 4.连续型随机变量: 如果对随机变量X 的分布函数F(x),存在非负可积函数 ()f x ,使得对于任意实数x ,有 (){}()x F x P X x f t dt -∞ =≤=? ,则称X 为连续型随机变量,称 ()f x 为X 的概率密度函数, 简称为概率密度函数。 5.常用的连续型分布:

相关文档
最新文档